Modelamiento Bayesiano No Paramétrico Multinivel

dc.contributor.advisorSosa Martínez, Juan Camilospa
dc.contributor.authorCruz De Paula, Laura Camilaspa
dc.date.accessioned2025-07-30T14:39:21Z
dc.date.available2025-07-30T14:39:21Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEste trabajo presenta el desarrollo de un modelo Bayesiano no paramétrico multinivel que permite estimar relaciones lineales en conjuntos de datos heterogéneos, al mismo tiempo que identifica agrupaciones sin necesidad de especificar previamente el número de grupos. El estudio incluye el desarrollo matemático del modelo utilizando el Proceso de Restaurante Chino y la implementación de algoritmos para su ajuste. Los resultados obtenidos a partir de simulaciones y datos reales muestran que el modelo tiene un buen rendimiento tanto en la agrupación de datos como en la caracterización de relaciones lineales, logrando resultados comparables a los obtenidos por métodos paramétricos tradicionales (Texto tomado de la fuente).spa
dc.description.abstractThis work presents the development of a multilevel Bayesian nonparametric model that allows for the estimation of linear relationships in heterogeneous data sets, while simultaneously identifying clusters without the need to specify the number of groups in advance. The study includes the mathematical development of the model using the Chinese Restaurant Process and the implementation of algorithms for its fitting. The results obtained from simulations and real data show that the model performs well in both clustering data and characterizing linear relationships, achieving results comparable to those obtained by traditional parametric methods.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Estadísticaspa
dc.description.researchareaEstadística Bayesiana no Paramétricaspa
dc.format.extent124 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88400
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesArtin, E. (1964). The Gamma Function. Athena series. Holt, Rinehart and Winston.spa
dc.relation.referencesBarnes III, T. G., Jefferys, W. H., Berger, J. O., Mueller, P. J., Orr, K., and Rodriguez, R. (2003). A bayesian analysis of the cepheid distance scale. The Astrophysical Journal, 592(1):539–554.spa
dc.relation.referencesBishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York.spa
dc.relation.referencesBlei, D. (2007). Lecture 1: Bayesian nonparametrics. COS 597C: Bayesian Nonparametrics. Scribes: Peter Frazier, Indraneel Mukherjee.spa
dc.relation.referencesBlei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518):859–877.spa
dc.relation.referencesBouchard-Coté, A. (2011). Stat 547Q: Statistical Modeling with Stochastic Processes. Lec- tures at University of British Columbia.spa
dc.relation.referencesBlackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via pólya urn schemes. Annals of Statistics, 1(2):353–355.spa
dc.relation.referencesChristensen, R., Johnson, W., Branscum, A., and Hanson, T. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Texts in Statistical Science. Chapman & Hall/CRC, Boca Raton, FL.spa
dc.relation.referencesClyde, M. and George, E. I. (2002). Flexible empirical bayes estimation for wavelets. Journal of the Royal Statistical Society Series B: Statistical Methodology, 62(4):681–698.spa
dc.relation.referencesCruz De Paula, L. C. (2025). Bayesian hierarchical non parametric model. https://github. com/Camilacruzdepaula/Bayesian_Non_Parametric_Model.spa
dc.relation.referencesDilber, E. (2018). Decision theory and bayesian analysis project: A gentle introduction to dirichlet process with applications in r.spa
dc.relation.referencesDongre, P. (2023). Global plastic waste 2023: Country-wise data. Dataset disponible en Kaggle. ´Ultima actualizaci´on diciembre de 2024.spa
dc.relation.referencesDunson, D. B. (2010). Nonparametric bayes applications to biostatistics. Bayesian Nonpa- rametrics.spa
dc.relation.referencesEwens, W. J. (1990). Population genetics theory - the past and the future. In Mathematical and Statistical Developments of Evolutionary Theory, pages 177–227. Springer Netherlands.spa
dc.relation.referencesF. W. J. Olver, A. B. Olde Daalhuis, D. W. L. B. I. S. R. F. B. C. W. C. B. R. M. B. V. S. H. S. C. and McClain, M. A. (2025). NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.4 of 2025-03-15.spa
dc.relation.referencesFerguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209–230spa
dc.relation.referencesFisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179–188.spa
dc.relation.referencesFoti, N. J. and Williamson, S. (2012). A survey of non-exchangeable priors for bayesian nonparametric models.spa
dc.relation.referencesFrigyik, A. B., Kapila, A., and Gupta, M. R. (2010). Introduction to the dirichlet distribution and related processes.spa
dc.relation.referencesGamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC, 2nd edition.spa
dc.relation.referencesGelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton, FL, 3 edition.spa
dc.relation.referencesGeweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calcula- tion of posterior moments. In Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Dedicated to the memory of Morris H. DeGroot, 1931–1989. Oxford University Press.spa
dc.relation.referencesGovernment of Canada (2025). Fuel consumption ratings. https://open.canada.ca/data/ en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64#wb-auto-6. Open Government Portal.spa
dc.relation.referencesHanson, T. and Johnson, W. O. (2002). Modeling regression error with a mixture of polya trees. Journal of the American Statistical Association, 97(460):1020–1033.spa
dc.relation.referencesHanson, T. and Johnson, W. O. (2004). A bayesian semiparametric aft model for interval- censored data. Journal of Computational and Graphical Statistics, 13(2):341–361.spa
dc.relation.referencesHarville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. Springer-Verlag, New York.spa
dc.relation.referencesHastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, 2 edition.spa
dc.relation.referencesHoff, P. D. (2009). A First Course in Bayesian Statistical Methods. Springer Texts in Statistics. Springer, New York.spa
dc.relation.referencesHyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts, 2nd edition.spa
dc.relation.referencesJara, A. (2017). Theory and computations for the dirichlet process and related models: An overview. International Journal of Approximate Reasoning, 81:128–146.spa
dc.relation.referencesJordan, M. I. and Broderick, T. (2017). Nonparametric bayesian methods: Mo- dels, algorithms, and applications. https://simons.berkeley.edu/talks/ nonparametric-bayesian-methods. [Online; accessed January 4, 2018].spa
dc.relation.referencesKamper, H. (2014). Gibbs sampling for fitting finite and infinite gaussian mixture models.spa
dc.relation.referencesKass, R. E. and Wasserman, L. (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. Journal of the American Statistical Association, 90(431):928–934.spa
dc.relation.referencesMacEachern, S. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA. ASA.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to Linear Regression Analysis. Wiley, Hoboken, NJ, 5th edition.spa
dc.relation.referencesMuller, P., Erkanli, A., and West, M. (1994). Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83.spa
dc.relation.referencesMurphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA.spa
dc.relation.referencesMüeller, P., Quintana, F. A., and Page, G. (2018). Nonparametric Bayesian inference in applications. Statistical Methods & Applications, 27(2):175–206.spa
dc.relation.referencesLi, Y., Schofield, E., and Gönen, M. (2019). A tutorial on dirichlet process mixture modeling. Journal of mathematical psychology, 91:128–144.spa
dc.relation.referencesMüller, P. and Mitra, R. (2013). Bayesian nonparametric inference – why and how. Statistical Science, 28(1):69–86.spa
dc.relation.referencesMüller, P., Quintana, F. A., and Rosner, G. L. (2013). Bayesian Nonparametric Data Analy- sis. Statistics for Biology and Health. Springer, 1st edition.spa
dc.relation.referencesOrhan, E. (2012). Bayesian statistics: Dirichlet processes. mailto:eorhan@bcs.rochester. edu. Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.spa
dc.relation.referencesPerfors, N. . (2023). The chinese restaurant process. COMPSCI 3016: Computational Cog- nitive Science.spa
dc.relation.referencesPolson, N. G. and Scott, J. G. (2011). On the half-cauchy prior for a global scale parameter.spa
dc.relation.referencesQuintana, F., M¨uller, P., Jara, A., and MacEachern, S. (2020). The dependent dirichlet process and related models. arXiv preprint arXiv:2007.06129.spa
dc.relation.referencesRasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.spa
dc.relation.referencesRoss, G. J. and Markwick, D. (2023). dirichletprocess: An r package for fitting com- plex bayesian nonparametric models. https://cran.r-project.org/web/packages/ dirichletprocess/vignettes/dirichletprocess.pdf. University of Edinburgh and University College London.spa
dc.relation.referencesRousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65.spa
dc.relation.referencesSchörgendorfer, A., Branscum, A. J., and Hanson, T. E. (2013). A bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data. Biometrics, 69(2):508–519spa
dc.relation.referencesSethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica, 4(2):639–650.spa
dc.relation.referencesSosa, J. and Aristizabal, P. (2022). Some developments in bayesian hierarchical linear regres- sion modeling. Revista Colombiana de Estadistica, 45:231.spa
dc.relation.referencesTeh, Y. W. (2007). Exponential families: Gaussian, gaussian-gamma, gaussian-wishart, mul- tinomial.spa
dc.relation.referencesTeh, Y. W. (2009). Nonparametric bayesian models. https://videolectures.net/ mlss09uk_teh_nbm/. Published on Nov 02, 2009, 53972 Viewsspa
dc.relation.referencesTeh, Y. W. (2016). Dirichlet processspa
dc.relation.referencesTheodoridis, S. (2020). Machine Learning: A Bayesian and Optimization Perspective. Aca- demic Press, second edition.spa
dc.relation.referencesTibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267–288.spa
dc.relation.referencesWalker, S. and Mallick, B. K. (1999). A bayesian semiparametric accelerated failure time model. Biometrics, 55(2):477–483.spa
dc.relation.referencesWatanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11(Dec):3571–3594.spa
dc.relation.referencesWest, M. (1992). Hyperparameter estimation in dirichlet process mixture models. Discussion Paper 92-A03, Duke University, Institute of Statistics and Decision Sciences.spa
dc.relation.referencesWiecki, T. (2013). Sequential sampling models in computational psychiatry: Bayesian para- meter estimation, model selection and classification.spa
dc.relation.referencesXu, Y., Müller, P., Wahed, A. S., and Thall, P. F. (2016). Bayesian nonparametric estimation for dynamic treatment regimes with sequential transition times. Journal of the American Statistical Association, 111(515):921–950.spa
dc.relation.referencesXuan, J., Lu, J., and Zhang, G. (2019). A survey on bayesian nonparametric learning. ACM Comput. Surv., 52(1).spa
dc.relation.referencesZellner, A. (1986). On assessing prior distributions and bayesian regression analysis with g- prior distributions. In Bayesian inference and decision techniques, volume 6, pages 233–243. North-Holland, Amsterdam.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc519.5spa
dc.subject.otherEstadística bayesianaspa
dc.subject.otherBayesian statisticaleng
dc.subject.otherToma de decisiones (Estadística)spa
dc.subject.otherStatistical decisioneng
dc.subject.otherProcesos estocásticosspa
dc.subject.otherStochastic processeseng
dc.subject.otherEstadística no paramétricaspa
dc.subject.otherNonparametric statisticseng
dc.subject.proposalModelo bayesiano no paramétricospa
dc.subject.proposalProceso de Dirichletspa
dc.subject.proposalProceso de restaurante chinospa
dc.subject.proposalRegresión linealspa
dc.subject.proposalNonparametric bayesian modeleng
dc.subject.proposalDirichlet Processeng
dc.subject.proposalAgrupación de Datosspa
dc.subject.proposalChinese Restaurant Processeng
dc.subject.proposalData Clusteringeng
dc.subject.proposalLinear Regressioneng
dc.titleModelamiento Bayesiano No Paramétrico Multinivelspa
dc.title.translatedMultilevel Nonparametric Bayesian Modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019130963.2025.pdf
Tamaño:
7.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Estadística Bayesiana no paramétrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: