Estudio de las lectinas presentes en el veneno del escorpión Tityus macrochirus

dc.contributor.advisorVega Castro, Nohora Angélica
dc.contributor.authorPemberthy López, Daniel
dc.contributor.researchgroupGrupo de Investigación en Proteinas Gripspa
dc.date.accessioned2023-01-16T19:45:49Z
dc.date.available2023-01-16T19:45:49Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLas lectinas son glicoproteínas de origen no inmune, que reconocen carbohidratos con diferentes afinidades, por lo tanto, tienen un amplio espectro de estudio y aplicación, en diferentes campos como el médico, por ejemplo, en terapias antirretrovirales y antitumorales. Paralelamente, son de gran importancia en el estudio de formación de complejos lectina–carbohidrato, así como las interacciones proteína carbohidrato, que conducen a diferentes respuestas biológicas. Se encuentran en todos los organismos desde virus hasta humanos, aunque han sido muy bien estudiadas en animales y plantas superiores. Su alta distribución en los diferentes reinos muestra su importancia en los procesos celulares, que se dan por interacciones célula–célula, hospedero–patógeno, y planta–simbionte, entre otras. En el caso de los artrópodos, las funciones fisiológicas de las lectinas aún no están establecidas, sin embargo, hay evidencia de su importancia en la respuesta inmune, metamorfosis, diferenciación, muda, entre otras. Con respecto al estudio de las lectinas en venenos, es muy poco lo que se menciona en las revisiones y en términos generales es muy escaso. Los estudios se han limitado en su mayoría a las lectinas del veneno de serpientes (85.9%) y en menor proporción peces (5,6%), arañas y escorpiones (2,8%). Puesto que, a partir de la glándula de escorpión, se ha registrado solamente una secuencia hipotética para la lectina de Tityus obscurus (TyobL), obtenida mediante estudios de transcriptómica. Además, la única lectina estudiada a partir del veneno es la de Buthus occitanus, especie del sur de Vietnam, que se caracteriza por reconocer residuos de Fuc>> D-Glc > L-Rham= D-xyl, y solo se conoce su análisis de aminoácidos y peso molecular de subunidades. Por consiguiente y teniendo en cuenta que no existen estudios enfocados en lectinas presentes en veneno de escorpión, y que además no se conoce la secuencia ni la estructura terciaria, con el desarrollo de este trabajo se detectaron nuevas lectinas (TymaLs), a partir del veneno de Tityus macrochirus, una especie endémica del departamento de Cundinamarca, las cuales se caracterizaron por ser glicoproteínas de alto peso molecular (>100 kDa), reconocer residuos de lactosa y/o azúcares acetilados, y estar compuestos por monómeros de pesos moleculares ~ 15 kDa. Para complementar el conocimiento acerca de estas lectinas, se llevaron a cabo estudios de predicción estructural con la secuencia (nt) propuesta para la lectina de T.obscurus (TyobL), los resultados obtenidos por SWISS MODEL muestran que es una lectina tipo taquilectina (TL), similar a la isolectina 5a de Tachypleus tridentatus purificada de la hemolinfa del cangrejo (Texto tomado de la fuente).spa
dc.description.abstractLectins are proteins of no immune origin belonging to a diverse animal or plant origin group and are characterized by irreversibly binding a given monosaccharide or oligosaccharide. These properties have made them essential molecules in studying carbohydrate structure and function. Studying glycans’ function and how they can regulate biological processes is one of the most rapidly growing fields in biochemistry and molecular biology; this ranges from coagulation to viral and bacterial infection processes acting on different types of cells. Lectins have been clues in the knowledge in this area which will lead to developing new alternatives in treating diseases. Advances in proteomics have also generated growing interest in understanding how glycans participate in the multiple interactions at the cellular level where glycoproteins play a particular role. The most well-known interactions leading to biological responses are protein-protein or protein-carbohydrate ones, while eventual carbohydrate-carbohydrate interactions have not been considered relevant to date; experimental evidence has been presented which has implicated them in biological processes including cellular traffic, host-pathogen interactions, embryogenesis, spermatogenesis, fertilization, nervous system development, and angiogenesis. Many studies related to Arthropods´ lectins are carried out although physiological functions have not been established yet, there is evidence about the role immune system, metamorphosis, and differentiation, among others. However, regarding venom lectins, scarce information is found in the bibliography. Mainly studies have been mostly snakes (85.9%) and, to a lesser extent, fish (5.6%), spiders, and scorpions 82.8%). Only one hypothetical sequence has been registered for Tityus obscurus lectin (TyobL) obtained in transcriptomics studies. Additionally, only one lectin from Buthus occitanus venom was isolated and characterized for recognizing Fuc>> D-Glc > L-Rham= D-xyl residues, aminoacidic and carbohydrate analysis and molecular weight were studied too. Thus, limited structural information is available about its primary and tertiary structure. Likewise, their sequence in nucleotides or amino acid is generally unknown preventing their production in recombinant form. Considering that no studies are focusing on the detection, isolation, and biochemical characterization of lectins from scorpion venom, in this work, an endemic specie from the department of Cundinamarca, Tityus macrochirus (TymaLs) were studied to detect and isolate new lectins (TymacLs), which had specificity towards lactose residues (β-D-Gal (1-4)-β-D-GlcNAc–O-R) and acetylated carbohydrates. These lectins are glycoproteins with molecular weight higher (>100 kDa), and 15 kDa for monomers forms. To deepen the knowledge of these lectins, we chose the sequence from T. obscurus, for carrying out structural prediction studies. These results obtained by SWISS-MODEL showed that it is a tachylectin-like lectin (TL), from Tachypleus tridentatus crab hemolymph.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaEstudios de Lectinas en venenos animalesspa
dc.format.extentxv, 133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82950
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesLahiani A, Yavin E, Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) (Internet). 2017 Mar 16 (cited 2022 Feb 26);9(3). Available from: https://pubmed.ncbi.nlm.nih.gov/28300784/spa
dc.relation.referencesZhang Y. Why do we study animal toxins? Dong wu xue yan jiu = Zool Res. 2015 Jul 18;36(4):183–222.spa
dc.relation.referencesGómez JP, Quintana JC, Arbeláez P, Fernández J, Silva JF, Barona J, et al. Tityus asthenes scorpion stings: epidemiological, clinical and toxicological aspects. Biomedica (Internet). 2010 (cited 2020 Oct 16);30(1):126–39. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/160spa
dc.relation.referencesIrina Vetter; Jasmine L. Davis; Lachlan D. Rash; Raveendra Anangi; Mehdi Mobli; Paul F. Alewood; Richard J. Lewis; Glenn F. King (2011). Venomics: a new paradigm for natural products-based drug discovery. , 40(1), 15–28. doi:10.1007/s00726-010- 0516-4spa
dc.relation.referencesGuerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na +-channel scorpion toxins. PLoS One. 2012 Feb 15;7(2).spa
dc.relation.referencesWard, Micaiah J.; Ellsworth, Schyler A.; Nystrom, Gunnar S. (2018). A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon, 151(), 137–155. doi:10.1016/j.toxicon.2018.07.007spa
dc.relation.referencesHarvey AL. Toxins and drug discovery. Toxicon. 2014 Dec 15;92:193-200. doi: 10.1016/j.toxicon.2014.10.020. Epub 2014 Oct 29. PMID: 25448391.spa
dc.relation.referencesBhavya J, Francois NN, More VS, More SS. Scorpion Toxin Polyptides as Therapeutic Agents: An Overview. Protein Pept Lett. 2016;23(9):848-59. doi: 10.2174/0929866523666160630184635. PMID: 27397476.spa
dc.relation.referencesGhosh, Arijit; Roy, Rini; Nandi, Monoswini; Mukhopadhyay, Ashis (2018). Scorpion Venom–Toxins that Aid in Drug Development: A Review. International Journal of Peptide Research and Therapeutics, (), –. doi:10.1007/s10989-018-9721-xspa
dc.relation.referencesGómez Rave, Lyz Jenny; Muñoz Bravo, Adriana Ximena; Sierra Castrillo, Jhoalmis; Román Marín, Laura Melisa; Corredor Pereira, Carlos (2019). Scorpion Venom: New Promise in the Treatment of Cancer. Acta Biológica Colombiana, 24(2), 213–223. doi:10.15446/abc.v24n2.71512spa
dc.relation.referencesJosé Beltrán-Vidal;Edson Carcamo-Noriega;Nina Pastor;Fernando Zamudio- Zuñiga;Jimmy Alexander Guerrero-Vargas;Santiago Castaño;Lourival Domingos Possani;Rita Restano-Cassulini; (2021). Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel .Toxins,13,407. doi:10.3390/toxins13060407spa
dc.relation.referencesGopalakrishnakone, P.; Possani, Lourival D.; F. Schwartz, Elisabeth; Rodríguez de la Vega, Ricardo C. (2015). Scorpion Venoms || Scorpionism and Dangerous Species of Colombia Colombia. , 10.1007/978-94-007-6404-0(Chapter 22), 245–272. doi:10.1007/978-94-007-6404-0_22spa
dc.relation.referencesCalvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett (Internet). 2009 Jun 5 (cited 2022 Feb 25);583(11):1736– 43. Available from: www.reptile-database.orgspa
dc.relation.referencesCasewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013 Apr 1;28(4):219–29.spa
dc.relation.referencesTeixeira C, Moreira V, Gutiérrez JM. Venoms. Inflamm - From Mol Cell Mech to Clin (Internet). 2017 Oct 31 (cited 2022 Feb 25);99–128. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9783527692156.ch5spa
dc.relation.referencesTsaneva, M., de Schutter, K., Verstraeten, B., & Van Damme, E. J. M. (2019). Lectin sequence distribution in QTLs from rice (Oryza sativa) suggest a role in morphological traits and stress responses. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020437spa
dc.relation.referencesSharon, N., & Lis, H. (2007). Lectins: Second edition. Springer. ISBN: 978-1-4020- 6605-4. 454 p.spa
dc.relation.referencesKonozy E, Osman M, Dirar A. Plant lectins as potent Anti-coronaviruses, Anti- inflammatory, antinociceptive and antiulcer agents. Saudi J Biol Sci. 2022 Jun;29(6):103301. doi: 10.1016/j.sjbs.2022.103301. Epub 2022 Apr 22. PMID: 35475119; PMCID: PMC9026953.spa
dc.relation.referencesN. A. Hoang; B. B. Berezin; V. M. Lakhtin; I. A. Yamskov (2001). Isolation and Partial Characterization of Lectin from the Venom of Vietnamese Scorpion Buthus occitanussp.. , 37(5), 534–537. doi:10.1023/a:1010266628552spa
dc.relation.referencesRincón-Cortés, C. A., Reyes-Montaño, E. A., & Vega-Castro, N. A. (2017). Partial purification of peptides presents in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity. Biomedica: revista del Instituto Nacional de Salud, 37(2), 238-249.spa
dc.relation.referencesRincón C (2017). Identificación, aislamiento y caracterización bioquímica de péptido (s) con actividad citotóxica, presente (s) en el veneno del escorpión Tityus macrochirus (BUTHIDAE). Tesis doctoral en Ciencias Bioquímica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Química. Bogotá, Colombia.spa
dc.relation.referencesClara A Rincón-Cortés, Timoteo Olamendi-Portugal, Edson N Cárcamo-Noriega, Edmundo González-Santillán, Fernando Zamudio, Edgar A Reyes-Montaño, Nohora A Vega-Castro., Lourival Domingos Possani. Structural and functional characterization of toxic peptides purified from the venom of the Colombian scorpion Tityus macrochirus. Toxicon 169 (2019) 5–11spa
dc.relation.referencesGabius HJ. Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften. 2000; 87 (3):108-21.spa
dc.relation.referencesGhazarian H., Idoni B., Oppenheimer S. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics”. Acta histochem. 2011; 113:236–47.spa
dc.relation.referencesKudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease— mucin-type O-glycans in cancer. Adv. Cancer Res. 2015; 126:53–135.spa
dc.relation.referencesAndré S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: Getting Familiar with Translators of the Sugar Code. Molecules. 2015; 20: 1788-1823spa
dc.relation.referencesMislovicová D, Gemeiner P, Kozarova A, Kozár T. Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia. 2009; 64 (1):1-19. DOI: 10.2478/s11756-009-0029-3spa
dc.relation.referencesFohona S. Coulibaly, Bi-Botti C. Youan. Current status of lectin-based cancer diagnosis and therapy. AIMS Molecular Science, 2017, 4(1): 1-27. doi: 10.3934/molsci.2017.1.1spa
dc.relation.referencesKannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004; 95 (5):377-84.spa
dc.relation.referencesSyed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmaki U. Role of lectin microarrays in cancer diagnosis. Proteomics. 2016; 16(8):1257-65.spa
dc.relation.referencesCazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cáncer. Breast Cancer Res. 2010; 12:204.spa
dc.relation.referencesCipolla L, Peri F, Airoldi C. Glycoconjugates in Cancer Therapy. Anti-Cancer Agents Med. Chem. 2008; 8(1):92-121.spa
dc.relation.referencesSpringer GF. Immunoreactive T and Tn epitopes en cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. (Berl). 1997; 75 (8):594-602.spa
dc.relation.referencesKanev MO, Bakar E. Glycoconjugates in cancer. J. Health Sci. KOU. 2016; 2 (1):1- 5.spa
dc.relation.referencesKaptan, E., Sancar-Bas, S., Sancakli, A., Bektas, S., & Bolkent, S. (2018). The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. Journal of Cellular Biochemistry, 119(7), 6274–6287. doi:10.1002/jcb.26875spa
dc.relation.referencesSancakli A, Kaptan E. Lectin Treatment Affects Malignant Characteristics of TPC-1 Papillary Thyroid Cancer Cells. Eur J Biol 2019; 78(1): 51-57. 10.26650/EurJBiol.2019.0006spa
dc.relation.referencesHirabayashi, J., Tateno, H., Shikanai, T., Aoki-Kinoshita, K. F., & Narimatsu, H. (2015). The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules, 20(1), 951-973.spa
dc.relation.referencesKent Gartner; Kurt Stocker; Danny C. Williams (1980). Thrombolectin: A lectin isolated from Bothrops atrox venom. , 117(1-2), 0–16. doi:10.1016/0014- 5793(80)80902-1spa
dc.relation.referencesWalker, J. R., Nagar, B., Young, N. M., Hirama, T., & Rini, J. M. (2004). X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry, 43(13), 3783-3792.spa
dc.relation.referencesSartim, Marco A.; Sampaio, Suely V. (2015). Snake venom galactoside-binding lectins: a structural and functional overview. Journal of Venomous Animals and Toxins including Tropical Diseases, 21(1), 35–. doi:10.1186/s40409-015-0038-3spa
dc.relation.referencesSharon, N., & Lis, H. (2003). Lectins. Springer Science & Business Media.spa
dc.relation.referencesBaruffi, M. D., Morani, E. d. S. C., Roncoletta, M., del Cistia Andrade, C., & Rodrigues, L. C. (2017). Methods for increasing the embryo implantation rate in mammals. In: Google Patents.spa
dc.relation.referencesCui, B., Li, L., Zeng, Q., Lin, F., Yin, L., Liao, L., . . . Wang, J. (2017). A novel lectin from Artocarpus lingnanensis induces proliferation and Th1/Th2 cytokine secretion through CD45 signaling pathway in human T lymphocytes. Journal of natural medicines, 71(2), 409-421.spa
dc.relation.referencesGabius, H. J. (1997). Animal lectins. European Journal of Biochemistry, 243(3), 543- 576.spa
dc.relation.referencesMitchell, C. A., Ramessar, K., & O'Keefe, B. R. (2017). Antiviral lectins: Selective inhibitors of viral entry. Antiviral research.spa
dc.relation.referencesPonraj, T., Paulpandi, M., Vivek, R., Vimala, K., & Kannan, S. (2017). Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts. International journal of biological macromolecules, 95, 1235- 1245.spa
dc.relation.referencesSingh, R. S., Walia, A. K., Khattar, J. S., Singh, D. P., & Kennedy, J. F. (2017). Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496.spa
dc.relation.referencesVarki, A., & Lowe, J. B. (2009). Biological roles of glycans.spa
dc.relation.referencesMayer, S., Raulf, M.-K., & Lepenies, B. (2017). C-type lectins: their network and roles in pathogen recognition and immunity. Histochemistry and cell biology, 1-15.spa
dc.relation.referencesWesener, D. A., Dugan, A., & Kiessling, L. L. (2017). Recognition of microbial glycans by soluble human lectins. Current Opinion in Structural Biology, 44, 168-178.spa
dc.relation.referencesR. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794spa
dc.relation.referencesBertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.spa
dc.relation.referencesHart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.spa
dc.relation.referencesBhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res. 2019 Jun;144:8-18. doi: 10.1016/j.phrs.2019.04.001. Epub 2019 Apr 3. PMID: 30951812.spa
dc.relation.referencesGiacometti, J. (2015). Plant lectins in cancer prevention and treatment. Medicina Fluminensis: Medicina Fluminensis, 51(2), 0-0spa
dc.relation.referencesKobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., . . . Trinchieri, G. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. Journal of Experimental Medicine, 170(3), 827-845.spa
dc.relation.referencesFanayan, S., Hincapie, M., & Hancock, W. S. (2012). Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis, 33(12), 1746-1754.spa
dc.relation.referencesZeng, Q., Lin, F., Zeng, L., Deng, Y., & Li, L. (2019). Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. International immunopharmacology, 71, 285-294.spa
dc.relation.referencesWijetunge, Sashini S.; Wen, Jianchuan; Yeh, Chih-Ko; Sun, Yuyu (2018). Lectin- Conjugated Liposomes as Biocompatible, Bioadhesive Drug Carriers for the Management of Oral Ulcerative Lesions. ACS Applied Bio Materials, (), acsabm.8b00425–. doi:10.1021/acsabm.8b00425spa
dc.relation.referencesMüller SK, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, Eierhoff T, Thuenauer R, Römer W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv. 2017 Feb;14(2):141-153. doi: 10.1080/17425247.2017.1266327. Epub 2016 Dec 16. PMID: 27935765.spa
dc.relation.referencesÅ Urga S, Nanut MP, Kos J, Sabotič J. Fungal lectin MpL enables entry of protein drugs into cancer cells and their subcellular targeting. Oncotarget. 2017 Apr 18;8(16):26896-26910. doi: 10.18632/oncotarget.15849. PMID: 28460472; PMCID: PMC5432305.spa
dc.relation.referencesMicucci, H. A., & Camps, E. Lectinas: Obtención, estructura química, propiedades y aplicaciones diagnósticas y farmacológicas. Acta Farmacéutica Bonaerense, 6. Acta Farm. Bonaerense 6 (1): 35-54 (1987)spa
dc.relation.referencesSharon, N., & Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11), 53R-62R.spa
dc.relation.referencesKilpatrick, D. C. (2002). Animal lectins: a historical introduction and overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1572(2), 187-197.spa
dc.relation.referencesSwaminathan, G. J., Leonidas, D. D., Savage, M. P., Ackerman, S. J., & Acharya, K. R. (1999). Selective recognition of mannose by the human eosinophil Charcot- Leyden crystal protein (galectin-10): a crystallographic study at 1.8 Å resolution. Biochemistry, 38(42), 13837-13843spa
dc.relation.referencesKaltner, H., & Gabius, H.-J. (2001). Animal lectins: from initial description to elaborated structural and functional classification. The Molecular Immunology of Complex Carbohydrates—2, 79-94spa
dc.relation.referencesZanetta, J. P. (1998). Structure and functions of lectins in the central and peripheral nervous system. Cells Tissues Organs, 161(1-4), 180-195.spa
dc.relation.referencesToscano, M. A., Ilarregui, J. M., Bianco, G. A., Campagna, L., Croci, D. O., Salatino, M., & Rabinovich, G. A. (2007). Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? Cytokine & growth factor reviews, 18(1-2), 57-71.spa
dc.relation.referencesChen, P., De Schutter, K., Van Damme, E. J. M., & Smagghe, G. (2021). Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? Insects, 12(6), 497.spa
dc.relation.referencesPees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., & Dierking, K. (2016). High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates. Journal of innate immunity, 8(2), 129-142.spa
dc.relation.referencesXia, X., You, M., Rao, X.-J., & Yu, X.-Q. (2018). Insect C-type lectins in innate immunity. Developmental & Comparative Immunology, 83, 70-79.spa
dc.relation.referencesCao, X.-T., Pan, X.-Y., Sun, M., Liu, Y., & Lan, J.-F. (2021). Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins. Frontiers in Immunology, 12, 2331.spa
dc.relation.referencesWang, L., Huang, M., Zhang, H., & Song, L. (2011). The immune role of C-type lectins in molluscs. Invertebrate Survival Journal, 8(2), 241-246.spa
dc.relation.referencesHanington, P. C., Forys, M. A., Dragoo, J. W., Zhang, S.-M., Adema, C. M., & Loker, E. S. (2010). Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proceedings of the National Academy of Sciences, 107(49), 21087-21092.spa
dc.relation.referencesLi, T., Wu, L., Jin, M., Ma, F., Huang, X., & Ren, Q. (2017). Function of two ficolin-like proteins in innate immune defense of the oriental river prawn, Macrobrachium nipponense. Fish & shellfish immunology, 68, 488-499.spa
dc.relation.referencesVarijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs. 2021 Apr 27;19(5):246. doi: 10.3390/md19050246. PMID: 33925365; PMCID: PMC8146879.spa
dc.relation.referencesLey K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8.spa
dc.relation.referencesSelvaraj C, Abhirami R, Vijayakumar R, Alfaiz FA, Singh SK. Immunological insights of selectins in human disease mechanism. Adv Protein Chem Struct Biol. 2022;129:163–88.spa
dc.relation.referencesGupta, G. S. (2012). Lectins: an overview. In Animal Lectins: Form, Function and Clinical Applications (pp. 3-25). Springer.spa
dc.relation.referencesBonnardel, F., Kumar, A., Wimmerova, M., Lahmann, M., Perez, S., Varrot, A., . . . Imberty, A. (2019). Architecture and evolution of blade assembly in β-propeller lectins. Structure, 27(5), 764-775.spa
dc.relation.referencesBonnardel, F., Mariethoz, J., Pérez, S., Imberty, A., & Lisacek, F. (2021). LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Research, 49(D1), D1548- D1554.spa
dc.relation.referencesBonnardel, F., Perez, S., Lisacek, F., & Imberty, A. (2020). Structural database for lectins and the UniLectin web platform. In Lectin Purification and Analysis (pp. 1-14). Springer.spa
dc.relation.referencesFujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Lectins, 579-606.spa
dc.relation.referencesKumar, K. K., Chandra, K. L. P., Sumanthi, J., Reddy, G. S., Shekar, P. C., & Reddy, B. V. R. (2012). Biological role of lectins: A review. Journal of orofacial sciences, 4(1), 20.spa
dc.relation.referencesLannoo, N., & Van Damme, E. J. M. (2010). Nucleocytoplasmic plant lectins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(2), 190-201.spa
dc.relation.referencesCruz, P. H., Campos, E. P., Martínez, L. M., Ortiz, B., & Martínez, G. (2005). Las lectinas vegetales como modelo de estudio de las interacciones proteína- carbohidrato. Revista de Educación Bioquímica, 24(1), 21-27.spa
dc.relation.referencesVan Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in botanical research, 48, 107-209spa
dc.relation.referencesNasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96spa
dc.relation.referencesShirai, T., Matsui, Y., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H., Ishii, C., . . . Muramoto, K. (2002). Crystal structure of a conger eel galectin (Congerin II) at 1.45 Å resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication. Journal of molecular biology, 321(5), 879-889.spa
dc.relation.referencesNonaka, Y., Ogawa, T., Yoshida, H., Shoji, H., Nishi, N., Kamitori, S., & Nakamura, T. (2015). Crystal structure of a Xenopus laevis skin proto-type galectin, close to but distinct from galectin-1. Glycobiology, 25(7), 792-803.spa
dc.relation.referencesBianchet, M. A., Odom, E. W., Vasta, G. R., & Amzel, L. M. (2010). Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). Journal of molecular biology, 401(2), 239-252.spa
dc.relation.referencesZelensky, A. N., & Gready, J. E. (2005). The C‐type lectin‐like domain superfamily. The FEBS journal, 272(24), 6179-6217.spa
dc.relation.referencesThe Biophilia Hypothesis, Stephen R. Kellert and Edward O. Wilson. 1993. Island Press, Washington, DC. 484 pages. ISBN: 1-55963-148-1. http://dx.doi.org/101177/027046769501500125 (Internet).spa
dc.relation.referencesCrespi Abril, A. C., & Rubilar Panasiuk, C. T. (2018). Etica e invertebrados: análisis de los casos de los cefalópodos y equinodermos. https://ri.conicet.gov.ar/handle/11336/95031spa
dc.relation.referencesD. Chapman. Numbers of Living Species in Australia and the World - DAWE (Internet). Australian Biodiversity Information Services, Toowoomba, Australia. 2009 (cited 2022 Apr 27). Available from: https://www.awe.gov.au/science- research/abrs/publications/other/numbers-living-species/executive-summaryspa
dc.relation.referencesMoreno, A. G., Outerelo, R., Ruiz, E., Aguirre, J. I., Almodóvar, A., Alonso, J. A., & Cano, J. (2011). Prácticas de Zoología. Estudio y diversidad de los Moluscos. Disección de mejillón. REDUCA (Biología), 4(2). - http://revistareduca.es/index.php/biologia/article/view/837spa
dc.relation.referencesNevalainen TJ, Quinn RJ, Hooper JNA. Phospholipase A2 in porifera. Comp Biochem Physiol Part B Biochem Mol Biol. 2004 Mar 1;137(3):413–20.spa
dc.relation.referencesBecerra AJJ. Evolução do veneno em cnidários. 2021. https://repositorio.usp.br/item/003048273spa
dc.relation.referencesJouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel). 2015;7(6):2251-2271. Published 2015 Jun 18. doi:10.3390/toxins7062251spa
dc.relation.referencesArroyo-Vega, C., & Lechuga-Granados, A. (2021). Equinodermos de Isla La Roqueta de Acapulco, Guerrero, México. Revista de Biología Tropical, 69(Suppl. 1), 265-271.spa
dc.relation.referencesGhyoot, M., Dubois, P., & Jangoux, M. (2004). The venom apparatus of the globiferous pedicellariae of the toxopneustid Sphaerechinus granularis (Echinodermata, Echinoida): Fine structure and mechanism of venom discharge. Zoomorphology, 114, 73-82.spa
dc.relation.referencesMoluscos | DIGITAL.CSIC (Internet). (cited 2022 Feb 26). Available from: https://digital.csic.es/handle/10261/100133spa
dc.relation.referencesLiu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, Wang S. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res. 2021 Jan 8;49(D1):D988-D997. doi: 10.1093/nar/gkaa918. Erratum in: Nucleic Acids Res. 2021 Jan 8;49(D1):D1556. PMID: 33219670; PMCID: PMC7779068.spa
dc.relation.referencesBuczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci. 2005 Dec;62(24):3067–79.spa
dc.relation.referencesAguilar MB, Luna-Ramírez KS, Echeverría D, Falcón A, Olivera BM, Heimer de la Cotera EP, et al. Conorfamide-Sr2, a gamma-carboxyglutamate-containing FMRFamide-related peptide from the venom of Conus spurius with activity in mice and mollusks. Peptides. 2008 Feb 1;29(2):186–95.spa
dc.relation.referencesSchierwater B (Bernd), DeSalle R. Invertebrate zoology : a tree of life approach.spa
dc.relation.referencesFrancke OF. Biodiversity of Arthropoda (Chelicerata: Arachnida ex Acari) in Mexico. Rev Mex Biodivers. 2014;85(SUPPL.).spa
dc.relation.referencesLourenço WR. The coevolution between telson morphology and venom glands in scorpions (Arachnida). J Venom Anim Toxins Incl Trop Dis. 2020;26:e20200128. Published 2020 Oct 9. doi:10.1590/1678-9199-JVATITD-2020-0128spa
dc.relation.referencesPolis GA. The Biology of scorpions. Stanford Calif.: Stanford University Press; 1990. 587 p.spa
dc.relation.referencesvan der Meijden A, Kleinteich T. A biomechanical view on stinger diversity in scorpions. J Anat. 2017 Apr 1;230(4):497–509.spa
dc.relation.referencesCaracterización de péptidos antimicrobianos derivados de SPC13 presente en el veneno de Scolopendra polymorpha (Internet). (cited 2022 Feb 26). Available from: http://riaa.uaem.mx/handle/20.500.12055/1765spa
dc.relation.referencesFrazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs. 2012 Aug;10(8):1812-51. doi: 10.3390/md10081812. Epub 2012 Aug 22. PMID: 23015776; PMCID: PMC3447340.spa
dc.relation.referencesSix DA, Dennis EA. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim Biophys Acta - Mol Cell Biol Lipids. 2000 Oct 31;1488(1–2):1–19.spa
dc.relation.referencesEfecto toxicológico y proteómica del veneno de la víbora de cascabel de la Isla Coronado Sur (Crotalus helleri caliginis), Baja California, México. ttp://hdl.handle.net/11317/2212spa
dc.relation.referencesFox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005 Jun 15;45(8):969-85. doi: 10.1016/j.toxicon.2005.02.012. Epub 2005 Apr 9. PMID: 15922769.spa
dc.relation.referencesParker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol. 2005 May;88(1):91-142. doi: 10.1016/j.pbiomolbio.2004.01.009. PMID: 15561302.spa
dc.relation.referencesFedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L, Leychenko E, Kozlovskaya E, Jin JO, Kwak JY, Bode AM, Dong Z, Stonik V. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon. 2010 Apr 1;55(4):811-7. doi: 10.1016/j.toxicon.2009.11.016. Epub 2009 Nov 26. PMID: 19944712; PMCID: PMC2823821.spa
dc.relation.referencesLucía García-Ortega; Jorge Alegre-Cebollada; Sara García-Linares; Marta Bruix; Álvaro Martínez-del-Pozo; José G. Gavilanes (2011). The behavior of sea anemone actinoporins at the water–membrane interface. , 1808(9), 0–2288. doi:10.1016/j.bbamem.2011.05.012spa
dc.relation.referencesVoskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010 May;235(1):35- 54. doi: 10.1111/j.0105-2896.2010.00896.x. PMID: 20536554spa
dc.relation.referencesCastañeda O, Harvey AL. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. Toxicon. 2009 Dec 15;54(8):1119-24. doi: 10.1016/j.toxicon.2009.02.032. Epub 2009 Mar 6. PMID: 19269305.spa
dc.relation.referencesChi V, Pennington MW, Norton RS, et al. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59(4):529- 546. doi:10.1016/j.toxicon.2011.07.016.spa
dc.relation.referencesBéchohra L, Laraba-Djebari F, Hammoudi-Triki D. Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line. J Venom Anim Toxins Incl Trop Dis. 2016 Oct 22;22:29. doi: 10.1186/s40409-016-0085-4. PMID: 27790250; PMCID: PMC5075196.spa
dc.relation.referencesGhavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, Gibson SB, Booy EP, Naderi-Manesh H, Los M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med. 2008 Jun;12(3):1005-22. doi: 10.1111/j.1582- 4934.2008.00129.x. PMID: 18494941; PMCID: PMC4401144.spa
dc.relation.referencesReyes-Vega DF, Bermúdez JF, Buitrago-Toro K, Jiménez-Salazar S, Zamora-Suárez A. Aspectos epidemiológicos, clínicos y paraclínicos del accidente escorpiónico en el Hospital Universitario de Neiva, Colombia. Iatreia (Internet). 18 de noviembre de 2020 (citado 30 de mayo de 2022);34(4):295-306. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/342223spa
dc.relation.referencesBorges, A., Graham, M. R., Cândido, D. M., & Pardal, P. (2021). Amazonian scorpions and scorpionism: integrating toxinological, clinical, and phylogenetic data to combat a human health crisis in the world's most diverse rainfores. The journal of venomous animals and toxins including tropical diseases, 27, e20210028. https://doi.org/10.1590/1678-9199-JVATITD-2021-0028spa
dc.relation.referencesHumboldt-Paputsachis, Ciro, Fernandez, Gil Patrick. Morphological and morphometric analysis of Tityus (Tityus) sorataensis Kraepelin 1911 (Escorpionida: Buthidae) the two Andean mesothermic valleys, Quime and Cheje, La Paz-Bolivia. J. Selva Andina Res. Soc. (online). 2021, vol.12, n.1, pp.3-20. ISSN 2072-9294.spa
dc.relation.referencesMendoza-Tobar LL, Meza-Cabrera IA, Sepúlveda-Arias JC, Guerrero-Vargas JA. Comparison of the Scorpionism Caused by Centruroidesmargaritatus, Tityuspachyurus and Tityus n. sp. aff. metuendus Scorpion Venoms in Colombia. Toxins (Basel). 2021 Oct 25;13(11):757. doi: 10.3390/toxins13110757. PMID: 34822541; PMCID: PMC8625436.spa
dc.relation.referencesSchwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132.spa
dc.relation.referencesEscobar, E.; Velásquez, L.; Rivera, C. Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841) (Scorpiones: Buthidae). 2003. Rev. Perú. Biol. 10(2): 217-220spa
dc.relation.referencesKawachi, T.; Miyashita, M.; Nakagawa, Y.; Miyagawa, H. Isolation and Characterization of Anti-Isect β-Toxin from venom the Scorpion Isometrus maculatus. Biosci. Biotechnol. 2013. Biochem. 77(1): 205-507.spa
dc.relation.referencesLopez-Giraldo, Andrea Estefania; Olamendi-Portugal, Timoteo; Riaño-Umbarila, Lidia; Becerril, Baltazar; Possani, Lourival D.; Delepierre, Muriel; del Rio Portilla, Federico (2020). The three-dimensional structure of the toxic peptide Cl13 from the scorpion Centruroides limpidus. Toxicon, 184(), 158–166. doi:10.1016/j.toxicon.2020.06.011spa
dc.relation.referencesSchwab, A., J. Reinhardt, S. W. Schneider, B. Gassner and B. Schuricht (1999). "K(+) channel-dependent migration of fibroblasts and human melanoma cells." Cell Physiol Biochem 9(3): 126-132.spa
dc.relation.referencesDas Gupta, S., B. Halder, A. Gomes and A. Gomes (2013). "Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells." Life Sci 93(7): 271-276spa
dc.relation.referencesMackessy S. Handbook of Venoms and Toxins of Reptiles. Mackessy S, editor. Boca Raton, Fl: CRC Press; 2010spa
dc.relation.referencesBeltrán-Vidal J, Carcamo-Noriega E, Pastor N, Zamudio-Zuñiga F, Guerrero-Vargas JA, Castaño S, Possani LD, Restano-Cassulini R. Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins (Basel). 2021 Jun 8;13(6):407. doi: 10.3390/toxins13060407. PMID: 34201318; PMCID: PMC8273696spa
dc.relation.referencesSantibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016 Dec 9;8(12):367. doi: 10.3390/toxins8120367. PMID: 27941686; PMCID: PMC5198561.spa
dc.relation.referencesRomero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel). 2018;10(9):359. Published 2018 Sep 5. doi:10.3390/toxins10090359spa
dc.relation.referencesAlmeida DD, Scortecci KC, Kobashi LS, Agnez-Lima LF, Medeiros SR, Silva-Junior AA, Junqueira-de-Azevedo Ide L, Fernandes-Pedrosa Mde F. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics. 2012 Aug 1;13:362. doi: 10.1186/1471-2164-13-362. PMID: 22853446; PMCID: PMC3444934.spa
dc.relation.referencesRendón-Anaya, M., Camargos, T. S., & Ortiz, E. (2015). Scorpion venom gland transcriptomics. Scorpion Venoms, 531-545.spa
dc.relation.referencesBarona J, Otero R, Núñez V. Aspectos toxinológicos e inmunoquímicos del veneno del escorpión Tityus pachyurus Pocock de Colombia: capacidad neutralizante de antivenenos producidos en Latinoamérica (Toxicological and immunological aspects of scorpion venom (Tytius pachyurus): neutralizing capacity of antivenoms produced in Latin America). Biomedica. 2004 Mar;24(1):42-9. Spanish. PMID: 15239600spa
dc.relation.referencesBarona J, Batista CVF, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta - Proteins Proteomics. 2006;1764(1):76–84spa
dc.relation.referencesLourenço WR, Leguin E-A. The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius. 2008;2008(75):1–9.spa
dc.relation.referencesde Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de- Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453.spa
dc.relation.referencesAlmeida FM, Pimenta AM, De Figueiredo SG, Santoro MM, Martin-Eauclaire MF, Diniz CR, De Lima ME. Enzymes with gelatinolytic activity can be found in Tityus bahiensis and Tityus serrulatus venoms. Toxicon. 2002 Jul;40(7):1041-5. doi: 10.1016/s0041- 0101(02)00084-3. PMID: 12076659.spa
dc.relation.referencesFletcher PL Jr, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem. 2010 Mar 5;285(10):7405-16. doi: 10.1074/jbc.M109.028365. Epub 2009 Dec 21. PMID: 20026600; PMCID: PMC2844189.spa
dc.relation.referencesPimenta AM, Stöcklin R, Favreau P, Bougis PE, Martin-Eauclaire MF. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom. 2001;15(17):1562-72. doi: 10.1002/rcm.415. PMID: 11713783.spa
dc.relation.referencesBecerril B, Marangoni S, Possani LD. Toxins and genes isolated from scorpions of the genus Tityus. Toxicon. 1997 Jun;35(6):821-35. doi: 10.1016/s0041-0101(96)00198-5. PMID: 9241777.spa
dc.relation.referencesChippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008 Aug;107(2):71-9. doi: 10.1016/j.actatropica.2008.05.021. Epub 2008 Jun 5. PMID: 18579104.spa
dc.relation.referencesBucaretchi F, Fernandes LC, Fernandes CB, Branco MM, Prado CC, Vieira RJ, De Capitani EM, Hyslop S. Clinical consequences of Tityus bahiensis and Tityus serrulatus scorpion stings in the region of Campinas, southeastern Brazil. Toxicon. 2014 Oct;89:17-25. doi: 10.1016/j.toxicon.2014.06.022. Epub 2014 Jul 8. PMID: 25011046.spa
dc.relation.referencesNencioni AL, Lourenço GA, Lebrun I, Florio JC, Dorce VA. Central effects of Tityus serrulatus and Tityus bahiensis scorpion venoms after intraperitoneal injection in rats. Neurosci Lett. 2009 Oct 9;463(3):234-8. doi: 10.1016/j.neulet.2009.08.006. Epub 2009 Aug 5. PMID: 19664683.spa
dc.relation.referencesde Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591.spa
dc.relation.referencesAlvarenga ER, Mendes TM, Magalhaes BF, Siqueira FF, Dantas AE, Barroca TM, et al. Transcriptome analysis of the <i>Tityus serrulatus</i> scorpion venom gland. Open J Genet. 2012;02(04):210–20.spa
dc.relation.referencesBecerril B, Corona M, Coronas FI, Zamudio F, Calderon-Aranda ES, Fletcher PL Jr, Martin BM, Possani LD. Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus. Biochem J. 1996 Feb 1;313 ( Pt 3)(Pt 3):753-60. doi: 10.1042/bj3130753. PMID: 8611151; PMCID: PMC1216974.spa
dc.relation.referencesSameh Sarray, Jose Luis, Mohamed El Ayeb and Naziha Marrakchi (2013). Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects, Bioactive Food Peptides in Health and Disease Blanca Hernández-Ledesma, IntechOpen, DOI: 10.5772/51263.spa
dc.relation.referencesJ.R. Almeida, L.M. Resende, R.K. Watanabe, V.C. Carregari, et al. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents (2017). Curr Med Chem. 2017;24(30):3254-3282.spa
dc.relation.referencesNagasaka K, Nakagawa H, Satoh F, Hosotani T, Yokoigawa K, Sakai H, et al. A novel cytotoxic protein, Karatoxin, from the dorsal spines of the redfin velvetfish, Hypodytes rubripinnis. Toxin Rev. 2009;28(4):260–5.spa
dc.relation.referencesde Santana Evangelista K, Andrich F, de Rezende FF, Niland S, Cordeiro MN, Horlacher T, et al. Plumieribetin, a fish lectin homologous to mannose-binding B-type lectins, inhibits the collagen-binding α1β1 integrin. J Biol Chem. 2009;284(50):34747–59.spa
dc.relation.referencesAndrich F, Richardson M, Naumann GB, Cordeiro MN, Santos A V., Santos DM, et al. Identification of C-type isolectins in the venom of the scorpionfish Scorpaena plumieri. Toxicon. 2015;95:67–71.spa
dc.relation.referencesLopes-Ferreira M, Magalhães GS, Fernandez JH, Junqueira-De-Azevedo IDLM, Le HoP, Lima C, et al. Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie. 2011;93(6):971– 80spa
dc.relation.referencesIshizuka EK, Ferreira MJ, Grund LZ, Coutinho EMM, Komegae EN, Cassado AA, et al. Role of interplay between IL-4 and IFN-γ in the in regulating M1 macrophage polarization induced by Nattectin. Int Immunopharmacol. 2012;14(4):513–22.spa
dc.relation.referencesQu Y, Liang S, Ding J, Liu X, Zhang R, Gu X. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. J Protein Chem. 1997 Aug;16(6):565-74. doi: 10.1023/a:1026314722607. PMID: 9263120.spa
dc.relation.referencesHans-Christian Siebert; Shan-Yun Lu; Rainer Wechselberger; Karin Born; Thomas Eckert; Songping Liang; Claus-Wilhelm von der Lieth; Jesús Jiménez-Barbero; Roland Schauer; Johannes F.G. Vliegenthart; Thomas Lütteke; Tibor Kožár (2009). A lectin from the Chinese bird-hunting spider binds sialic acids. , 344(12), 1515–1525. doi:10.1016/j.carres.2009.06.002 Sartimspa
dc.relation.referencesHatakeyama T, Ichise A, Unno H, Goda S, Oda T, Tateno H, Hirabayashi J, Sakai H, Nakagawa H. Carbohydrate recognition by the rhamnose-binding lectin SUL-I with a novel three-domain structure isolated from the venom of globiferous pedicellariae of the flower sea urchin Toxopneustes pileolus. Protein Sci. 2017 Aug;26(8):1574-1583. doi: 10.1002/pro.3185. Epub 2017 May 12. PMID: 28470711; PMCID: PMC5521583.spa
dc.relation.referencesZobel-Thropp, P. A., Correa, S. M., Garb, J. E., & Binford, G. J. (2014). Spit and venom from scytodes spiders: a diverse and distinct cocktail. Journal of proteome research, 13(2), 817-835.spa
dc.relation.referencesLino-López GJ, Valdez-Velázquez LL, Corzo G, Romero-Gutiérrez MT, Jiménez- Vargas JM, Rodríguez-Vázquez A, Vazquez-Vuelvas OF, Gonzalez-Carrillo G. Venom gland transcriptome from Heloderma horridum horridum by high-throughput sequencing. Toxicon. 2020 Jun;180:62-78. doi: 10.1016/j.toxicon.2020.04.003. Epub 2020 Apr 10. PMID: 32283106.spa
dc.relation.referencesFry, B. G., Undheim, E. A., Ali, S. A., Jackson, T. N., Debono, J., Scheib, H., ... & Sunagar, K. (2013). Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Molecular & Cellular Proteomics, 12(7), 1881-1899.spa
dc.relation.referencesWalker, A. A., Mayhew, M. L., Jin, J., Herzig, V., Undheim, E. A., Sombke, A., ... & King, G. F. (2018). The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature communications, 9(1), 1-10.spa
dc.relation.referencesGerardo Raul Vasta; Elias Cohen (1984). Sialic acid-binding lectins in the “whip scorpion” (Mastigoproctus giganteus) serum. , 43(3), 0–342. doi:10.1016/0022- 2011(84)90078-8spa
dc.relation.referencesAhmed H, Anjaneyulu G, Chatterjee BP. Serological characterization of humoral lectin from Heterometrus granulomanus scorpion hemolymph. Dev Comp Immunol. 1986 Summer;10(3):295-304. doi: 10.1016/0145-305x(86)90020-0. PMID: 3770265spa
dc.relation.referencesAhmed H, Chatterjee BP, Kelm S, Schauer R. Purification of a sialic acid-specific lectin from the Indian scorpion Heterometrus granulomanus. Biol Chem Hoppe Seyler. 1986 Jun;367(6):501-6. doi: 10.1515/bchm3.1986.367.1.501. PMID: 3741626.spa
dc.relation.referencesR. Viswambari Devi, M. R. Basilrose & P. D. Mercy (2010) Prospect for lectins in arthropods, Italian Journal of Zoology, 77:3, 254-260, DOI: 10.1080/11250003.2010.492794spa
dc.relation.referencesNunes Edos S, de Souza MA, Vaz AF, Santana GM, Gomes FS, Coelho LC, Paiva PM, da Silva RM, Silva-Lucca RA, Oliva ML, Guarnieri MC, Correia MT. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp Biochem Physiol B Biochem Mol Biol. 2011 May;159(1):57-63. doi: 10.1016/j.cbpb.2011.02.001. Epub 2011 Feb 18. PMID: 21334449.spa
dc.relation.referencesCastanheira, L. E., de Oliveira Nunes, D. C., Cardoso, T. M., de Souza Santos, P., Goulart, L. R., Rodrigues, R. S., ... & Rodrigues, V. M. (2013). Biochemical and functional characterization of a C-type lectin (BpLec) from Bothrops pauloensis snake venom. International journal of biological macromolecules, 54, 57-64.spa
dc.relation.referencesSamah, Saoud; Fatah, Chérifi; Jean-Marc, Berjeaud; Safia, Kellou-Taîri; Fatima, Laraba-Djebari (2017). Purification and characterization of Cc-Lec, C-type lactose- binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102(), 336–350. doi:10.1016/j.ijbiomac.2017.04.018spa
dc.relation.referencesde Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61. doi: 10.1016/j.toxicon.2014.12.013. Epub 2014 Dec 29. PMID: 25553591.spa
dc.relation.referencesde Oliveira UC, Nishiyama MY Jr, Dos Santos MBV, Santos-da-Silva AP, Chalkidis HM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo ILM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One. 2018 Mar 21;13(3):e0193739. doi: 10.1371/journal.pone.0193739. PMID: 29561852; PMCID: PMC5862453.spa
dc.relation.referencesSantibáñez-López CE, Cid-Uribe JI, Batista CV, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016;8(12):367. Published 2016 Dec 9. doi:10.3390/toxins8120367spa
dc.relation.referencesMa, Y., Zhao, R., He, Y. et al. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics 10, 290 (2009). https://doi.org/10.1186/1471-2164-10-290spa
dc.relation.referencesOkino N, Kawabata S, Saito T, Hirata M, Takagi T, Iwanaga S;, J Biol Chem. 1995;270:31008-31015.: Purification, (characterization, and cDNA cloning of a 27- kDa lectin (L10) from horseshoe crab hemocytes. PUBMED:8537358 EPMC:8537358spa
dc.relation.referencesBeisel HG, Kawabata S, Iwanaga S, Huber R, Bode W;, EMBO J. 1999;18:2313-2322.: Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. PUBMED:10228146 EPMC:10228146spa
dc.relation.referencesHayes ML, Eytan RI, Hellberg ME;, BMC Evol Biol. 2010;10:150.: High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2). PUBMED:20482872 EPMC:20482872spa
dc.relation.referencesJu L, Zhang S, Liang Y, Sun X. Identification, expression and antibacterial activity of a tachylectin-related homolog in amphioxus Branchiostoma belcheri with implications for involvement of the digestive system in acute phase response. Fish Shellfish Immunol. 2009 Feb;26(2):235-42. doi: 10.1016/j.fsi.2008.10.015. Epub 2008 Nov 19. PMID: 19063974.spa
dc.relation.referencesAngthong P, Roytrakul S, Jarayabhand P, Jiravanichpaisal P. Characterization and function of a tachylectin 5-like immune molecule in Penaeus monodon. Dev Comp Immunol. 2017 Nov;76:120-131. doi: 10.1016/j.dci.2017.05.023. Epub 2017 Jun 3. PMID: 28587859.spa
dc.relation.referencesKawabata S, Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):391-400. doi: 10.1016/s0145-305x(99)00019- 1. PMID: 10426430.spa
dc.relation.referencesKawabata S, Beisel HG, Huber R, Bode W, Gokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S. Role of tachylectins in host defense of the Japanese horseshoe crab Tachypleus tridentatus. Adv Exp Med Biol. 2001;484:195-202. doi: 10.1007/978-1-4615-1291-2_18. PMID: 11418985.spa
dc.relation.referencesde Paula Santos-da-Silva A, Candido DM, Nencioni ALA, Kimura LF, Prezotto-Neto JP, Barbaro KC, Chalkidis HM, Dorce VAC. Some pharmacological effects of Tityus obscurus venom in rats and mice. Toxicon. 2017 Feb;126:51-58. doi: 10.1016/j.toxicon.2016.12.008. Epub 2016 Dec 22. PMID: 28012802.spa
dc.relation.referencesOukkache, N., Chgoury, F., Lalaoui, M. et al. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis 19, 5 (2013). https://doi.org/10.1186/1678-9199-19-5spa
dc.relation.referencesSmith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76-85. doi: 10.1016/0003-2697(85)90442-7. Erratum in: Anal Biochem 1987 May 15;163(1):279. PMID: 3843705.spa
dc.relation.referencesLaemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0. PMID: 5432063.spa
dc.relation.referencesSchägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. doi: 10.1016/0003-2697(87)90587-2. PMID: 2449095.spa
dc.relation.referencesHermanson, G.T., Mallia, A.K., Smith, P.K. Immobilized Affinity Ligand Techniques. Academic Press, 1992. 454p.spa
dc.relation.referencesWaterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427. PMID: 29788355; PMCID: PMC6030848.spa
dc.relation.referencesEscobar, E., Tincopa, R., & Ochoa, J. A. (2013). Estudio bioquímico del veneno de Tityus kaderkai (Scorpiones: Buthidae) con notas sobre su distribución y hábitat en el Perú. Revista peruana de biología, 20(2), 151-158.spa
dc.relation.referencesEstrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678- 9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192.spa
dc.relation.referencesNagdalian, A. A., Pushkin, S. V., Povetkin, S., Nikolaevich, K., Egorovna, M., Marinicheva, M. P., & Lopteva, M. S. (2018). Migalomorphic spiders venom: extraction and investigation of biological activity. Entomol Appl Sci Lett, 5(3), 60-70.spa
dc.relation.referencesTincopa Marca, L. R. Estudio bioquímico del veneno del escorpión Tityus sp.(aff. T. silvestris Pocock).Universidad Mayor de San Marcos, Fcultad de Ciencias Biológicas, 2007.Tesis de Pregrado.spa
dc.relation.referencesEscobar, E., Velásquez, L., & Rivera, C. (2003). Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841)(Scorpiones: Buthidae). Revista peruana de biología, 10(2), 209-216.spa
dc.relation.referencesNasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, et al. (2017). Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol; 12(5):1288-96spa
dc.relation.referencesRougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, Wu AM. Structure-function relationships of plant lectins that specifically recognize T and Tn antigens. Wu AM (Ed). En The molecular Immunology of complex carbohydrates, 3rd ed. Springer. 2011; 157-70.spa
dc.relation.referencesKasai, Kenichi (2021). Frontal affinity chromatography: An excellent method of analyzing weak biomolecular interactions based on a unique principle. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(1), 129761–. doi:10.1016/j.bbagen.2020.129761spa
dc.relation.referencesHirabayashi, Jun (2003). (Methods in Enzymology) Recognition of Carbohydrates in Biological Systems, Part A: General Procedures Volume 362 || Frontal Affinity Chromatography as a Tool for Elucidation of Sugar Recognition Properties of Lectins. , (), 353–368. doi:10.1016/S0076-6879(03)01025-5spa
dc.relation.referencesTania Cortázar. Estudio del efecto de lectinas vegetales sobre los procesos de migración y proliferación celular en queratinocitos epidérmicos. Tesis de Doctorado en ciencias Bioquímica. Facultad de Ciencias. Universidad Nacional de Colombia. 2019.spa
dc.relation.referencesAlmanza M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys. 2004 Sep 15;429(2):180-90. doi: 10.1016/j.abb.2004.06.010. PMID: 15313221.spa
dc.relation.referencesBetancourt, O.H., Hernández, I.C., Huerta, E.I., Labrada, A.R., Ramos, J., & Pargas, A.R. (2009). Evaluación de la toxicidad in vitro del veneno del alacrán Rophalurus junceus a través de un ensayo celular. Rev Cubana Invest Biomed 2009; 28(1) 1-11.spa
dc.relation.referencesWiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie. 2019 Aug;163:33-49. doi: 10.1016/j.biochi.2019.05.009. Epub 2019 May 10. PMID: 31078582.spa
dc.relation.referencesAlmeida, José R.; Mendes, Bruno; Patiño, Ricardo S.P.; Pico, José; Laines, Johanna; Terán, María; Mogollón, Noroska G.S.; Zaruma-Torres, Fausto; Caldeira, Cleópatra A. da S.; da Silva, Saulo L. (2020). Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 230(), 108702–. doi:10.1016/j.cbpc.2020.108702spa
dc.relation.referencesLü, S., Liang, S. & Gu, X. Three-Dimensional Structure of Selenocosmia huwena Lectin-I (SHL-I) from the Venom of the Spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18, 609–617 (1999). https://doi.org/10.1023/A:1020663619657spa
dc.relation.referencesWang X, Gao B, Zhu S. Exon Shuffling and Origin of Scorpion Venom Biodiversity. Toxins (Basel). 2016;9(1):10. Published 2016 Dec 26. doi:10.3390/toxins9010010spa
dc.relation.referencesTomoyuki KAWACHI, Masahiro MIYASHITA, Yoshiaki NAKAGAWA, Hisashi MIYAGAWA, Isolation and Characterization of an Anti-Insect β-Toxin from the Venom of the Scorpion Isometrus maculatus, Bioscience, Biotechnology, and Biochemistry, Volume 77, Issue 1, 23 January 2013, Pages 205–207, https://doi.org/10.1271/bbb.120697spa
dc.relation.referencesÁlvarez, A. M., Álvarez, M., Perdomo, L., & Rodríguez-Acosta, A. (2021). Clinical cardiac alterations and hemostatic toxicities caused by scorpion (Tityus discrepans) venom and its purified fractions on zebrafish (Danio rerio) larvae. Invest Clin 62(4): 325 - 338, 2021 https://doi.org/10.22209/IC.v62n4a04spa
dc.relation.referencesBorges, A., Lomonte, B., Angulo, Y., de Patiño, H. A., Pascale, J. M., Otero, R., ... & Caro-Lopez, J. A. (2020). Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Tropica, 204,10536. https://doi.org/10.1016/j.actatropica.2020.105346 10.1016/j.actatropica.2020.105346spa
dc.relation.referencesCummings, R. D., Darvill, A. G., Etzler, M. E., & Hahn, M. G. (2017). Glycan- Recognizing Probes as Tools. In Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/GLYCOBIOLOGY.3E.048spa
dc.relation.referencesJang, H., Lee, D.-H., Kang, H. G., & Lee, S. J. (2020). Concanavalin A targeting N- linked glycans in spike proteins influence viral interactions. Dalton Transactions, 49(39), 13538–13543. https://doi.org/10.1039/D0DT02932Gspa
dc.relation.referencesWilson IBH. Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol. 2002;12(5):569–77.spa
dc.relation.referencesMelgarejo LM, Vega N, Pérez G. Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. ex Benth. seeds. Brazilian J Plant Physiol. 2005;17(3):315–24spa
dc.relation.referencesMedeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn‐specific lectin from Salvia sclarea seeds. FEBS J. 2000;267(5):1434–40.spa
dc.relation.referencesDam T.K., Roy, R., Das, S.K., Oscarson, S., Brewer, C.F. (2000). Binding of multivalent carbohydrates to Concanavalin A and Dioclea grandiflora lectin. J Biol Chem, 275:14223 –30spa
dc.relation.referencesKawabata S., Shibata T. (2020) Purification and Assays of Tachylectin-5. In: Hirabayashi J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_27spa
dc.relation.referencesKawabata SI, Shibata T. Purification and Assays of Tachylectin-2. Methods Mol Biol. 2020;2132:309-316. doi: 10.1007/978-1-0716-0430-4_30. PMID: 32306338.spa
dc.relation.referencesGokudan S, Muta T, Tsuda R, Koori K, Kawahara T, Seki N, Mizunoe Y, Wai SN, Iwanaga S, Kawabata S. Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10086-91. doi: 10.1073/pnas.96.18.10086. PMID: 10468566; PMCID: PMC17846.spa
dc.relation.referencesWard, M. J., Ellsworth, S. A., & Rokyta, D. R. (2018). Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon, 142, 14- 29.spa
dc.relation.referencesRokyta, D. R., & Ward, M. J. (2017). Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon, 128, 23-37.spa
dc.relation.referencesKairies, N., Beisel, H.-G., Fuentes-Prior, P., Tsuda, R., Muta, T., Iwanaga, S., . . . Kawabata, S.-i. (2001). The 2.0-Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proceedings of the National Academy of Sciences, 98(24), 13519-13524.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembVENENO DE INSECTOSspa
dc.subject.lembInsect venomeng
dc.subject.lembLECTINASspa
dc.subject.lembLectinseng
dc.subject.proposalLectinasspa
dc.subject.proposalVenenospa
dc.subject.proposalEscorpiónspa
dc.subject.proposalAglutinaciónspa
dc.subject.proposalCaracterización bioqímicaspa
dc.subject.proposalCarbohidratosspa
dc.subject.proposalTityus macrochirusspa
dc.subject.proposalTityus obscurusspa
dc.subject.proposalTaquilectinasspa
dc.subject.proposalGlicoproteínasspa
dc.subject.proposalVenomeng
dc.subject.proposalLectineng
dc.subject.proposalCarbohydrateseng
dc.subject.proposalGlycoproteineng
dc.subject.proposalScorpionseng
dc.subject.proposalAgglutinationeng
dc.subject.proposalBiochemical characterizationeng
dc.subject.proposalTachylectinseng
dc.subject.proposalTityus macrochiruseng
dc.subject.proposalTityus obscuruseng
dc.titleEstudio de las lectinas presentes en el veneno del escorpión Tityus macrochirusspa
dc.title.translatedStudy of the lectins present in the venom of the scorpion Tityus macrochiruseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037633361.2022.pdf
Tamaño:
4.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en lectinas en el veneno de escorpión

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: