Caracterización del microbioma bacteriano intestinal del críticamente amenazado Cocodrilo del Orinoco (Crocodylus intermedius) presente en la mayor población ex situ en la Estación de Biología Tropical Roberto Franco (EBTRF) en Villavicencio, Colombia

dc.contributor.advisorVargas Ramírez, Mario
dc.contributor.authorPolanco Rodríguez, María Camila
dc.contributor.subjectmatterexpertGómez Nieto, Diego
dc.coverage.countryColombia
dc.date.accessioned2024-02-01T16:09:27Z
dc.date.available2024-02-01T16:09:27Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, mapaspa
dc.description.abstractEl Cocodrilo del Orinoco (Crocodylus intermedius) es un reptil endémico de zonas bajas de la cuenca del río Orinoco. Actualmente la especie enfrenta serias amenazas para su supervivencia, por lo cual es necesario un plan de conservación integral que incluya programas modernos como el mantenimiento de un microbioma saludable, lo cual puede mejorar su mantenimiento, reproducción y liberación. Este estudio tuvo como objetivo caracterizar la microbiota bacteriana de las heces de C. intermedius, mantenidos en la mayor población ex-situ colombiana (EBTRF, Villavicencio, Meta) y comparar las poblaciones bacterianas entre cocodrilos juveniles y adultos. Se realizó la secuenciación del gen rRNA 16S de 24 muestras de materia fecal (Juveniles n=15; Adultos n=9), utilizando el equipo Illumina MiSeq (2×250 bp). Los resultados indican que la microbiota fecal de está predominada por Firmicutes, seguido por Bacteroidetes y Proteobacterias. Los índices de medición de Alfa diversidad y la estructura bacteriana no tuvieron una diferencia significativa entre los Juveniles y Adultos, sin embargo, el membership de las poblaciones bacterianas difirió significativamente entre los grupos. La composición de la microbiota fecal de ambos estuvo fuertemente predominada por Firmicutes y Bacteroidetes, distribución que se ha relacionado con enfermedades como la obesidad y desórdenes endocrinos. A pesar de que investigaciones previas han reportado bacterias patógenas en la microbiota fecal, los reptiles poseen un fuerte sistema inmunológico que podría conferir una mayor resistencia a infecciones, cáncer y senescencia. Esta investigación presenta una herramienta para la conservación del Cocodrilo del Orinoco y amplía el conocimiento de la microbiota en reptiles. (Texto tomado de la fuente)spa
dc.description.abstractThe Orinoco Crocodile (Crocodylus intermedius) is an endemic reptile found in lowland areas of the Orinoco River basin. Currently, the species faces serious threats to its survival, demanding an all-encompassing conservation program that includes modern programs such as maintaining a healthy microbiome, which can improve its maintenance, reproduction, and release. This study aimed to characterize the bacterial microbiota of feces from C. intermedius kept in the largest ex-situ Colombian population (EBTRF, Villavicencio, Meta) and compare the bacterial populations between juvenile and adult crocodiles. The 16S rRNA gene sequencing was performed on 24 fecal samples (Juveniles n=15; Adults n=9), using the Illumina MiSeq platform (2×250 bp). The results indicate that the fecal microbiota is predominantly composed of Firmicutes, followed by Bacteroidetes and Proteobacteria in both groups. Alpha diversity and bacterial structure measurements did not show significant differences between juveniles and adults; however, the membership of bacterial populations differed significantly between the groups. The majority presence of Firmicutes and Bacteroidetes have been associated with diseases such as obesity and endocrine disorders in reptiles. Despite previous reports of pathogenic bacteria in the fecal microbiota, reptiles possess a robust immune system that may confer greater resistance to infections, cancer, and senescence. This research provides a tool for the conservation of the Orinoco Crocodile and expands our understanding of reptilian fecal microbiota.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.format.extentxv, 62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85587
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesArumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. https://doi.org/10.1038/nature09944spa
dc.relation.referencesAbdelrhman, K. F. A., Bacci, G., Mancusi, C., Mengoni, A., Serena, F., & Ugolini, A. (2016). A First Insight Into the Gut Microbiota of the Sea Turtle Caretta caretta. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01060spa
dc.relation.referencesAinsworth, T. D., Krause, L., Bridge, T., Torda, G., Raina, J.-B., Zakrzewski, M., Gates, R. D., Padilla-Gamiño, J. L., Spalding, H. L., Smith, C., Woolsey, E. S., Bourne, D. G., Bongaerts, P., Hoegh-Guldberg, O., & Leggat, W. (2015). The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME Journal, 9(10), 2261-2274. https://doi.org/10.1038/ismej.2015.39spa
dc.relation.referencesAlduina, R., Gambino, D., Presentato, A., Gentile, A., Sucato, A., Savoca, D., Filippello, S., Visconti, G., Caracappa, G., Vicari, D., & Arculeo, M. (2020). Is Caretta caretta a carrier of antibiotic resistance in the Mediterranean Sea? Antibiotics, 9(3), 116. https://doi.org/10.3390/antibiotics9030116spa
dc.relation.referencesBalaguera-Reina, S.A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M. & Seijas, A. (2018). Crocodylus intermedius. The IUCN Red List of Threatened Species 2018: e.T5661A3044743. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T5661A3044743.en. Downloaded on 10 November 2020spa
dc.relation.referencesBjorndal, K. A., Parsons, J., Mustin, W., & Bolten, A. B. (2013). Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Marine Biology, 160(3), 607-616. https://doi.org/10.1007/s00227-012-2116-1spa
dc.relation.referencesBolton, M. (1982). CROCODILES AS FARM ANIMALS. Assistance to the Crocodile Skin Industry; FAO. https://www.fao.org/3/T0226E/t0226e00.htm#contspa
dc.relation.referencesCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303spa
dc.relation.referencesCarvajal-Restrepo, H., Sánchez-Jiménez, M. M., Diaz-Rodríguez, S., & Cardona-Castro, N. (2017). Detection of Salmonella human carriers in Colombian outbreak areas. The Journal of Infection in Developing Countries, 11(03), 228–233. https://doi.org/10.3855/jidc.8023spa
dc.relation.referencesCastañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325spa
dc.relation.referencesCDC (Centers for Disease Control and Prevention). (2008). Multistate outbreak of human salmonella infections associated with exposure to turtles—United states, 2007-2008. MMWR Morb Mortal Wkly Rep, 299(16), 1892. https://doi.org/10.1001/jama.299.16.1892spa
dc.relation.referencesChang, F., He, S., & Dang, C. (2022). Assisted selection of biomarkers by linear discriminant analysis effect size (Lefse) in microbiome data. Journal of Visualized Experiments, 183, 61715. https://doi.org/10.3791/61715spa
dc.relation.referencesChao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.spa
dc.relation.referencesChoi, S.-Y., Choi, B.-H., Cha, J.-H., Lim, Y.-J., Sheet, S., Song, M.-J., Ko, M.-J., Kim, N.-Y., Kim, J.-S., Lee, S.-J., Oh, S.-I., & Park, W.-C. (2022). Insight into the fecal microbiota signature associated with growth specificity in korean jindo using 16s rrna sequencing. Animals, 12(19), 2499. https://doi.org/10.3390/ani12192499spa
dc.relation.referencesCole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(Database issue), D633-D642. https://doi.org/10.1093/nar/gkt1244spa
dc.relation.referencesCosta, M. C., & Weese, J. S. (2018). Understanding the intestinal microbiome in health and disease. Veterinary Clinics of North America: Equine Practice, 34(1), 1-12. https://doi.org/10.1016/j.cveq.2017.11.005spa
dc.relation.referencesCosta, M., & Weese, J. S. (2019). Methods and basic concepts for microbiota assessment. The Veterinary Journal, 249, 10-15. https://doi.org/10.1016/j.tvjl.2019.05.005spa
dc.relation.referencesCostello, E. K., Gordon, J. I., Secor, S. M., & Knight, R. (2010). Postprandial remodeling of the gut microbiota in Burmese pythons. The ISME Journal, 4(11), 1375–1385. https://doi.org/10.1038/ismej.2010.71spa
dc.relation.referencesCoyte, K. Z., Rao, C., Rakoff-Nahoum, S., & Foster, K. R. (2021). Ecological rules for the assembly of microbiome communities. PLOS Biology, 19(2), e3001116. https://doi.org/10.1371/journal.pbio.3001116spa
dc.relation.referencesDonoghue, S., & McKeown, S. (1999). Nutrition of captive reptiles. Veterinary Clinics of North America: Exotic Animal Practice, 2(1), 69-91. https://doi.org/10.1016/S1094-9194(17)30140-8spa
dc.relation.referencesGomez DE, Li L, Goetz H, MacNicol J, Gamsjaeger L, Renaud DL. Calf diarrhea is associated with a shift from obligated to facultative anaerobes and expansion of lactate-producing bacteria. Front Vet Sci. 2022;9:846383spa
dc.relation.referencesHansen, A. K., Hansen, C. H. F., Krych, L., & Nielsen, D. S. (2014). Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 20(47), 17727–17736. https://doi.org/10.3748/wjg.v20.i47.17727spa
dc.relation.referencesHenderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, Abecia, L., Angarita, E., Aravena, P., Nora Arenas, G., Ariza, C., Attwood, G. T., Mauricio Avila, J., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., … Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5(1), 14567. https://doi.org/10.1038/srep14567spa
dc.relation.referencesHoelzer, K., Moreno Switt, A., & Wiedmann, M. (2011). Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research, 42(1), 34. https://doi.org/10.1186/1297-9716-42-34spa
dc.relation.referencesHolmes I, Harris K, Quince C (2012) Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics. PLoS ONE 7(2): e30126. https://doi.org/10.1371/journal.pone.0030126spa
dc.relation.referencesHong, P.-Y., Wheeler, E., Cann, I. K. O., & Mackie, R. I. (2011). Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. The ISME Journal, 5(9), 1461-1470. https://doi.org/10.1038/ismej.2011.33spa
dc.relation.referencesJaccard P. Nouvelles recherches sur la distribution florale. Nature. 1908;44:223–70.spa
dc.relation.referencesJeffree, R. A., Markich, S. J., & Tucker, A. D. (2005). Patterns of metal accumulation in osteoderms of the Australian freshwater crocodile, Crocodylus johnstoni. Science of The Total Environment, 336(1-3), 71-80. https://doi.org/10.1016/j.scitotenv.2004.05.021spa
dc.relation.referencesJiménez, R. R., & Sommer, S. (2017). The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiversity and Conservation, 26(4), 763-786. https://doi.org/10.1007/s10531-016-1272-xspa
dc.relation.referencesKapa hifi hotstart readymix. (s. f.). Roche Sequencing Store. Recuperado 17 de julio de 2023, de https://rochesequencingstore.com/catalog/kapa-hifi-hotstart-readymix/spa
dc.relation.referencesKeenan, S. W., & Elsey, R. M. (2015). The good, the bad, and the unknown: Microbial symbioses of the American Alligator. Integrative and Comparative Biology, 55(6), 972–985. https://doi.org/10.1093/icb/icv006spa
dc.relation.referencesKeenan, S. W., Engel, A. S., & Elsey, R. M. (2013). The alligator gut microbiome and implications for archosaur symbioses. Scientific Reports, 3(1), 2877. https://doi.org/10.1038/srep02877spa
dc.relation.referencesKohl, K. D., Brun, A., Magallanes, M., Brinkerhoff, J., Laspiur, A., Acosta, J. C., Caviedes-Vidal, E., & Bordenstein, S. R. (2017). Gut microbial ecology of lizards: Insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Molecular Ecology, 26(4), 1175–1189. https://doi.org/10.1111/mec.13921spa
dc.relation.referencesKozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20.spa
dc.relation.referencesKuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., & Knight, R. (2012). Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 13(1), 47-58. https://doi.org/10.1038/nrg3129spa
dc.relation.referencesLaborda, P., Sanz-García, F., Ochoa-Sánchez, L. E., Gil-Gil, T., Hernando-Amado, S., & Martínez, J. L. (2022). Wildlife and antibiotic resistance. Frontiers in Cellular and Infection Microbiology, 12, 873989. https://doi.org/10.3389/fcimb.2022.873989spa
dc.relation.referencesLance, V. A., Morici, L. A., Elsey, R. M., Lund, E. D., & Place, A. R. (2001). Hyperlipidemia and reproductive failure in captive-reared alligators: Vitamin E, vitamin A, plasma lipids, fatty acids, and steroid hormones. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 128(2), 285-294. https://doi.org/10.1016/S1096-4959(00)00321-3spa
dc.relation.referencesLee, S. H., Lee, H., You, H. S., Sung, H., & Hyun, S. H. (2023). Metabolic pathway prediction of core microbiome based on enterotype and orotype. Frontiers in Cellular and Infection Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fcimb.2023.1173085spa
dc.relation.referencesLi, P., Ma, X., Liu, D., Wei, Y., Li, P., Hou, H., Yao, J., Chen, A., Liang, Y., Zhou, Z., & Wang, P. (2022). A microbiome abundant environment remodels the intestinal microbiota and improves resistance to obesity induced by chlorpyrifos in mice. Environmental Pollution, 315, 120415. https://doi.org/10.1016/j.envpol.2022.120415spa
dc.relation.referencesMag-bind® rxnpure plus | Omega Bio-Tek. (s. f.). Recuperado 17 de julio de 2023, de https://www.omegabiotek.com/product/mag-bind-rxnpure-plus/spa
dc.relation.referencesMerchant, M., & Britton, A. (2006). Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(4), 488-493. https://doi.org/10.1016/j.cbpa.2006.01.009spa
dc.relation.referencesMcDermid, K. J., Kittle, R. P., Veillet, A., Plouviez, S., Muehlstein, L., & Balazs, G. H. (2020). Identification of Gastrointestinal Microbiota in Hawaiian Green Turtles (Chelonia mydas). Evolutionary Bioinformatics, 16, 117693432091460. https://doi.org/10.1177/1176934320914603spa
dc.relation.referencesMshelia, E. S., Adamu, L., Wakil, Y., Turaki, U. A., Gulani, I. A., & Musa, J. (2018). The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microbial Pathogenesis, 118, 81-86. https://doi.org/10.1016/j.micpath.2018.03.018spa
dc.relation.referencesMorales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.spa
dc.relation.referencesMorales-Betancourt, M. A., C., Lasso A., J. De La Ossa V. & Fajardo-Patiño A. (Editores). (2013). VIII. Biología y conservación de los Crocodylia de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia, 336 ppspa
dc.relation.referencesNanoDrop™ 2000/2000c Spectrophotometers. (s. f.). Recuperado 17 de julio de 2023, de https://www.thermofisher.com/order/catalog/product/ND-2000Cspa
dc.relation.referencesOonincx, D., & Van Leeuwen, J. (2017). Evidence-based reptile housing and nutrition. Veterinary Clinics of North America: Exotic Animal Practice, 20(3), 885-898. https://doi.org/10.1016/j.cvex.2017.04.004spa
dc.relation.referencesOttman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104spa
dc.relation.referencesPawlak, A., Morka, K., Bury, S., Antoniewicz, Z., Wzorek, A., Cieniuch, G., Korzeniowska-Kowal, A., Cichoń, M., & Bugla-Płoskońska, G. (2020). Cloacal gram-negative microbiota in free-living grass snake Natrix natrix from Poland. Current Microbiology. https://doi.org/10.1007/s00284-020-02021-3spa
dc.relation.referencesQiagen (2020) DNeasy Blood and Tissue Kit. https://www.qiagen.com/us/shop/pcr/dneasy-blood-and-tissue-kit/#orderinginformationspa
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219spa
dc.relation.referencesRamey, A. M., & Ahlstrom, C. A. (2020). Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. Journal of Wildlife Diseases, 56(1), 1. https://doi.org/10.7589/2019-04-099spa
dc.relation.referencesRognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584spa
dc.relation.referencesRomão, M. F., Santos, A. L. Q., Lima, F. C., De Simone, S. S., Silva, J. M. M., Hirano, L. Q., Vieira, L. G., & Pinto, J. G. S. (2011). Anatomical and topographical description of the digestive system of Caiman crocodilus (Linnaeus 1758), Melanosuchus niger (Spix 1825) and Paleosuchus palpebrosus (Cuvier 1807). International Journal of Morphology, 29(1), 94-99. https://doi.org/10.4067/S0717-95022011000100016spa
dc.relation.referencesRuzauskas, M., Misyte, S., Vaskeviciute, L., Mikniene, Z., Siugzdiniene, R., Klimiene, I., Pikuniene, A., & Kucinskiene, J. (2016). Gut microbiota isolated from the European pond turtle (Emys orbicularis) and its antimicrobial resistance. Polish Journal of Veterinary Sciences, 19(4), 723–730. https://doi.org/10.1515/pjvs-2016-0091spa
dc.relation.referencesSaldarriaga-Gómez, A. M., Ardila-Robayo, M. C., Medem, F., & Vargas-Ramírez, M. (2023). Hope is the last thing lost: Colombian captive-bred population of the critically endangered Orinoco crocodile (Crocodylus intermedius) is a genetic reservoir that could help to save the species from extinction. Nature Conservation, 53, 85-103. https://doi.org/10.3897/natureconservation.53.104000spa
dc.relation.referencesSchneider, G. (2005). Dictionary of bioinformatics and computational biology. Edited by john m. Hancock and marketa j. Zvelebil. ChemBioChem, 6(7), 1287-1287. https://doi.org/10.1002/cbic.200500190spa
dc.relation.referencesSegata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60spa
dc.relation.referencesScheelings, T. F. (2020). Geriatric reptiles and amphibians. Veterinary Clinics of North America: Exotic Animal Practice, 23(3), 485-502. https://doi.org/10.1016/j.cvex.2020.05.004spa
dc.relation.referencesScheelings, T. F., Moore, R. J., Van, T. T. H., Klaassen, M., & Reina, R. D. (2020). No correlation between microbiota composition and blood parameters in nesting Flatback turtles (Natator depressus). Scientific Reports, 10(1), 8333. https://doi.org/10.1038/s41598-020-65321-5spa
dc.relation.referencesSchloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/AEM.01541-09spa
dc.relation.referencesSchmidt, V., Mock, R., Burgkhardt, E., Junghanns, A., Ortlieb, F., Szabo, I., Marschang, R., Blindow, I., & Krautwald-Junghanns, M.-E. (2014). Cloacal aerobic bacterial flora and absence of viruses in free-living slow worms (Anguis fragilis), grass snakes (Natrix natrix) and european adders (Vipera berus) from Germany. EcoHealth, 11(4), 571–580. https://doi.org/10.1007/s10393-014-0947-6spa
dc.relation.referencesSha, J. C. M., Ismail, R., Marlena, D., & Lee, J. L. (2016). Environmental complexity and feeding enrichment can mitigate effects of space constraints in captive callitrichids. Laboratory Animals, 50(2), 137-144. https://doi.org/10.1177/0023677215589258spa
dc.relation.referencesShaharabany, M. (1999). Naturally occurring antibacterial activities of avian and crocodile tissues. Journal of Antimicrobial Chemotherapy, 44(3), 416-418. https://doi.org/10.1093/jac/44.3.416spa
dc.relation.referencesShannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.xspa
dc.relation.referencesShade, A., & Handelsman, J. (2012). Beyond the Venn diagram: The hunt for a core microbiome: The hunt for a core microbiome. Environmental Microbiology, 14(1), 4-12. https://doi.org/10.1111/j.1462-2920.2011.02585.xspa
dc.relation.referencesShafquat, A., Joice, R., Simmons, S. L., & Huttenhower, C. (2014). Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends in Microbiology, 22(5), 261-266. https://doi.org/10.1016/j.tim.2014.01.011spa
dc.relation.referencesSiddiqui, R., Maciver, S. K., & Khan, N. A. (2022). Gut microbiome–immune system interaction in reptiles. Journal of Applied Microbiology, 132(4), 2558-2571. https://doi.org/10.1111/jam.15438spa
dc.relation.referencesSimpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0spa
dc.relation.referencesSingh, S., Sharma, P., Sarma, D. K., Kumawat, M., Tiwari, R., Verma, V., Nagpal, R., & Kumar, M. (2023). Implication of obesity and gut microbiome dysbiosis in the etiology of colorectal cancer. Cancers, 15(6), 1913. https://doi.org/10.3390/cancers15061913spa
dc.relation.referencesVan Meervenne, E., Botteldoorn, N., Lokietek, S., Vatlet, M., Cupa, A., Naranjo, M., Dierick, K., & Bertrand, S. (2009). Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. Journal of Medical Microbiology, 58(10), 1379–1381. https://doi.org/10.1099/jmm.0.012146-0spa
dc.relation.referencesVicino, G. A., Sheftel, J. J., & Radosevich, L. M. (2022). Enrichment is simple, that’s the problem: Using outcome-based husbandry to shift from enrichment to experience. Animals, 12(10), 1293. https://doi.org/10.3390/ani12101293spa
dc.relation.referencesVitt, L. J., & Caldwell, J. P. (2013). Herpetology: An introductory biology of amphibians and reptiles (Fourth edition). Elsevier, AP, Academic Press is an imprint of Elsevier.spa
dc.relation.referencesWest, A. G., Waite, D. W., Deines, P., Bourne, D. G., Digby, A., McKenzie, V. J., & Taylor, M. W. (2019). The microbiome in threatened species conservation. Biological Conservation, 229, 85–98. https://doi.org/10.1016/j.biocon.2018.11.016spa
dc.relation.referencesYue JC, Clayton MK. A Similarity Measure Based on Species Proportions. Commun Stat Methods. 2005;34(11):2123–31.spa
dc.relation.referencesZilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.xspa
dc.relation.referencesZhang, Y., Qi, X., Zhang, Z., Jin, Z., Wang, G., & Ling, F. (2023). Effects of dietary Cetobacterium somerae on the intestinal health, immune parameters and resistance against Nocardia seriolae of largemouth bass, Micropterus salmoides. Fish & Shellfish Immunology, 135, 108693. https://doi.org/10.1016/j.fsi.2023.108693spa
dc.relation.referencesZhao, Y., Li, S., Lessing, D. J., Guo, L., & Chu, W. (2023). Characterization of Cetobacterium somerae CPU-CS01 isolated from the intestine of healthy crucian carp (Carassius auratus) as potential probiotics against Aeromonas hydrophila infection. Microbial Pathogenesis, 180, 106148. https://doi.org/10.1016/j.micpath.2023.106148spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animales::597 - Vertebrados de sangre fríaspa
dc.subject.lccFlora intestinalspa
dc.subject.lccIntestines-Microbiologyeng
dc.subject.lembFlora microbianaspa
dc.subject.lembMicrobial floraeng
dc.subject.lembCocodrilosspa
dc.subject.lembCrocodylidaeeng
dc.subject.proposalMicrobiotaspa
dc.subject.proposalCrocodileeng
dc.subject.proposalFeceseng
dc.subject.proposalGuteng
dc.subject.proposalCrocodylus intermediuseng
dc.subject.proposalCocodrilosspa
dc.subject.proposalHecesspa
dc.subject.proposalReptilesspa
dc.subject.wikidataMicrobiotaspa
dc.titleCaracterización del microbioma bacteriano intestinal del críticamente amenazado Cocodrilo del Orinoco (Crocodylus intermedius) presente en la mayor población ex situ en la Estación de Biología Tropical Roberto Franco (EBTRF) en Villavicencio, Colombiaspa
dc.title.translatedCharacterization of the gut bacterial microbiome of the critically endangered Orinoco Crocodile (Crocodylus intermedius), present in the largest ex situ population at the Roberto Franco Tropical Biology Station (EBTRF) in Villavicencio, Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144075975.2023.pdf
Tamaño:
1.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: