Caracterización del microbioma bacteriano intestinal del críticamente amenazado Cocodrilo del Orinoco (Crocodylus intermedius) presente en la mayor población ex situ en la Estación de Biología Tropical Roberto Franco (EBTRF) en Villavicencio, Colombia
| dc.contributor.advisor | Vargas Ramírez, Mario | |
| dc.contributor.author | Polanco Rodríguez, María Camila | |
| dc.contributor.subjectmatterexpert | Gómez Nieto, Diego | |
| dc.coverage.country | Colombia | |
| dc.date.accessioned | 2024-02-01T16:09:27Z | |
| dc.date.available | 2024-02-01T16:09:27Z | |
| dc.date.issued | 2023 | |
| dc.description | ilustraciones, diagramas, mapa | spa |
| dc.description.abstract | El Cocodrilo del Orinoco (Crocodylus intermedius) es un reptil endémico de zonas bajas de la cuenca del río Orinoco. Actualmente la especie enfrenta serias amenazas para su supervivencia, por lo cual es necesario un plan de conservación integral que incluya programas modernos como el mantenimiento de un microbioma saludable, lo cual puede mejorar su mantenimiento, reproducción y liberación. Este estudio tuvo como objetivo caracterizar la microbiota bacteriana de las heces de C. intermedius, mantenidos en la mayor población ex-situ colombiana (EBTRF, Villavicencio, Meta) y comparar las poblaciones bacterianas entre cocodrilos juveniles y adultos. Se realizó la secuenciación del gen rRNA 16S de 24 muestras de materia fecal (Juveniles n=15; Adultos n=9), utilizando el equipo Illumina MiSeq (2×250 bp). Los resultados indican que la microbiota fecal de está predominada por Firmicutes, seguido por Bacteroidetes y Proteobacterias. Los índices de medición de Alfa diversidad y la estructura bacteriana no tuvieron una diferencia significativa entre los Juveniles y Adultos, sin embargo, el membership de las poblaciones bacterianas difirió significativamente entre los grupos. La composición de la microbiota fecal de ambos estuvo fuertemente predominada por Firmicutes y Bacteroidetes, distribución que se ha relacionado con enfermedades como la obesidad y desórdenes endocrinos. A pesar de que investigaciones previas han reportado bacterias patógenas en la microbiota fecal, los reptiles poseen un fuerte sistema inmunológico que podría conferir una mayor resistencia a infecciones, cáncer y senescencia. Esta investigación presenta una herramienta para la conservación del Cocodrilo del Orinoco y amplía el conocimiento de la microbiota en reptiles. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The Orinoco Crocodile (Crocodylus intermedius) is an endemic reptile found in lowland areas of the Orinoco River basin. Currently, the species faces serious threats to its survival, demanding an all-encompassing conservation program that includes modern programs such as maintaining a healthy microbiome, which can improve its maintenance, reproduction, and release. This study aimed to characterize the bacterial microbiota of feces from C. intermedius kept in the largest ex-situ Colombian population (EBTRF, Villavicencio, Meta) and compare the bacterial populations between juvenile and adult crocodiles. The 16S rRNA gene sequencing was performed on 24 fecal samples (Juveniles n=15; Adults n=9), using the Illumina MiSeq platform (2×250 bp). The results indicate that the fecal microbiota is predominantly composed of Firmicutes, followed by Bacteroidetes and Proteobacteria in both groups. Alpha diversity and bacterial structure measurements did not show significant differences between juveniles and adults; however, the membership of bacterial populations differed significantly between the groups. The majority presence of Firmicutes and Bacteroidetes have been associated with diseases such as obesity and endocrine disorders in reptiles. Despite previous reports of pathogenic bacteria in the fecal microbiota, reptiles possess a robust immune system that may confer greater resistance to infections, cancer, and senescence. This research provides a tool for the conservation of the Orinoco Crocodile and expands our understanding of reptilian fecal microbiota. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
