Intelligent Adaptive Testing Using Machine Learning Techniques
dc.contributor.advisor | Montenegro Díaz, Álvaro Mauricio | |
dc.contributor.author | Cáliz Viñas, Arcesio Jose | |
dc.date.accessioned | 2022-11-08T19:05:10Z | |
dc.date.available | 2022-11-08T19:05:10Z | |
dc.date.issued | 2022-08-01 | |
dc.description | ilustraciones, gráficas | spa |
dc.description.abstract | Intelligent adaptive tests allow to perform evaluations that reduce the number of questions, improve the estimation, and adapt to the person’s answers. A decision to make in the design of these tests is the method for choosing the next question. There is no method that proves to be the best from the perspective of the improvements implied by an adaptive test. In this work, we explore the use of reinforcement learning algorithms in conjunction with deep learning algorithms for question choice. The results show that under certain conditions and depending on the algorithm used, these new methods achieve competent results in terms of the number of questions asked and the accuracy of the estimation compared to traditional statistical methods. (Texto tomado de la fuente) | eng |
dc.description.abstract | Los test adaptativos inteligentes permiten realizar evaluaciones que reducen el número de preguntas, mejoran la estimación y se adaptan a las respuestas de la persona. Una decisión a tomar en el diseño de estas pruebas, es el método para escoger la siguiente pregunta. No existe un método que demuestre ser el mejor desde la perspectiva de las mejoras implicadas en un test adaptativo. En este trabajo exploramos el uso de algoritmos de aprendizaje por refuerzo en conjunto con algoritmos de aprendizaje profundo para la escogencia de las preguntas. Los resultados muestran que bajo ciertas condiciones y dependiendo del algoritmo utilizado, estos nuevos métodos logran resultados competentes en términos del número de preguntas hechas y la exactitud de la estimación comparándolos con los métodos estadísticos tradicionales. | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.format.extent | v, 42 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82665 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional De Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Estadística | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Estadística | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Approximately Optimal Approximate Reinforcement Learning | spa |
dc.relation.references | Spinning Up in Deep Reinforcement Learning | spa |
dc.relation.references | Trust Region Policy Optimization | spa |
dc.relation.references | A Global Information Approach to Computerized Adaptive Testing | spa |
dc.relation.references | An Introduction to Multivariate Statistical Analysis | spa |
dc.relation.references | Testlet-Based Multidimensional Adaptive Testing | spa |
dc.relation.references | Computerized Adaptive Testing: Theory and Practice | spa |
dc.relation.references | Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications | spa |
dc.relation.references | Theory of Statistical Estimation | spa |
dc.relation.references | Practical Methods of Optimization | spa |
dc.relation.references | Statistical Inference | spa |
dc.relation.references | A model for testing with multidimensional items | spa |
dc.relation.references | Deep Reinforcement Learning with Double Q-learning | spa |
dc.relation.references | Human-level control through deep reinforcement learning | spa |
dc.relation.references | Learning from Delayed Rewards | spa |
dc.relation.references | Reinforcement Learning: State-of-the-Art | spa |
dc.relation.references | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift | spa |
dc.relation.references | Multidimensional adaptive testing | spa |
dc.relation.references | On Information and Sufficiency | spa |
dc.relation.references | Multidimensional adaptive testing with constraints on test content | spa |
dc.relation.references | Reinforcement Learning: An Introduction | spa |
dc.relation.references | Multidimensional Adaptive Testing with Optimal Design Criteria for~Item Selection | spa |
dc.relation.references | Multidimensional Item Response Theory | spa |
dc.relation.references | Deep Reinforcement Learning in Action | spa |
dc.relation.references | AI and Machine Learning for Coders | spa |
dc.relation.references | mirt: A Multidimensional Item Response Theory Package for the R Environment | spa |
dc.relation.references | Some latent trait models and their use in inferring an examinee's ability | spa |
dc.relation.references | Applications of Item Response Theory to Practical Testing Problems | spa |
dc.relation.references | Loglinear multidimensional IRT models for polytomously scored items | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.lemb | Devsis - evaluación | spa |
dc.subject.lemb | Devsis - evaluation | eng |
dc.subject.lemb | Evaluación curricular | spa |
dc.subject.lemb | Curriculum evaluation | eng |
dc.subject.lemb | Evaluación académica | spa |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Reinforcement Learning | eng |
dc.subject.proposal | Neural Network | eng |
dc.subject.proposal | Adaptive Tests | eng |
dc.subject.proposal | Item Response Theory | eng |
dc.title | Intelligent Adaptive Testing Using Machine Learning Techniques | eng |
dc.title.translated | Test Adaptativos Inteligene Usando Técnicas de Aprendizae de Máquina | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Software | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo_de_Grado.pdf
- Tamaño:
- 2.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: