Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa

dc.contributor.advisorGiraldo Gutiérrez, Liliana
dc.contributor.authorCárdenas Cuevas, Lady Johana
dc.contributor.researchgroupGrupo de Calorimetríaspa
dc.date.accessioned2022-08-04T19:36:17Z
dc.date.available2022-08-04T19:36:17Z
dc.date.issued2021
dc.description.abstractSe sintetizaron sílices mesoporosas de tipo SBA-15 y se funcionalizaron con polianilina (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA), a estos adsorbentes se les determinaron: parámetros texturales por medio de isotermas de N2, SEM, TGA. Se caracterizó su química superficial por titulaciones Boehm, pHPCC, FTIR, calorimetría de inmersión en benceno, agua y soluciones de los fenoles de interés, por último, los sólidos fueron puestos a prueba en la remoción de fenol, p-clorofenol (PCF) y p-nitrofenol (PNF) en solución acuosa. El cambio de los parámetros texturales fue evidente en las muestras después de su modificación con los diferentes grupos funcionales, la SBA-15 exhibió valores de área superficial, volumen total y diámetro de poro de 655 m2g-1, 0,84 cm3g-1 y 6,08 nm respectivamente, después de la funcionalización hubo una disminución sustancial en el área BET, con valores entre 200 y 224 m2g-1, volumen total entre 0,25 y 0,35 cm3g-1 y diámetro de poro entre 4,45 y 5,58 nm para las sílices funcionalizadas evidenciando que las partículas de polianilina, NH2 y EDTA están dentro de los canales SBA-15. Así mismo, esta modificación en la superficie con los grupos anteriormente mencionados, son notables en las micrografías SEM, termogramas de TGA, y espectros infrarrojos. Se realizó un estudio de entalpía de inmersión en agua, benceno y las soluciones de 100 mg L-1 de fenol, PCF y PNF presentándose valores entálpicos entre -10,7 y -174,1 J g-1, donde fue evidente una interacción mayor de las soluciones y solventes con la SBA-15. Finalmente se ajustan los datos de adsorción aplicando los modelos de Langmuir y Freundlich, utilizados para interpretar el proceso fisicoquímico de adsorción de fenoles en la superficie de las sílices. La mayor capacidad de adsorción de fenol se obtuvo con SBA-15/NH2 (282 mg g-1), para PCF se obtuvo con SBA-15/PA (130 mg g-1) y para PNF se obtuvo con SBA-15/EDTA (205 mg g-1). (Texto tomado de la Fuente)spa
dc.description.abstractSBA-15 mesoporous silices was synthesized and functionalized with polyaniline (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA). The solids obtained were determined: textural parameters through isotherms of N2, SEM, TGA. The surface chemistry was characterized by Boehm tritation, the point of zero charge pH (pHpzc), FTIR, immersion calorimetry in benzene, water and solutions of the phenols of interest, finally, the solids were tested in adsorption of phenol, p-chlorophenol (PCF) and p-nitrophenol (PNF) in aqueous solution. The change of the textural parameters is evident in the samples after their modification with the different functional groups, the SBA-15 exhibited values of surface area, total volume and pore diameter of 655 m2g-1, 0.84 cm3g-1 and 6.08 nm respectively, after functionalization there is a substantial decrease in the BET area, with values between 200 and 224 m2g-1, total volume between 0.25 and 0.35 cm3g-1 and pore diameter between 4.45 and 5.58 nm for the functionalized silicas showing that the polyaniline, NH2 and EDTA particles are within the SBA-15 channels. In addition, this modification on the surface with the functional groups is notable in SEM micrographs, TGA thermograms, and infrared spectra. A study of immersion enthalpy in water, benzene and solutions of 100 mg L-1 of phenol, pcf and pnf was carried out, presenting enthalpic values between -10.7 and -174.1 J g-1, where a greater interaction of solutions and solvents with SBA-15. Finally, the adsorption data are adjusted by applying the Langmuir and Freundlich models, used to interpret the physicochemical process of phenols adsorption on the surface of silicas. The highest phenol adsorption capacity was obtained with SBA-15/NH2 (282 mg g-1), for PCF it was obtained with SBA-15/PA (130 mg g-1) and for PNF it was obtained with SBA-15/ EDTA (205 mg g-1). (Text taken from the Source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias – Químicaspa
dc.description.researchareaTermodinámicaspa
dc.format.extentxvi, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81784
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesA. Tolosana-Moranchel, J. A. Anderson, J. A. Casas, M. Faraldos, and A. Bahamonde, “Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds,” J. Environ. Chem. Eng., vol. 5, no. 5, pp. 4612–4620, 2017, doi: 10.1016/j.jece.2017.08.053.spa
dc.relation.referencesX. xia Yang, X. fang Hou, X. ming Gao, and F. Fu, “Hierarchical porous carbon from semi-coke via a facile preparation method for p-nitrophenol adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 563, pp. 50–58, 2019, doi: 10.1016/j.colsurfa.2018.11.018.spa
dc.relation.referencesX. Wang, H. Li, and J. Huang, “Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins,” J. Colloid Interface Sci., vol. 505, pp. 585–592, 2017, doi: 10.1016/j.jcis.2017.06.053.spa
dc.relation.referencesY. M. Magdy, H. Altaher, and E. ElQada, “Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling,” Appl. Water Sci., vol. 8, no. 1, 2018, doi: 10.1007/s13201-018-0666-1.spa
dc.relation.referencesN. Sarker and A. N. M. Fakhruddin, “Removal of phenol from aqueous solution using rice straw as adsorbent,” Appl. Water Sci., vol. 7, no. 3, pp. 1459–1465, 2017, doi: 10.1007/s13201-015-0324-9.spa
dc.relation.referencesH. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, “A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 4105–4116, 2017, doi: 10.1007/s11356-016-8079-xspa
dc.relation.referencesO. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, “Electrooxidation of some phenolic compounds at Bi-doped PbO2,” Appl. Catal. B Environ., vol. 162, pp. 346–351, 2015, doi: 10.1016/j.apcatb.2014.07.011.spa
dc.relation.referencesE. Hernández-Francisco, J. Peral, and L. M. Blanco-Jerez, “Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes,” J. Water Process Eng., vol. 19, no. February, pp. 96–100, 2017, doi: 10.1016/j.jwpe.2017.07.010.spa
dc.relation.referencesP. R. M. Cavalcante, R. P. F. Melo, T. N. Castro Dantas, A. A. Dantas Neto, E. L. Barros Neto, and M. C. P. A. Moura, “Removal of phenol from aqueous medium using micellar solubilization followed by ionic flocculation,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 2778–2784, 2018, doi: 10.1016/j.jece.2018.04.025.spa
dc.relation.referencesM. D. Víctor-Ortega, J. M. Ochando-Pulido, and A. Martínez-Ferez, “Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater,” Process Saf. Environ. Prot., vol. 100, pp. 242–251, 2016, doi: 10.1016/j.psep.2016.01.017.spa
dc.relation.referencesD. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, and C. A. Paraskeva, “Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption,” J. Hazard. Mater., vol. 285, pp. 69–76, 2015, doi: 10.1016/j.jhazmat.2014.11.038.spa
dc.relation.referencesF. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin, Adsorption by powders and porous solids: Principles, Methodology and Applications. 2014.spa
dc.relation.referencesX. Gao, Y. Dai, Y. Zhang, and F. Fu, “Effective adsorption of phenolic compound from aqueous solutions on activated semi coke,” J. Phys. Chem. Solids, vol. 102, pp. 142–150, 2017, doi: 10.1016/j.jpcs.2016.11.023.spa
dc.relation.referencesL. Zhang, B. Zhang, T. Wu, D. Sun, and Y. Li, “Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 484, no. August, pp. 118–129, 2015, doi: 10.1016/j.colsurfa.2015.07.055.spa
dc.relation.referencesQ. Qin, K. Liu, D. Fu, and H. Gao, “Effect of chlorine content of chlorophenols on their adsorption by mesoporous SBA-15,” J. Environ. Sci. (China), vol. 24, no. 8, pp. 1411–1417, 2012, doi: 10.1016/S1001-0742(11)60924-8.spa
dc.relation.referencesD. Zhao, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, 1998, doi: 10.1126/science.279.5350.548.spa
dc.relation.referencesJ. P. Thielemann, F. Girgsdies, R. Schlögl, and C. Hess, “Pore structure and surface area of silica SBA-15: influence of washing and scale-up,” Beilstein J. Nanotechnol., vol. 2, no. 1, pp. 110–118, 2011, doi: 10.3762/bjnano.2.13.spa
dc.relation.referencesM. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, “Synthesis and characterization of polyaniline/mesoporous SBA-15 nanocomposite,” Macromol. Rapid Commun., vol. 23, no. 12, 2002, doi: 10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y.spa
dc.relation.referencesV. L. Zholobenko, A. Y. Khodakov, M. Impéror-Clerc, D. Durand, and I. Grillo, “Initial stages of SBA-15 synthesis: An overview,” Advances in Colloid and Interface Science, vol. 142, no. 1–2. 2008, doi: 10.1016/j.cis.2008.05.003.spa
dc.relation.referencesV. Chaudhary and S. Sharma, “An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions,” J. Porous Mater., vol. 24, no. 3, 2017, doi: 10.1007/s10934-016-0311-z.spa
dc.relation.referencesM. A. U. Martines, E. Yeong, A. Larbot, and E. Prouzet, “Temperature dependence in the synthesis of hexagonal MSU-3 type mesoporous silica synthesized with Pluronic P123 block copolymer,” Microporous Mesoporous Mater., vol. 74, no. 1–3, 2004, doi: 10.1016/j.micromeso.2004.06.021spa
dc.relation.referencesQ. Li et al., “Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution,” Appl. Surf. Sci., vol. 290, pp. 260–266, 2014, doi: 10.1016/j.apsusc.2013.11.065.spa
dc.relation.referencesS. Huh, J. W. Wiench, J. C. Yoo, M. Pruski, and V. S. Y. Lin, “Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method,” Chem. Mater., vol. 15, no. 22, 2003, doi: 10.1021/cm0210041.spa
dc.relation.referencesA. S. Maria Chong and X. S. Zhao, “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials,” J. Phys. Chem. B, vol. 107, no. 46, 2003, doi: 10.1021/jp035877+.spa
dc.relation.referencesS. L. Burkett, S. D. Sims, and S. Mann, “Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors,” Chem. Commun., no. 11, 1996, doi: 10.1039/CC9960001367.spa
dc.relation.referencesD. J. Macquarrie, “Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM,” Chem. Commun., no. 16, 1996, doi: 10.1039/CC9960001961.spa
dc.relation.referencesT. Yokoi, H. Yoshitake, and T. Tatsumi, “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes,” J. Mater. Chem., 2004, doi: 10.1039/b310576h.spa
dc.relation.referencesD. Y. Takamori, M. A. Bizeto, M. C. de A. Fantini, C. P. L. Rubinger, R. Faez, and T. S. Martins, “Polyaniline inclusion into ordered mesoporous silica matrices: Synthesis, characterization and electrical transport mechanism,” Microporous Mesoporous Mater., vol. 274, pp. 212–219, 2019, doi: 10.1016/j.micromeso.2018.07.045.spa
dc.relation.referencesM. S. Lashkenari, M. Ghorbani, M. Safabakhsh, B. Shahrokhi, J. fallah, and S. Rezaei, “Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation,” J. Appl. Electrochem., vol. 50, no. 5, 2020, doi: 10.1007/s10800-020-01400-9.spa
dc.relation.referencesL. Munguía-Cortés et al., “APTES-functionalization of SBA-15 using ethanol or toluene: Textural characterization and sorption performance of carbon dioxide,” J. Mex. Chem. Soc., vol. 61, no. 4, 2017, doi: 10.29356/jmcs.v61i4.457.spa
dc.relation.referencesJ. Huang et al., “Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15,” J. Colloid Interface Sci., vol. 385, no. 1, pp. 137–146, 2012, doi: 10.1016/j.jcis.2012.06.054.spa
dc.relation.referencesP. Rodríguez-Estupiñán, L. Giraldo, and J. C. Moreno-Piraján, “Calorimetric study of amino-functionalised SBA-15,” J. Therm. Anal. Calorim., vol. 121, no. 1, pp. 127–134, 2015, doi: 10.1007/s10973-015-4562-8.spa
dc.relation.referencesM. Anbia and S. Amirmahmoodi, “Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent,” Sci. Iran., vol. 18, no. 3 C, pp. 446–452, 2011, doi: 10.1016/j.scient.2011.05.007.spa
dc.relation.referencesP. S. Liu and G. F. Chen, “Chapter Nine - Characterization Methods: Basic Factors,” in Porous Materials, 2014.spa
dc.relation.referencesF. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11. 2018, doi: 10.1002/smtd.201800173.spa
dc.relation.referencesD. Dollimore, P. Spooner, and A. Turner, “The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas,” Surface Technology, vol. 4, no. 2. 1976, doi: 10.1016/0376-4583(76)90024-8.spa
dc.relation.referencesK. S. W. Sing, “Reporting physisorption data for gas/solid systems,” Pure Appl. Chem., vol. 54, no. 11, 1982, doi: 10.1351/pac198254112201.spa
dc.relation.referencesM. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.spa
dc.relation.referencesB. J. Inkson, “Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016.spa
dc.relation.referencesN. Rahmat, N. Sadon, and M. A. Yusof, “Thermogravimetric Analysis (TGA) Profile at Different Calcination Conditions for Synthesis of PTES-SBA-15,” Am. J. Appl. Sci., 2017, doi: 10.3844/ajassp.2017.938.944.spa
dc.relation.referencesN. Saadatkhah et al., “Experimental methods in chemical engineering: Thermogravimetric analysis—TGA,” Canadian Journal of Chemical Engineering, vol. 98, no. 1. 2020, doi: 10.1002/cjce.23673.spa
dc.relation.referencesM. Ghanei, A. Rashidi, H. A. Tayebi, and M. E. Yazdanshenas, “Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies,” J. Chem. Eng. Data, vol. 63, no. 9, 2018, doi: 10.1021/acs.jced.8b00474.spa
dc.relation.referencesV. Alfredsson and H. Wennerström, “The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material,” Acc. Chem. Res., vol. 48, no. 7, 2015, doi: 10.1021/acs.accounts.5b00165.spa
dc.relation.referencesT. Kjellman, S. Asahina, J. Schmitt, M. Impéror-Clerc, O. Terasaki, and V. Alfredsson, “Direct observation of plugs and intrawall pores in SBA-15 using low voltage high resolution scanning electron microscopy and the influence of solvent properties on plug-formation,” Chem. Mater., vol. 25, no. 20, 2013, doi: 10.1021/cm402635m.spa
dc.relation.referencesS. Mohammadi and H. Faghihian, “Elimination of Cs + from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies,” Environ. Sci. Pollut. Res., vol. 26, no. 12, 2019, doi: 10.1007/s11356-019-04623-2.spa
dc.relation.referencesA. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, “A molecular model to explain the controlled release from SBA-15 functionalized with APTES,” Microporous Mesoporous Mater., vol. 195, 2014, doi: 10.1016/j.micromeso.2014.04.019.spa
dc.relation.referencesM. Kokunešoski et al., “Influence of synthesis conditions on morphological features of the SBA-15 containing only elongated and rounded/spherical grains,” Sci. Sinter., vol. 50, no. 1, 2018, doi: 10.2298/SOS1801111K.spa
dc.relation.referencesS. Weng, Z. Lin, Y. Zhang, L. Chen, and J. Zhou, “Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions,” React. Funct. Polym., vol. 69, no. 2, pp. 130–136, 2009, doi: 10.1016/j.reactfunctpolym.2008.12.001.spa
dc.relation.referencesC. C. S. Pedroso, V. Junqueira, C. P. L. Rubinger, T. S. Martins, and R. Faez, “Preparation, characterization and electrical conduction mechanism of polyaniline/ordered mesoporous silica composites,” Synth. Met., vol. 170, no. 1, 2013, doi: 10.1016/j.synthmet.2013.02.014.spa
dc.relation.referencesM. Abboud et al., “Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater,” New J. Chem., vol. 44, no. 6, 2020, doi: 10.1039/d0nj00076k.spa
dc.relation.referencesA.-D. Bendrea, A.-M. Catargiu, and M. Grigoras, “Hybrid Organic-Inorganic Composite Materials for Application in Chemical Sensors,” Chem. J. Mold., vol. 4, no. 2, 2021, doi: 10.19261/cjm.2009.04(2).03.spa
dc.relation.referencesT. M. Albayati, I. K. Salih, and H. F. Alazzawi, “Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system,” Heliyon, vol. 5, no. 10, 2019, doi: 10.1016/j.heliyon.2019.e02539.spa
dc.relation.referencesD. Lv et al., “Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions,” Appl. Surf. Sci., vol. 428, 2018, doi: 10.1016/j.apsusc.2017.09.151.spa
dc.relation.referencesH. P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon, vol. 32, no. 5. 1994, doi: 10.1016/0008-6223(94)90031-0.spa
dc.relation.referencesR. B. Fidel, D. A. Laird, and M. L. Thompson, “Evaluation of Modified Boehm Titration Methods for Use with Biochars,” J. Environ. Qual., vol. 42, no. 6, 2013, doi: 10.2134/jeq2013.07.0285.spa
dc.relation.referencesA. M. Oickle, S. L. Goertzen, K. R. Hopper, Y. O. Abdalla, and H. A. Andreas, “Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant,” Carbon N. Y., vol. 48, no. 12, 2010, doi: 10.1016/j.carbon.2010.05.004.spa
dc.relation.referencesH. Wu, W. Lu, Y. Chen, P. Zhang, and X. Cheng, “Application of Boehm Titration for the Quantitative Measurement of Soot Oxygen Functional Groups,” Energy and Fuels, vol. 34, no. 6, 2020, doi: 10.1021/acs.energyfuels.0c00904.spa
dc.relation.referencesY. El-Sayed, K. Loughlin, S. Ur Rehman, D. Abouelnasr, and I. Al-Zubaidy, “Development of semi-static steam process for the production of sludge-based adsorbents,” Adsorpt. Sci. Technol., vol. 32, no. 4, 2014, doi: 10.1260/0263-6174.32.4.291.spa
dc.relation.referencesG. A. Parks, “The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems,” Chem. Rev., vol. 65, no. 2, 1965, doi: 10.1021/cr60234a002.spa
dc.relation.referencesM. Kosmulski, “The pH dependent surface charging and points of zero charge. VIII. Update,” Advances in Colloid and Interface Science, vol. 275. 2020, doi: 10.1016/j.cis.2019.102064.spa
dc.relation.referencesS. Z. N. Ahmad, R. Hamdan, W. A. W. Mohamed, N. Othman, and N. S. M. Zin, “Chemical composition, pH value, and points of zero charge of high calcium and high iron electric arc furnace slag,” Int. J. Eng. Technol., vol. 7, no. 3.23 Special Issue 23, 2018, doi: 10.14419/ijet.v7i3.23.17249.spa
dc.relation.referencesJ. S. Noh and J. A. Schwarz, “Effect of HNO3 treatment on the surface acidity of activated carbons,” Carbon N. Y., vol. 28, no. 5, 1990, doi: 10.1016/0008-6223(90)90069-B.spa
dc.relation.referencesA. Dutta, “Fourier Transform Infrared Spectroscopy,” in Spectroscopic Methods for Nanomaterials Characterization, vol. 2, 2017.spa
dc.relation.referencesR. Ojeda-López, I. J. Pérez-Hermosillo, J. Marcos Esparza-Schulz, A. Cervantes-Uribe, and A. Domínguez-Ortiz, “SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio,” Adsorption, 2015, doi: 10.1007/s10450-015-9716-2.spa
dc.relation.referencesJ. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, “On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution,” Langmuir, vol. 23, no. 8, 2007, doi: 10.1021/la062450w.spa
dc.relation.referencesQ. N. K. Nguyen, N. T. Yen, N. D. Hau, and H. L. Tran, “Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards,” J. Chem., vol. 2020, 2020, doi: 10.1155/2020/8456194.spa
dc.relation.referencesS. Iqbal and J. Il Yun, “EDTA-functionalized mesoporous silica for the removal of corrosion products: Adsorption studies and performance evaluation under gamma irradiation,” Microporous Mesoporous Mater., vol. 248, 2017, doi: 10.1016/j.micromeso.2017.04.028.spa
dc.relation.referencesJ. Silvestre-Albero, C. Gómez de Salazar, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso, “Characterization of microporous solids by immersion calorimetry,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 187, no. 188, 2001, doi: 10.1016/S0927-7757(01)00620-3.spa
dc.relation.referencesF. Stoeckli, T. A. Centeno, J. B. Donnet, N. Pusset, and E. Papirer, “Characterization of industrial activated carbons by adsorption and immersion techniques and by STM,” Fuel, vol. 74, no. 11, 1995, doi: 10.1016/0016-2361(95)00168-5.spa
dc.relation.referencesJ. C. Moreno and L. Giraldo, “Determination of the immersion enthalpy of activated carbon by microcalorimetry of the heat conduction,” Instrum. Sci. Technol., vol. 28, no. 2, pp. 171–178, 2000, doi: 10.1081/CI-100100970.spa
dc.relation.referencesJ. A. Menéndez, “On the use of calorimetric techniques for the characterization of carbons: A brief review,” Thermochim. Acta, vol. 312, no. 1–2, 1998, doi: 10.1016/s0040-6031(97)00441-3.spa
dc.relation.referencesR. Denoyel, F. Rouquerol, and J. Rouquerol, “Porous texture and surface characterization from liquid-solid interactions: Immersion calorimetry and adsorption from solution,” in Adsorption by Carbons, 2008.spa
dc.relation.referencesA. M. Carvajal-Bernal, F. Gómez-Granados, L. Giraldo, and J. C. Moreno-Piraján, “A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy,” Appl. Sci., vol. 8, no. 6, p. 843, 2018, doi: 10.3390/app8060843.spa
dc.relation.referencesL. Giraldo, P. Rodríguez-Estupiñán, and J. C. Moreno-Piraján, “Calorimetry of Immersion in the Energetic Characterization of Porous Solids,” in Calorimetry - Design, Theory and Applications in Porous Solids, 2018.spa
dc.relation.referencesS. M. Sarge, G. W. H. Höhne, and W. Hemminger, Calorimetry: Fundamentals, Instrumentation and Applications, vol. 9783527327614. 2014.spa
dc.relation.referencesI. Wadsö and R. N. Goldberg, “Standards in isothermal microcalorimetry: (IUPAC Technical Report),” Pure Appl. Chem., vol. 73, no. 10, 2001, doi: 10.1351/pac200173101625.spa
dc.relation.referencesW. Zielenkiewicz, “Comparative measurements in isoperibol calorimetry: Uses and misuses,” Thermochim. Acta, vol. 347, no. 1–2, 2000, doi: 10.1016/s0040-6031(99)00425-6.spa
dc.relation.referencesJ. C. Moreno and L. Giraldo, “Influence of thermal insulation of the surroundings on the response of the output electric signal in a heat conduction calorimetric unit,” Instrum. Sci. Technol., vol. 33, no. 4, 2005, doi: 10.1081/CI-200063709.spa
dc.relation.referencesP. J. van Ekeren, “Handbook of Thermal Analysis and Calorimetry,” Thermochim. Acta, vol. 407, no. 1–2, 2003, doi: 10.1016/s0040-6031(03)00283-1.spa
dc.relation.referencesD. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry,” Adsorption, vol. 22, no. 4–6, pp. 717–723, 2016, doi: 10.1007/s10450-016-9764-2.spa
dc.relation.referencesL. Navarrete, L. Giraldo, and J. Moreno, “Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol,” Rev. Colomb. Química, vol. 35, no. 2, pp. 215–224, 2006.spa
dc.relation.referencesP. Rodríguez Estupiñán, L. Giraldo Gutiérrez, and J. Moreno Piraján, “Relación entre entalpías de inmersión de carbones activados modificados en su química superficial en diferentes líquidos y sus características fisicoquímicas,” Afinidad Rev. química teórica y Apl., vol. 72, no. 570, pp. 114–119, 2015.spa
dc.relation.referencesA. Da̧browski, P. Podkościelny, Z. Hubicki, and M. Barczak, “Adsorption of phenolic compounds by activated carbon - A critical review,” Chemosphere, vol. 58, no. 8, 2005, doi: 10.1016/j.chemosphere.2004.09.067.spa
dc.relation.referencesK. Sharafi et al., “Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks,” J. Mol. Liq., vol. 274, 2019, doi: 10.1016/j.molliq.2018.11.006.spa
dc.relation.referencesH. T. Hamad, “Removal of phenol and inorganic metals from wastewater using activated ceramic,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 4, 2021, doi: 10.1016/j.jksues.2020.04.006.spa
dc.relation.referencesB. K. Singh and P. S. Nayak, “Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash,” Adsorpt. Sci. Technol., vol. 22, no. 4, 2004, doi: 10.1260/0263617041514901.spa
dc.relation.referencesB. Chakraborty, “Kinetic study of degradation of p-nitro phenol by a mixed bacterial culture and its constituent pure strains,” in Materials Today: Proceedings, 2016, vol. 3, no. 10, doi: 10.1016/j.matpr.2016.10.034.spa
dc.relation.referencesM. J. Ahmed and S. K. Theydan, “Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones,” Ecotoxicol. Environ. Saf., vol. 84, 2012, doi: 10.1016/j.ecoenv.2012.06.019.spa
dc.relation.referencesD. Wei et al., “Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study,” Chem. Eng. J., vol. 375, 2019, doi: 10.1016/j.cej.2019.121964.spa
dc.relation.referencesA. Shokri, “Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial Neural Network and full factorial design method,” Int. J. Environ. Anal. Chem., 2020, doi: 10.1080/03067319.2020.1791328.spa
dc.relation.referencesI. Abay, A. Denizli, E. Bişkin, and B. Salih, “Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads,” Chemosphere, vol. 61, no. 9, 2005, doi: 10.1016/j.chemosphere.2005.03.079.spa
dc.relation.referencesM. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393. 2020, doi: 10.1016/j.jhazmat.2020.122383spa
dc.relation.referencesH. A. Asmaly et al., “Adsorption of phenol on aluminum oxide impregnated fly ash,” Desalin. Water Treat., vol. 57, no. 15, pp. 6801–6808, 2016, doi: 10.1080/19443994.2015.1010238spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalSBA-15spa
dc.subject.proposalFuncionalizaciónspa
dc.subject.proposalFenolesspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalEntalpía de inmersiónspa
dc.subject.proposalSBA-15eng
dc.subject.proposalFunctionalizationeng
dc.subject.proposalPhenolseng
dc.subject.proposalAdsorptioneng
dc.subject.proposalImmersion enthalpyeng
dc.titleSíntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosaspa
dc.title.translatedSynthesis, functionalization and characterization of SBA-15 for the adsorption of phenol, p-nitrophenol and p-chlorophenol from aqueous solutioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026286635.2022.pdf
Tamaño:
2.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: