Modelamiento Bayesiano No Paramétrico Multinivel
dc.contributor.advisor | Sosa Martínez, Juan Camilo | spa |
dc.contributor.author | Cruz De Paula, Laura Camila | spa |
dc.date.accessioned | 2025-07-30T14:39:21Z | |
dc.date.available | 2025-07-30T14:39:21Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Este trabajo presenta el desarrollo de un modelo Bayesiano no paramétrico multinivel que permite estimar relaciones lineales en conjuntos de datos heterogéneos, al mismo tiempo que identifica agrupaciones sin necesidad de especificar previamente el número de grupos. El estudio incluye el desarrollo matemático del modelo utilizando el Proceso de Restaurante Chino y la implementación de algoritmos para su ajuste. Los resultados obtenidos a partir de simulaciones y datos reales muestran que el modelo tiene un buen rendimiento tanto en la agrupación de datos como en la caracterización de relaciones lineales, logrando resultados comparables a los obtenidos por métodos paramétricos tradicionales (Texto tomado de la fuente). | spa |
dc.description.abstract | This work presents the development of a multilevel Bayesian nonparametric model that allows for the estimation of linear relationships in heterogeneous data sets, while simultaneously identifying clusters without the need to specify the number of groups in advance. The study includes the mathematical development of the model using the Chinese Restaurant Process and the implementation of algorithms for its fitting. The results obtained from simulations and real data show that the model performs well in both clustering data and characterizing linear relationships, achieving results comparable to those obtained by traditional parametric methods. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias - Estadística | spa |
dc.description.researcharea | Estadística Bayesiana no Paramétrica | spa |
dc.format.extent | 124 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88400 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | Artin, E. (1964). The Gamma Function. Athena series. Holt, Rinehart and Winston. | spa |
dc.relation.references | Barnes III, T. G., Jefferys, W. H., Berger, J. O., Mueller, P. J., Orr, K., and Rodriguez, R. (2003). A bayesian analysis of the cepheid distance scale. The Astrophysical Journal, 592(1):539–554. | spa |
dc.relation.references | Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York. | spa |
dc.relation.references | Blei, D. (2007). Lecture 1: Bayesian nonparametrics. COS 597C: Bayesian Nonparametrics. Scribes: Peter Frazier, Indraneel Mukherjee. | spa |
dc.relation.references | Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877. | spa |
dc.relation.references | Bouchard-Coté, A. (2011). Stat 547Q: Statistical Modeling with Stochastic Processes. Lec- tures at University of British Columbia. | spa |
dc.relation.references | Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via pólya urn schemes. Annals of Statistics, 1(2):353–355. | spa |
dc.relation.references | Christensen, R., Johnson, W., Branscum, A., and Hanson, T. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Texts in Statistical Science. Chapman & Hall/CRC, Boca Raton, FL. | spa |
dc.relation.references | Clyde, M. and George, E. I. (2002). Flexible empirical bayes estimation for wavelets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 62(4):681–698. | spa |
dc.relation.references | Cruz De Paula, L. C. (2025). Bayesian hierarchical non parametric model. https://github. com/Camilacruzdepaula/Bayesian_Non_Parametric_Model. | spa |
dc.relation.references | Dilber, E. (2018). Decision theory and bayesian analysis project: A gentle introduction to dirichlet process with applications in r. | spa |
dc.relation.references | Dongre, P. (2023). Global plastic waste 2023: Country-wise data. Dataset disponible en Kaggle. ´Ultima actualizaci´on diciembre de 2024. | spa |
dc.relation.references | Dunson, D. B. (2010). Nonparametric bayes applications to biostatistics. Bayesian Nonpa- rametrics. | spa |
dc.relation.references | Ewens, W. J. (1990). Population genetics theory - the past and the future. In Mathematical and Statistical Developments of Evolutionary Theory, pages 177–227. Springer Netherlands. | spa |
dc.relation.references | F. W. J. Olver, A. B. Olde Daalhuis, D. W. L. B. I. S. R. F. B. C. W. C. B. R. M. B. V. S. H. S. C. and McClain, M. A. (2025). NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.4 of 2025-03-15. | spa |
dc.relation.references | Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209–230 | spa |
dc.relation.references | Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179–188. | spa |
dc.relation.references | Foti, N. J. and Williamson, S. (2012). A survey of non-exchangeable priors for bayesian nonparametric models. | spa |
dc.relation.references | Frigyik, A. B., Kapila, A., and Gupta, M. R. (2010). Introduction to the dirichlet distribution and related processes. | spa |
dc.relation.references | Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC, 2nd edition. | spa |
dc.relation.references | Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, FL, 3 edition. | spa |
dc.relation.references | Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calcula- tion of posterior moments. In Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Dedicated to the memory of Morris H. DeGroot, 1931–1989. Oxford University Press. | spa |
dc.relation.references | Government of Canada (2025). Fuel consumption ratings. https://open.canada.ca/data/ en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64#wb-auto-6. Open Government Portal. | spa |
dc.relation.references | Hanson, T. and Johnson, W. O. (2002). Modeling regression error with a mixture of polya trees. Journal of the American Statistical Association, 97(460):1020–1033. | spa |
dc.relation.references | Hanson, T. and Johnson, W. O. (2004). A bayesian semiparametric aft model for interval- censored data. Journal of Computational and Graphical Statistics, 13(2):341–361. | spa |
dc.relation.references | Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. Springer-Verlag, New York. | spa |
dc.relation.references | Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, 2 edition. | spa |
dc.relation.references | Hoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer Texts in Statistics. Springer, New York. | spa |
dc.relation.references | Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts, 2nd edition. | spa |
dc.relation.references | Jara, A. (2017). Theory and computations for the dirichlet process and related models: An overview. International Journal of Approximate Reasoning, 81:128–146. | spa |
dc.relation.references | Jordan, M. I. and Broderick, T. (2017). Nonparametric bayesian methods: Mo- dels, algorithms, and applications. https://simons.berkeley.edu/talks/ nonparametric-bayesian-methods. [Online; accessed January 4, 2018]. | spa |
dc.relation.references | Kamper, H. (2014). Gibbs sampling for fitting finite and infinite gaussian mixture models. | spa |
dc.relation.references | Kass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. Journal of the American Statistical Association, 90(431):928–934. | spa |
dc.relation.references | MacEachern, S. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA. ASA. | spa |
dc.relation.references | Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley, Hoboken, NJ, 5th edition. | spa |
dc.relation.references | Muller, P., Erkanli, A., and West, M. (1994). Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83. | spa |
dc.relation.references | Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA. | spa |
dc.relation.references | Müeller, P., Quintana, F. A., and Page, G. (2018). Nonparametric Bayesian inference in applications. Statistical Methods & Applications, 27(2):175–206. | spa |
dc.relation.references | Li, Y., Schofield, E., and Gönen, M. (2019). A tutorial on dirichlet process mixture modeling. Journal of mathematical psychology, 91:128–144. | spa |
dc.relation.references | Müller, P. and Mitra, R. (2013). Bayesian nonparametric inference – why and how. Statistical Science, 28(1):69–86. | spa |
dc.relation.references | Müller, P., Quintana, F. A., and Rosner, G. L. (2013). Bayesian Nonparametric Data Analy- sis. Statistics for Biology and Health. Springer, 1st edition. | spa |
dc.relation.references | Orhan, E. (2012). Bayesian statistics: Dirichlet processes. mailto:eorhan@bcs.rochester. edu. Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA. | spa |
dc.relation.references | Perfors, N. . (2023). The chinese restaurant process. COMPSCI 3016: Computational Cog- nitive Science. | spa |
dc.relation.references | Polson, N. G. and Scott, J. G. (2011). On the half-cauchy prior for a global scale parameter. | spa |
dc.relation.references | Quintana, F., M¨uller, P., Jara, A., and MacEachern, S. (2020). The dependent dirichlet process and related models. arXiv preprint arXiv:2007.06129. | spa |
dc.relation.references | Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA. | spa |
dc.relation.references | Ross, G. J. and Markwick, D. (2023). dirichletprocess: An r package for fitting com- plex bayesian nonparametric models. https://cran.r-project.org/web/packages/ dirichletprocess/vignettes/dirichletprocess.pdf. University of Edinburgh and University College London. | spa |
dc.relation.references | Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65. | spa |
dc.relation.references | Schörgendorfer, A., Branscum, A. J., and Hanson, T. E. (2013). A bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data. Biometrics, 69(2):508–519 | spa |
dc.relation.references | Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica, 4(2):639–650. | spa |
dc.relation.references | Sosa, J. and Aristizabal, P. (2022). Some developments in bayesian hierarchical linear regres- sion modeling. Revista Colombiana de Estadistica, 45:231. | spa |
dc.relation.references | Teh, Y. W. (2007). Exponential families: Gaussian, gaussian-gamma, gaussian-wishart, mul- tinomial. | spa |
dc.relation.references | Teh, Y. W. (2009). Nonparametric bayesian models. https://videolectures.net/ mlss09uk_teh_nbm/. Published on Nov 02, 2009, 53972 Views | spa |
dc.relation.references | Teh, Y. W. (2016). Dirichlet process | spa |
dc.relation.references | Theodoridis, S. (2020). Machine Learning: A Bayesian and Optimization Perspective. Aca- demic Press, second edition. | spa |
dc.relation.references | Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288. | spa |
dc.relation.references | Walker, S. and Mallick, B. K. (1999). A bayesian semiparametric accelerated failure time model. Biometrics, 55(2):477–483. | spa |
dc.relation.references | Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(Dec):3571–3594. | spa |
dc.relation.references | West, M. (1992). Hyperparameter estimation in dirichlet process mixture models. Discussion Paper 92-A03, Duke University, Institute of Statistics and Decision Sciences. | spa |
dc.relation.references | Wiecki, T. (2013). Sequential sampling models in computational psychiatry: Bayesian para- meter estimation, model selection and classification. | spa |
dc.relation.references | Xu, Y., Müller, P., Wahed, A. S., and Thall, P. F. (2016). Bayesian nonparametric estimation for dynamic treatment regimes with sequential transition times. Journal of the American Statistical Association, 111(515):921–950. | spa |
dc.relation.references | Xuan, J., Lu, J., and Zhang, G. (2019). A survey on bayesian nonparametric learning. ACM Comput. Surv., 52(1). | spa |
dc.relation.references | Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with g- prior distributions. In Bayesian inference and decision techniques, volume 6, pages 233–243. North-Holland, Amsterdam. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.ddc | 519.5 | spa |
dc.subject.other | Estadística bayesiana | spa |
dc.subject.other | Bayesian statistical | eng |
dc.subject.other | Toma de decisiones (Estadística) | spa |
dc.subject.other | Statistical decision | eng |
dc.subject.other | Procesos estocásticos | spa |
dc.subject.other | Stochastic processes | eng |
dc.subject.other | Estadística no paramétrica | spa |
dc.subject.other | Nonparametric statistics | eng |
dc.subject.proposal | Modelo bayesiano no paramétrico | spa |
dc.subject.proposal | Proceso de Dirichlet | spa |
dc.subject.proposal | Proceso de restaurante chino | spa |
dc.subject.proposal | Regresión lineal | spa |
dc.subject.proposal | Nonparametric bayesian model | eng |
dc.subject.proposal | Dirichlet Process | eng |
dc.subject.proposal | Agrupación de Datos | spa |
dc.subject.proposal | Chinese Restaurant Process | eng |
dc.subject.proposal | Data Clustering | eng |
dc.subject.proposal | Linear Regression | eng |
dc.title | Modelamiento Bayesiano No Paramétrico Multinivel | spa |
dc.title.translated | Multilevel Nonparametric Bayesian Model | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019130963.2025.pdf
- Tamaño:
- 7.96 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Estadística Bayesiana no paramétrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: