Modelo de aprendizaje para estructurar los datos de las hojas de vida de maquinaria amarilla

dc.contributor.advisorGómez Jaramillo, Francisco Albeirospa
dc.contributor.authorPrado Gamba, Lina Fernandaspa
dc.contributor.researchgroupComputational Modeling of Biological Systems Research Group - COMBIOSspa
dc.date.accessioned2022-06-28T18:37:02Z
dc.date.available2022-06-28T18:37:02Z
dc.date.issued2022
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa falta de información relevante para la toma de decisiones es uno de los grandes problemas a los que se enfrentan los departamentos de mantenimiento en las empresas. Esta tesis explora un método automático para aportar a la solución de este problema mediante la extracción de información relevante de los registros históricos de las actividades de mantenimiento realizadas en los equipos. Dada la naturaleza de los datos, texto no estructurado con lenguaje técnico, se plantea la implementación de diferentes representaciones (bag of words, term frequency-inverse document frequency, Fasttext y Doc2vec) para alimentar los modelos de aprendizaje de ma ́quina que realizan la estructuración de información importante contenida en los documentos. En la búsqueda del modelo con mejor rendimiento se compararon modelos de support vector machine, random forest, gaussian naive bayes y gradient boosting trees. Estos modelos se aplicaron a datos provenientes de un negocio de venta y renta de maquinaria amarilla; se consideraron 12 montacargas de 3 modelos diferentes y 4 variables independientes en las cuales se extrae información: tipología, falla encontrada, estado final y sistema. Los modelos con mejor rendimiento alcanzaron un f1-score macro 0,86, 0,8, 0,81 y 0,68 con 3 support vector machine y un gradient boosting trees. Se concluye que para obtener mejores resultados el paso a seguir es aumentar la base de datos y expandir el campo de aplicación. (Texto tomado de la fuente).spa
dc.description.abstractThe lack of relevant information for decision-making is one of the major problems that maintenance departments face. In this thesis, an automatic method is explored to contribute to the solution of this problem by extracting relevant information from the records that are kept of the maintenance activities carried out on the equipment. Given the nature of the data, unstructured text with technical language, the implementation of different representations (bag of words, term frequency–inverse document frequency, Fasttext and Doc2vec) is proposed for the machine learning models that carry out the structuring of relevant information contained in the documents. In the search for the best performing model, support vector machine, random forest, gaussian naive bayes and gradient boosting trees models were compared. The models were applied to data from a business of sale and rental of yellow machinery; 15 forklifts of 3 different models and four independent variables in which information is extracted were considered: typology, fault found, final state and system. The best performing models achieved f1-score macro 0,86, 0,8, 0,81 y 0,68 with 3 support vector.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaAprendizaje de máquinaspa
dc.description.researchareaMatemática aplicadaspa
dc.format.extentxii, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81638
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesAkhbardeh, F., Desell, T., and Zampieri, M. (2020a). Maintnet: A collaborative open-source library for predictive maintenance language resources. arXiv preprint arXiv:2005.12443.spa
dc.relation.referencesAkhbardeh, F., Desell, T., and Zampieri, M. (2020b). Nlp tools for predictive maintenance records in maintnet. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: System Demonstrations, pages 26–32.spa
dc.relation.referencesAlpaydin, E. (2020). Introduction to machine learning. MIT press.spa
dc.relation.referencesAmazon Web Services, I. (2021). What is data labe- ling? [en l ́ınea]. urlhttps://aws.amazon.com/es/sagemaker/data-labeling/what-is-data- labeling/[5 de Diciembre].spa
dc.relation.referencesArif-Uz-Zaman, K., Cholette, M. E., Ma, L., and Karim, A. (2017). Extracting failure time data from industrial maintenance records using text mi- ning. Advanced Engineering Informatics, 33:388–396.spa
dc.relation.referencesBeltrán, J. M. J. (2000). Indicadores de gestion una herramienta para lograr la competitividad.spa
dc.relation.referencesBishop, C. (2014). Bishop-pattern recognition and machine learning-springer 2006. Antimicrob. Agents Chemother, pages 03728–14.spa
dc.relation.referencesBojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146.spa
dc.relation.referencesBokinsky, H., McKenzie, A., Bayoumi, A., McCaslin, R., Patterson, A., Matthews, M., Schmidley, J., and Eisner, L. (2013). Application of natural language processing techniques to marine v-22 maintenance data for populating a cbm-oriented database. In AHS Airworthiness, CBM, and HUMS Specialists’ Meeting, Huntsville, AL.spa
dc.relation.referencesBortolini, R. and Forcada, N. (2020). Analysis of building maintenance requests using a text mining approach: Building services evaluation. Building Research & Information, 48(2):207–217.spa
dc.relation.referencesBouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., and Bennadji, B. (2020). Natural language processing model for managing maintenance requests in buildings. Buildings, 10(9):160.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45(1):5–32.spa
dc.relation.referencesBrundage, M. P., Sexton, T., Hodkiewicz, M., Dima, A., and Lukens, S. (2021). Technical language processing: Unlocking maintenance knowledge. Manufacturing Letters, 27:42–46.spa
dc.relation.referencesButters, J. and Ciravegna, F. (2008). Using similarity metrics for terminology recognition. In LREC.spa
dc.relation.referencesButters, J. and Ciravegna, F. (2010). Authoring technical documents for effective retrieval. In International Conference on Knowledge Engineering and Knowledge Management, pages 287–300. Springer.spa
dc.relation.referencesCarvalho, T. P., Soares, F. A., Vita, R., Francisco, R. d. P., Basto, J. P., and Alcala ́, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137:106024.spa
dc.relation.referencesçınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., and Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19):8211.spa
dc.relation.referencesAcademias de la Lengua Española y Real Academia Española, A. (2021). Diccionario de la lengua española - edición del tricentenario. [versión 23.5 en línea]. https://dle.rae.es/ [5 de Diciembre].spa
dc.relation.referencesde Jonge, B. and Scarf, P. A. (2020). A review on maintenance optimization. European journal of operational research, 285(3):805–824.spa
dc.relation.referencesDevaney, M., Ram, A., Qiu, H., and Lee, J. (2005). Preventing failures by mining maintenance logs with case-based reasoning. In Proceedings of the 59th meeting of the society for machinery failure prevention technology (MFPT-59).spa
dc.relation.referencesDing, S.-H. and Kamaruddin, S. (2015). Maintenance policy optimization—literature review and directions. The international journal of advanced manufacturing technology, 76(5):1263–1283.spa
dc.relation.referencesGhosh, S., Roy, S., and Bandyopadhyay, S. K. (2012). A tutorial review on text mining algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 1(4):7.spa
dc.relation.referencesGrandini, M., Bagli, E., and Visani, G. (2020). Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756.spa
dc.relation.referencesGunay, H. B., Shen, W., and Yang, C. (2019). Text-mining building maintenance work orders for component fault frequency. Building Research & Information, 47(5):518–533.spa
dc.relation.referencesHirschberg, J. and Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245):261–266.spa
dc.relation.referencesKohavi, R. (1998). Glossary of terms. Special issue on applications of machine learning and the knowledge discovery process, 30(271):127–132.spa
dc.relation.referencesKumar, U., Galar, D., Parida, A., Stenstro ̈m, C., and Berges, L. (2013). Maintenance performance metrics: a state-of-the-art review. Journal of Quality in Main- tenance Engineering.spa
dc.relation.referencesLe, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents. In International conference on machine learning, pages 1188–1196. PMLR.spa
dc.relation.referencesLundgren, C., Skoogh, A., and Bokrantz, J. (2018). Quantifying the effects of maintenance–a literature review of maintenance models. Procedia CIRP, 72:1305–1310.spa
dc.relation.referencesLuque, C., Luna, J. M., Luque, M., and Ventura, S. (2019). An advanced review on text mining in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3):e1302.spa
dc.relation.referencesLópez (2019). Your guide to natural language processing (nlp). [en línea]. https://towardsdatascience.com/your-guide-to-natural-languag-processing-nlp- 48ea2511f6e1 [5 de Diciembre].spa
dc.relation.referencesMahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9:381–386.spa
dc.relation.referencesMárquez Vásquez, D. et al. (2011). Plan de negocios de una empresa que brinda servicios de mantenimiento predictivo en colombia. B.S. thesis, Uniandes.spa
dc.relation.referencesMarzec, M., Uhl, T., and Michalak, D. (2014). Verification of text mi- ning techniques accuracy when dealing with urban buses maintenance data. Diagnostyka, 15.spa
dc.relation.referencesMcallister (2021). Mcallister. [en l ́ınea]. https://mcallister.com.co [5 de Diciembre].spa
dc.relation.referencesMcKenzie, A., Matthews, M., Goodman, N., and Bayoumi, A. (2010). Information extraction from helicopter maintenance records as a springboard for the future of maintenance text analysis. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pages 590–600. Sprin- ger.spa
dc.relation.referencesNagasaka, M., Sato, M., and Kinoshita, E. (2018). Integrated analy- sis system for elevator optimization maintenance using ontology processing and text mining. In Safety and Reliability–Safe Societies in a Changing World, pages 3093–3098. CRC Press.spa
dc.relation.referencesNakagawa, T. (2006). Maintenance theory of reliability. Springer Science & Business Media.spa
dc.relation.referencesOjala, M. and Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11(6).spa
dc.relation.referencesOlarte, W., Botero, M., and CANON, B. A. (2010). Análisis de vibraciones: una herramienta clave en el mantenimiento predictivo. Scientia et technica, 16(45):219–222.spa
dc.relation.referencesParida, A. (2006). Maintenance performance measurement system: Application of ict and e-maintenance concepts. International journal of COMADEM, 9(4):30.spa
dc.relation.referencesPelham, J. G. and Hockley, C. (2017). Analysis of short form maintenance records for nff using nlp, phrase matching, and bayesian learning. Procedia CIRP, 59:257–262.spa
dc.relation.referencesPrasertrungruang, T. and Hadikusumo, B. (2007). Heavy equipment management practices and problems in thai highway contractors. Engineering, construction and Architectural management.spa
dc.relation.referencesQi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020). Stanza: A python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.spa
dc.relation.referencesSánchez Gómez, A. M. et al. (2017). Técnicas de mantenimiento predictivo: metodología de aplicación en las organizaciones.spa
dc.relation.referencesStenström, C., Al-Jumaili, M., and Parida, A. (2015). Natural language processing of maintenance records data. International Journal of COMADEM, 18(2):33–37.spa
dc.relation.referencesUbaque Castillo, Y. M., Aguirre Zabala, E. L., et al. (2019). Estructuración del programa de mantenimiento predictivo por condición para los equipos del área de producción en la empresa kellogg de colombia sa.spa
dc.relation.referencesSzücs, B. and Ballagi, (2020). Artificial intelligence in mainte- nance: The industrial application of natural language processing.spa
dc.relation.referencesUsuga Cadavid, J. P., Grabot, B., Lamouri, S., Pellerin, R., and Fortin, A. (2020). Valuing free-form text data from maintenance logs through transfer learning with camembert. Enterprise Information Systems, pages 1–29.spa
dc.relation.referencesWang, H., Liu, Z., Xu, Y., Wei, X., and Wang, L. (2020). Short text mining framework with specific design for operation and maintenance of power equipment. CSEE Journal of Power and Energy Systems.spa
dc.relation.referencesYang, C., Chen, Q., Shen, W., and Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. In 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages 408–413. IEEE.spa
dc.relation.referencesYang, Z., Baraldi, P., and Zio, E. (2020). A novel method for maintenance record clustering and its application to a case study of maintenance optimization. Reliability Engineering & System Safety, 203:107103.spa
dc.relation.referencesZhang, H. (2004). The optimality of naive bayes. AA, 1(2):3.spa
dc.relation.referencesZhang, Y., Chen, M., and Liu, L. (2015). A review on text mining. In 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), pages 681–685. IEEE.spa
dc.relation.referencesZhao, Y., Xu, T.-h., and Hai-feng, W. (2014). Text mining based fault diagnosis of vehicle on-board equipment for high speed railway. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages 900–905. IEEE.spa
dc.relation.referencesUnico organismo de normalización en españa (2021). Une-en 13306:2011. [en líınea]. www.une.org[5 de Diciembre].spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembComputational linguisticseng
dc.subject.lembLingüística computacionalspa
dc.subject.lembMachine learningeng
dc.subject.lembAprendizaje automático (Inteligencia artificial)spa
dc.subject.lembMachineryeng
dc.subject.lembMaquinariaspa
dc.subject.proposalMantenimientospa
dc.subject.proposalRegistros de mantenimientospa
dc.subject.proposalExtraccion de informaciónspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalProcesamiento de lenguaje naturalspa
dc.subject.proposalMaintenanceeng
dc.subject.proposalMaintenance logseng
dc.subject.proposalInformation extractioneng
dc.subject.proposalMachine learningeng
dc.subject.proposalNatural language processing.eng
dc.titleModelo de aprendizaje para estructurar los datos de las hojas de vida de maquinaria amarillaspa
dc.title.translatedMachine learning model to structure yellow machinery logseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032478936.2022.pdf
Tamaño:
11.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: