Modelo de prevención de fraude basado en video. Una aplicación de redes neuronales y modelos estadísticos
dc.contributor.advisor | Alonso Malaver, Carlos Eduardo | |
dc.contributor.author | García Arias, Gerardo Antonio | |
dc.date.accessioned | 2022-11-03T18:36:36Z | |
dc.date.available | 2022-11-03T18:36:36Z | |
dc.date.issued | 2022-11-01 | |
dc.description | ilustraciones, fotografías a color, gráficas | spa |
dc.description.abstract | Dada una nueva tipología de fraude, en la que cajeros automáticos son bloqueados con el propósito de crear una distracción de los usuario; lo cual, permite el cambio de una tarjeta asociada a un producto financiero y la captura de su clave. El presente trabajo, propone un modelo lineal generalizado como herramienta de pronóstico de la probabilidad de ocurrencia de fraude, mediante la estructuración de una base de datos, extraída de vídeos por medio de redes neuronales convolucionales. Estos modelos estiman la presencia de personas, encontrando el punto de partida para realizar el rastreo de cada individuo por medio de redes neuronales siamesas. La metodología, permite la construcción de covariables en función de la ubicación espacio-temporal de las personas en el lugar de los hechos, insumo que permite la identificación del modelo lineal. (Texto tomado de la fuente) | spa |
dc.description.abstract | Given a new type of fraud, in which ATMs are blocked with the purpose of creating a distraction for users that allows them to change a card associated with a financial product and capture the password. This paper proposes a Generalized Linear Model as a tool for forecasting the probability of fraud occurrences, by structuring a database extracted from videos by means of Convolutional Neural Networks. This model estimate the presence of people, by finding the starting point to track each individual with a Siamese Neural Networks. The proposal enable the construction of covariates based on the spatio-temporal location of the people at the scene of the events. Input that allows the identification of the lineal model. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.format.extent | xii, 57 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82628 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Agresti, A. (2015), Foundations of Linear and Generalized Linear Models, i edn, Wiley, United States of America. | spa |
dc.relation.references | Arbib, M. (2003), The Handbook of Brain Theory and Neural Networks, i edn, Advisory Board, United States of America. | spa |
dc.relation.references | Bengio, Y. (2009), ‘Learning deep architectures for ai’, Foundations and Trends in Machine Learning 2, 1–127. | spa |
dc.relation.references | Cyganek, B. (2013), Video tracking: theory and practice, i edn, John Wiley and Sons, United Kingdom. | spa |
dc.relation.references | Fiaz, M., Mahmood, A. & Ki Jung, S. (2019), Deep siamese networks toward robust vi-sual tracking, in L. Mazzeo, ed., ‘Visual Object Tracking with Deep Neural Networks’, IntechOpen, chapter 1, pp. 1–21. | spa |
dc.relation.references | Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep learning, i edn, MIT Press. | spa |
dc.relation.references | Khan, S., Rahmani, H., Ali Shah, S. A. & Bennamoun, M. (2018), ‘A guide to convolutional neural networks for computer vision’, Synthesis Lectures on Computer Vision 8, 1–207. | spa |
dc.relation.references | Maggio, E. & Cavallaro, A. (2011), Video tracking: theory and practice, i edn, John Wiley and Sons, India. | spa |
dc.relation.references | Lee, J. & Verleysen, M. (2007), Nonlinear Dimension Reduction, i edn, Springer, United States of America. | spa |
dc.relation.references | Maggio, E. & Cavallaro, A. (2011), Video tracking: theory and practice, i edn, John Wiley and Sons, India. | spa |
dc.relation.references | Mishachev, N. (2017), ‘Backpropagation in matrix notation’, arXiv 8, 1–7. | spa |
dc.relation.references | OpenVIVO (2020), ‘Faster RCNN inception v2 COCO’, https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/faster_rcnn_inception_v2_coco. Online; accedido 03 de septiembre de 2020. | spa |
dc.relation.references | Ren, S., He, K., Girshick, R. & Sun, J. (2017), ‘Faster r-CNN: Towards real-time object detection with region proposal networks’, IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6), 1137–1149. | spa |
dc.relation.references | Salman, K., Hossein, R., Syed, A., Ali, S. & Mohammed, B. (2018), A Guide to Convolutional Neural Networks for Computer Vision, i edn, Morgan Claypool. | spa |
dc.relation.references | Sharma, Avinash (2020), ‘Understanding Activation Functions in Neural Networks’, https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0. Online; accedido 01 de agosto de 2020. | spa |
dc.relation.references | Vanegas, H. & Rondón, L. (2018), ‘Notas de clase: Modelos lineales generalizados’. | spa |
dc.relation.references | Wang, Q., Zhang, L. & Bertinetto, L. (2019), ‘Fast online object tracking and segmentation: A unifying approach’, IEEE Conference On Computer Vision And Pattern Recognition, pp. 1328–1338. | spa |
dc.relation.references | Warren, S. (1994), ‘Neural networks and statistical models’, Proceedings of the Nineteenth Annual SAS Users Group International Conference pp. 1–13. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 310 - Colecciones de estadística general | spa |
dc.subject.lemb | Estafa | spa |
dc.subject.lemb | Swindlers and swindling | eng |
dc.subject.lemb | Delitos económicos | spa |
dc.subject.lemb | Commercial crimes | eng |
dc.subject.proposal | Modelo de Prevención de Fraude | spa |
dc.subject.proposal | Modelos Lineales Generalizados | spa |
dc.subject.proposal | Redes Neuronales | spa |
dc.subject.proposal | Detección de Objetos | spa |
dc.subject.proposal | Seguimiento por Vídeo | spa |
dc.subject.proposal | Fraud Prevention Model | eng |
dc.subject.proposal | Generalized Linear Model | eng |
dc.subject.proposal | Neural Networks | eng |
dc.subject.proposal | Object Detection | eng |
dc.subject.proposal | Tracker Video | eng |
dc.title | Modelo de prevención de fraude basado en video. Una aplicación de redes neuronales y modelos estadísticos | spa |
dc.title.translated | Video-based fraud prevention model. An application of neural networks and statistical models | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Model | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1052358743.2022.pdf
- Tamaño:
- 4.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: