Model Theory of representations of operator algebras
Archivos
Autores
Argoty Pulido, Camilo Enrique
Director
Villaveces Niño, Andrés
Tipo de contenido
Trabajo de grado - Doctorado
Idioma del documento
EspañolFecha de publicación
2015-12-14
Título de la revista
ISSN de la revista
Título del volumen
Documentos PDF
Resumen
En esta tesis se construyen las bases de una teoría de modelos de un espacio de Hilbert H con tres expansiones: H como una representación con operadores acotados de una C*-álgebra, H expandido con un operador cerrado autoadjunto no acotado y H con una familia de operadores que forman una *-álgebra. Se trabaja en dos marcos principales: Lógica continua y Clases Elementales Abstractas Métricas (MAEC por sus siglas en inglés). Se obtienen resultados en estabilidad, axiomatizabilidad y caracterización de la no bifurcación para los casos anteriormente descritos (TExto tomado de la fuente).
In this thesis we build the basis of the model theory of the expansion of a Hilbert space by operators in three main cases: H with a C ∗ -algebra of bounded operators, H expanded with an unbounded self-adjoint operator and H a ∗ -representation of a ∗ -algebra. We work in two main frameworks: Continuous logic and the Metric Abstract Elementary Classes (MAECS). We get results on stability, axiomatizability and characterization of forking for these settings.
In this thesis we build the basis of the model theory of the expansion of a Hilbert space by operators in three main cases: H with a C ∗ -algebra of bounded operators, H expanded with an unbounded self-adjoint operator and H a ∗ -representation of a ∗ -algebra. We work in two main frameworks: Continuous logic and the Metric Abstract Elementary Classes (MAECS). We get results on stability, axiomatizability and characterization of forking for these settings.