| dc.format.extent | xv, 62 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85587 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
| dc.relation.references | Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. https://doi.org/10.1038/nature09944 | spa |
| dc.relation.references | Abdelrhman, K. F. A., Bacci, G., Mancusi, C., Mengoni, A., Serena, F., & Ugolini, A. (2016). A First Insight Into the Gut Microbiota of the Sea Turtle Caretta caretta. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01060 | spa |
| dc.relation.references | Ainsworth, T. D., Krause, L., Bridge, T., Torda, G., Raina, J.-B., Zakrzewski, M., Gates, R. D., Padilla-Gamiño, J. L., Spalding, H. L., Smith, C., Woolsey, E. S., Bourne, D. G., Bongaerts, P., Hoegh-Guldberg, O., & Leggat, W. (2015). The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME Journal, 9(10), 2261-2274. https://doi.org/10.1038/ismej.2015.39 | spa |
| dc.relation.references | Alduina, R., Gambino, D., Presentato, A., Gentile, A., Sucato, A., Savoca, D., Filippello, S., Visconti, G., Caracappa, G., Vicari, D., & Arculeo, M. (2020). Is Caretta caretta a carrier of antibiotic resistance in the Mediterranean Sea? Antibiotics, 9(3), 116. https://doi.org/10.3390/antibiotics9030116 | spa |
| dc.relation.references | Balaguera-Reina, S.A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M. & Seijas, A. (2018). Crocodylus intermedius. The IUCN Red List of Threatened Species 2018: e.T5661A3044743. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T5661A3044743.en. Downloaded on 10 November 2020 | spa |
| dc.relation.references | Bjorndal, K. A., Parsons, J., Mustin, W., & Bolten, A. B. (2013). Threshold to maturity in a long-lived reptile: Interactions of age, size, and growth. Marine Biology, 160(3), 607-616. https://doi.org/10.1007/s00227-012-2116-1 | spa |
| dc.relation.references | Bolton, M. (1982). CROCODILES AS FARM ANIMALS. Assistance to the Crocodile Skin Industry; FAO. https://www.fao.org/3/T0226E/t0226e00.htm#cont | spa |
| dc.relation.references | Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303 | spa |
| dc.relation.references | Carvajal-Restrepo, H., Sánchez-Jiménez, M. M., Diaz-Rodríguez, S., & Cardona-Castro, N. (2017). Detection of Salmonella human carriers in Colombian outbreak areas. The Journal of Infection in Developing Countries, 11(03), 228–233. https://doi.org/10.3855/jidc.8023 | spa |
| dc.relation.references | Castañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325 | spa |
| dc.relation.references | CDC (Centers for Disease Control and Prevention). (2008). Multistate outbreak of human salmonella infections associated with exposure to turtles—United states, 2007-2008. MMWR Morb Mortal Wkly Rep, 299(16), 1892. https://doi.org/10.1001/jama.299.16.1892 | spa |
| dc.relation.references | Chang, F., He, S., & Dang, C. (2022). Assisted selection of biomarkers by linear discriminant analysis effect size (Lefse) in microbiome data. Journal of Visualized Experiments, 183, 61715. https://doi.org/10.3791/61715 | spa |
| dc.relation.references | Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270. | spa |
| dc.relation.references | Choi, S.-Y., Choi, B.-H., Cha, J.-H., Lim, Y.-J., Sheet, S., Song, M.-J., Ko, M.-J., Kim, N.-Y., Kim, J.-S., Lee, S.-J., Oh, S.-I., & Park, W.-C. (2022). Insight into the fecal microbiota signature associated with growth specificity in korean jindo using 16s rrna sequencing. Animals, 12(19), 2499. https://doi.org/10.3390/ani12192499 | spa |
| dc.relation.references | Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(Database issue), D633-D642. https://doi.org/10.1093/nar/gkt1244 | spa |
| dc.relation.references | Costa, M. C., & Weese, J. S. (2018). Understanding the intestinal microbiome in health and disease. Veterinary Clinics of North America: Equine Practice, 34(1), 1-12. https://doi.org/10.1016/j.cveq.2017.11.005 | spa |
| dc.relation.references | Costa, M., & Weese, J. S. (2019). Methods and basic concepts for microbiota assessment. The Veterinary Journal, 249, 10-15. https://doi.org/10.1016/j.tvjl.2019.05.005 | spa |
| dc.relation.references | Costello, E. K., Gordon, J. I., Secor, S. M., & Knight, R. (2010). Postprandial remodeling of the gut microbiota in Burmese pythons. The ISME Journal, 4(11), 1375–1385. https://doi.org/10.1038/ismej.2010.71 | spa |
| dc.relation.references | Coyte, K. Z., Rao, C., Rakoff-Nahoum, S., & Foster, K. R. (2021). Ecological rules for the assembly of microbiome communities. PLOS Biology, 19(2), e3001116. https://doi.org/10.1371/journal.pbio.3001116 | spa |
| dc.relation.references | Donoghue, S., & McKeown, S. (1999). Nutrition of captive reptiles. Veterinary Clinics of North America: Exotic Animal Practice, 2(1), 69-91. https://doi.org/10.1016/S1094-9194(17)30140-8 | spa |
| dc.relation.references | Gomez DE, Li L, Goetz H, MacNicol J, Gamsjaeger L, Renaud DL. Calf diarrhea is associated with a shift from obligated to facultative anaerobes and expansion of lactate-producing bacteria. Front Vet Sci. 2022;9:846383 | spa |
| dc.relation.references | Hansen, A. K., Hansen, C. H. F., Krych, L., & Nielsen, D. S. (2014). Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 20(47), 17727–17736. https://doi.org/10.3748/wjg.v20.i47.17727 | spa |
| dc.relation.references | Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Global Rumen Census Collaborators, Abecia, L., Angarita, E., Aravena, P., Nora Arenas, G., Ariza, C., Attwood, G. T., Mauricio Avila, J., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., … Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5(1), 14567. https://doi.org/10.1038/srep14567 | spa |
| dc.relation.references | Hoelzer, K., Moreno Switt, A., & Wiedmann, M. (2011). Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research, 42(1), 34. https://doi.org/10.1186/1297-9716-42-34 | spa |
| dc.relation.references | Holmes I, Harris K, Quince C (2012) Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics. PLoS ONE 7(2): e30126. https://doi.org/10.1371/journal.pone.0030126 | spa |
| dc.relation.references | Hong, P.-Y., Wheeler, E., Cann, I. K. O., & Mackie, R. I. (2011). Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. The ISME Journal, 5(9), 1461-1470. https://doi.org/10.1038/ismej.2011.33 | spa |
| dc.relation.references | Jaccard P. Nouvelles recherches sur la distribution florale. Nature. 1908;44:223–70. | spa |
| dc.relation.references | Jeffree, R. A., Markich, S. J., & Tucker, A. D. (2005). Patterns of metal accumulation in osteoderms of the Australian freshwater crocodile, Crocodylus johnstoni. Science of The Total Environment, 336(1-3), 71-80. https://doi.org/10.1016/j.scitotenv.2004.05.021 | spa |
| dc.relation.references | Jiménez, R. R., & Sommer, S. (2017). The amphibian microbiome: Natural range of variation, pathogenic dysbiosis, and role in conservation. Biodiversity and Conservation, 26(4), 763-786. https://doi.org/10.1007/s10531-016-1272-x | spa |
| dc.relation.references | Kapa hifi hotstart readymix. (s. f.). Roche Sequencing Store. Recuperado 17 de julio de 2023, de https://rochesequencingstore.com/catalog/kapa-hifi-hotstart-readymix/ | spa |
| dc.relation.references | Keenan, S. W., & Elsey, R. M. (2015). The good, the bad, and the unknown: Microbial symbioses of the American Alligator. Integrative and Comparative Biology, 55(6), 972–985. https://doi.org/10.1093/icb/icv006 | spa |
| dc.relation.references | Keenan, S. W., Engel, A. S., & Elsey, R. M. (2013). The alligator gut microbiome and implications for archosaur symbioses. Scientific Reports, 3(1), 2877. https://doi.org/10.1038/srep02877 | spa |
| dc.relation.references | Kohl, K. D., Brun, A., Magallanes, M., Brinkerhoff, J., Laspiur, A., Acosta, J. C., Caviedes-Vidal, E., & Bordenstein, S. R. (2017). Gut microbial ecology of lizards: Insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Molecular Ecology, 26(4), 1175–1189. https://doi.org/10.1111/mec.13921 | spa |
| dc.relation.references | Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. | spa |
| dc.relation.references | Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., & Knight, R. (2012). Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 13(1), 47-58. https://doi.org/10.1038/nrg3129 | spa |
| dc.relation.references | Laborda, P., Sanz-García, F., Ochoa-Sánchez, L. E., Gil-Gil, T., Hernando-Amado, S., & Martínez, J. L. (2022). Wildlife and antibiotic resistance. Frontiers in Cellular and Infection Microbiology, 12, 873989. https://doi.org/10.3389/fcimb.2022.873989 | spa |
| dc.relation.references | Lance, V. A., Morici, L. A., Elsey, R. M., Lund, E. D., & Place, A. R. (2001). Hyperlipidemia and reproductive failure in captive-reared alligators: Vitamin E, vitamin A, plasma lipids, fatty acids, and steroid hormones. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 128(2), 285-294. https://doi.org/10.1016/S1096-4959(00)00321-3 | spa |
| dc.relation.references | Lee, S. H., Lee, H., You, H. S., Sung, H., & Hyun, S. H. (2023). Metabolic pathway prediction of core microbiome based on enterotype and orotype. Frontiers in Cellular and Infection Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fcimb.2023.1173085 | spa |
| dc.relation.references | Li, P., Ma, X., Liu, D., Wei, Y., Li, P., Hou, H., Yao, J., Chen, A., Liang, Y., Zhou, Z., & Wang, P. (2022). A microbiome abundant environment remodels the intestinal microbiota and improves resistance to obesity induced by chlorpyrifos in mice. Environmental Pollution, 315, 120415. https://doi.org/10.1016/j.envpol.2022.120415 | spa |
| dc.relation.references | Mag-bind® rxnpure plus | Omega Bio-Tek. (s. f.). Recuperado 17 de julio de 2023, de https://www.omegabiotek.com/product/mag-bind-rxnpure-plus/ | spa |
| dc.relation.references | Merchant, M., & Britton, A. (2006). Characterization of serum complement activity of saltwater (Crocodylus porosus) and freshwater (Crocodylus johnstoni) crocodiles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(4), 488-493. https://doi.org/10.1016/j.cbpa.2006.01.009 | spa |
| dc.relation.references | McDermid, K. J., Kittle, R. P., Veillet, A., Plouviez, S., Muehlstein, L., & Balazs, G. H. (2020). Identification of Gastrointestinal Microbiota in Hawaiian Green Turtles (Chelonia mydas). Evolutionary Bioinformatics, 16, 117693432091460. https://doi.org/10.1177/1176934320914603 | spa |
| dc.relation.references | Mshelia, E. S., Adamu, L., Wakil, Y., Turaki, U. A., Gulani, I. A., & Musa, J. (2018). The association between gut microbiome, sex, age and body condition scores of horses in Maiduguri and its environs. Microbial Pathogenesis, 118, 81-86. https://doi.org/10.1016/j.micpath.2018.03.018 | spa |
| dc.relation.references | Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. | spa |
| dc.relation.references | Morales-Betancourt, M. A., C., Lasso A., J. De La Ossa V. & Fajardo-Patiño A. (Editores). (2013). VIII. Biología y conservación de los Crocodylia de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia, 336 pp | spa |
| dc.relation.references | NanoDrop™ 2000/2000c Spectrophotometers. (s. f.). Recuperado 17 de julio de 2023, de https://www.thermofisher.com/order/catalog/product/ND-2000C | spa |
| dc.relation.references | Oonincx, D., & Van Leeuwen, J. (2017). Evidence-based reptile housing and nutrition. Veterinary Clinics of North America: Exotic Animal Practice, 20(3), 885-898. https://doi.org/10.1016/j.cvex.2017.04.004 | spa |
| dc.relation.references | Ottman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104 | spa |
| dc.relation.references | Pawlak, A., Morka, K., Bury, S., Antoniewicz, Z., Wzorek, A., Cieniuch, G., Korzeniowska-Kowal, A., Cichoń, M., & Bugla-Płoskońska, G. (2020). Cloacal gram-negative microbiota in free-living grass snake Natrix natrix from Poland. Current Microbiology. https://doi.org/10.1007/s00284-020-02021-3 | spa |
| dc.relation.references | Qiagen (2020) DNeasy Blood and Tissue Kit. https://www.qiagen.com/us/shop/pcr/dneasy-blood-and-tissue-kit/#orderinginformation | spa |
| dc.relation.references | Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. https://doi.org/10.1093/nar/gks1219 | spa |
| dc.relation.references | Ramey, A. M., & Ahlstrom, C. A. (2020). Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. Journal of Wildlife Diseases, 56(1), 1. https://doi.org/10.7589/2019-04-099 | spa |
| dc.relation.references | Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584 | spa |
| dc.relation.references | Romão, M. F., Santos, A. L. Q., Lima, F. C., De Simone, S. S., Silva, J. M. M., Hirano, L. Q., Vieira, L. G., & Pinto, J. G. S. (2011). Anatomical and topographical description of the digestive system of Caiman crocodilus (Linnaeus 1758), Melanosuchus niger (Spix 1825) and Paleosuchus palpebrosus (Cuvier 1807). International Journal of Morphology, 29(1), 94-99. https://doi.org/10.4067/S0717-95022011000100016 | spa |
| dc.relation.references | Ruzauskas, M., Misyte, S., Vaskeviciute, L., Mikniene, Z., Siugzdiniene, R., Klimiene, I., Pikuniene, A., & Kucinskiene, J. (2016). Gut microbiota isolated from the European pond turtle (Emys orbicularis) and its antimicrobial resistance. Polish Journal of Veterinary Sciences, 19(4), 723–730. https://doi.org/10.1515/pjvs-2016-0091 | spa |
| dc.relation.references | Saldarriaga-Gómez, A. M., Ardila-Robayo, M. C., Medem, F., & Vargas-Ramírez, M. (2023). Hope is the last thing lost: Colombian captive-bred population of the critically endangered Orinoco crocodile (Crocodylus intermedius) is a genetic reservoir that could help to save the species from extinction. Nature Conservation, 53, 85-103. https://doi.org/10.3897/natureconservation.53.104000 | spa |
| dc.relation.references | Schneider, G. (2005). Dictionary of bioinformatics and computational biology. Edited by john m. Hancock and marketa j. Zvelebil. ChemBioChem, 6(7), 1287-1287. https://doi.org/10.1002/cbic.200500190 | spa |
| dc.relation.references | Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 | spa |
| dc.relation.references | Scheelings, T. F. (2020). Geriatric reptiles and amphibians. Veterinary Clinics of North America: Exotic Animal Practice, 23(3), 485-502. https://doi.org/10.1016/j.cvex.2020.05.004 | spa |
| dc.relation.references | Scheelings, T. F., Moore, R. J., Van, T. T. H., Klaassen, M., & Reina, R. D. (2020). No correlation between microbiota composition and blood parameters in nesting Flatback turtles (Natator depressus). Scientific Reports, 10(1), 8333. https://doi.org/10.1038/s41598-020-65321-5 | spa |
| dc.relation.references | Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/AEM.01541-09 | spa |
| dc.relation.references | Schmidt, V., Mock, R., Burgkhardt, E., Junghanns, A., Ortlieb, F., Szabo, I., Marschang, R., Blindow, I., & Krautwald-Junghanns, M.-E. (2014). Cloacal aerobic bacterial flora and absence of viruses in free-living slow worms (Anguis fragilis), grass snakes (Natrix natrix) and european adders (Vipera berus) from Germany. EcoHealth, 11(4), 571–580. https://doi.org/10.1007/s10393-014-0947-6 | spa |
| dc.relation.references | Sha, J. C. M., Ismail, R., Marlena, D., & Lee, J. L. (2016). Environmental complexity and feeding enrichment can mitigate effects of space constraints in captive callitrichids. Laboratory Animals, 50(2), 137-144. https://doi.org/10.1177/0023677215589258 | spa |
| dc.relation.references | Shaharabany, M. (1999). Naturally occurring antibacterial activities of avian and crocodile tissues. Journal of Antimicrobial Chemotherapy, 44(3), 416-418. https://doi.org/10.1093/jac/44.3.416 | spa |
| dc.relation.references | Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | spa |
| dc.relation.references | Shade, A., & Handelsman, J. (2012). Beyond the Venn diagram: The hunt for a core microbiome: The hunt for a core microbiome. Environmental Microbiology, 14(1), 4-12. https://doi.org/10.1111/j.1462-2920.2011.02585.x | spa |
| dc.relation.references | Shafquat, A., Joice, R., Simmons, S. L., & Huttenhower, C. (2014). Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends in Microbiology, 22(5), 261-266. https://doi.org/10.1016/j.tim.2014.01.011 | spa |
| dc.relation.references | Siddiqui, R., Maciver, S. K., & Khan, N. A. (2022). Gut microbiome–immune system interaction in reptiles. Journal of Applied Microbiology, 132(4), 2558-2571. https://doi.org/10.1111/jam.15438 | spa |
| dc.relation.references | Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688-688. https://doi.org/10.1038/163688a0 | spa |
| dc.relation.references | Singh, S., Sharma, P., Sarma, D. K., Kumawat, M., Tiwari, R., Verma, V., Nagpal, R., & Kumar, M. (2023). Implication of obesity and gut microbiome dysbiosis in the etiology of colorectal cancer. Cancers, 15(6), 1913. https://doi.org/10.3390/cancers15061913 | spa |
| dc.relation.references | Van Meervenne, E., Botteldoorn, N., Lokietek, S., Vatlet, M., Cupa, A., Naranjo, M., Dierick, K., & Bertrand, S. (2009). Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. Journal of Medical Microbiology, 58(10), 1379–1381. https://doi.org/10.1099/jmm.0.012146-0 | spa |
| dc.relation.references | Vicino, G. A., Sheftel, J. J., & Radosevich, L. M. (2022). Enrichment is simple, that’s the problem: Using outcome-based husbandry to shift from enrichment to experience. Animals, 12(10), 1293. https://doi.org/10.3390/ani12101293 | spa |
| dc.relation.references | Vitt, L. J., & Caldwell, J. P. (2013). Herpetology: An introductory biology of amphibians and reptiles (Fourth edition). Elsevier, AP, Academic Press is an imprint of Elsevier. | spa |
| dc.relation.references | West, A. G., Waite, D. W., Deines, P., Bourne, D. G., Digby, A., McKenzie, V. J., & Taylor, M. W. (2019). The microbiome in threatened species conservation. Biological Conservation, 229, 85–98. https://doi.org/10.1016/j.biocon.2018.11.016 | spa |
| dc.relation.references | Yue JC, Clayton MK. A Similarity Measure Based on Species Proportions. Commun Stat Methods. 2005;34(11):2123–31. | spa |
| dc.relation.references | Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), 723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x | spa |
| dc.relation.references | Zhang, Y., Qi, X., Zhang, Z., Jin, Z., Wang, G., & Ling, F. (2023). Effects of dietary Cetobacterium somerae on the intestinal health, immune parameters and resistance against Nocardia seriolae of largemouth bass, Micropterus salmoides. Fish & Shellfish Immunology, 135, 108693. https://doi.org/10.1016/j.fsi.2023.108693 | spa |
| dc.relation.references | Zhao, Y., Li, S., Lessing, D. J., Guo, L., & Chu, W. (2023). Characterization of Cetobacterium somerae CPU-CS01 isolated from the intestine of healthy crucian carp (Carassius auratus) as potential probiotics against Aeromonas hydrophila infection. Microbial Pathogenesis, 180, 106148. https://doi.org/10.1016/j.micpath.2023.106148 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
| dc.subject.ddc | 590 - Animales::597 - Vertebrados de sangre fría | spa |
| dc.subject.lcc | Flora intestinal | spa |
| dc.subject.lcc | Intestines-Microbiology | eng |
| dc.subject.lemb | Flora microbiana | spa |
| dc.subject.lemb | Microbial flora | eng |
| dc.subject.lemb | Cocodrilos | spa |
| dc.subject.lemb | Crocodylidae | eng |
| dc.subject.proposal | Microbiota | spa |
| dc.subject.proposal | Crocodile | eng |
| dc.subject.proposal | Feces | eng |
| dc.subject.proposal | Gut | eng |
| dc.subject.proposal | Crocodylus intermedius | eng |
| dc.subject.proposal | Cocodrilos | spa |
| dc.subject.proposal | Heces | spa |
| dc.subject.proposal | Reptiles | spa |
| dc.subject.wikidata | Microbiota | spa |
| dc.title | Caracterización del microbioma bacteriano intestinal del críticamente amenazado Cocodrilo del Orinoco (Crocodylus intermedius) presente en la mayor población ex situ en la Estación de Biología Tropical Roberto Franco (EBTRF) en Villavicencio, Colombia | spa |
| dc.title.translated | Characterization of the gut bacterial microbiome of the critically endangered Orinoco Crocodile (Crocodylus intermedius), present in the largest ex situ population at the Roberto Franco Tropical Biology Station (EBTRF) in Villavicencio, Colombia | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1144075975.2023.pdf
- Tamaño:
- 1.33 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

