Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial

dc.contributor.advisorMúnera Galarza, Francisco Alejandrospa
dc.contributor.authorMartínez Porras, Alejandra Lucíaspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Alejandra_Lucia_Martinez_Porrasspa
dc.date.accessioned2024-05-29T23:05:17Z
dc.date.available2024-05-29T23:05:17Z
dc.date.issued2024-05-11
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEstudiar la integración de la información sensorial y motora es fundamental para comprender cómo logramos coordinar y planear nuestros movimientos con exactitud y ejecutarlos acorde a lo que percibimos del mundo exterior y de nuestro propio cuerpo. Debido a la complejidad de los circuitos involucrados y lo invasivo que puede ser estudiarlos en humanos, el uso de modelos animales resulta fundamental. Un sistema sensoriomotor ampliamente utilizado es el las vibrisas en roedores, debido a las facilidades que brinda para estudiar la integración de información sensorial y motora, la plasticidad sináptica dependiente de experiencia e inducida experimentalmente y el aprendizaje motor. Este sistema es de suma importancia ecológica para los roedores y está formado por estructuras subcorticales y corticales ampliamente interconectadas. Las proyecciones comisurales de la corteza motora primaria de las vibrisas (vM1) a la corteza homotópica contralateral son fundamentales para la sincronización bilateral del batido de las vibrisas. Sin embargo, no hay estudios previos sobre la participación de las conexiones comisurales en el procesamiento somatosensorial en vM1. Por esto, en esta tesis se estudió la participación de las conexiones comisurales en los potenciales provocados en vM1 por estimulación eléctrica del parche de vibrisas; para ello, se compararon las respuestas provocadas en vM1i y vM1d por estimulación en el parche de vibrisas izquierdo (WPi) antes y después de inactivar transitoriamente vM1i mediante una inyección de lidocaína al 2\% (LIDO2) o al 5\% (LIDO5). La lidocaína inyectada en vM1i afectó de manera concentración-dependiente el funcionamiento de vM1 ipsilateral y contralateral. Con LIDO2 disminuyó la respuesta cortical ipsilateral hasta los 20 minutos y aumentó de forma sostenida hasta los 140 min en la contralateral; con LIDO5 disminuyó la respuesta en vM1i de forma sostenida hasta los 140 minutos, mientras que en vM1d aumentó inicialmente y luego disminuyó entre los 80 y 140 minutos. En términos de la respuesta al segundo de un par de pulsos: 1) con IIE de 50 ms, LIDO5 desfacilitó la respuesta en vM1i y vM1d, mientras que LIDO2 solo la desfacilitó inicialmente en vM1d; 2) con IIE de 200 ms, LIDO2 desfacilitó de forma continua la respuesta en vM1i, pero sólo transitoriamente en vM1d; y, 3) con IIE de 400 ms, LIDO2 desfacilitó tardíamente la respuesta en ambas cortezas. Las inyecciones de LIDO2 y LIDO5 en vM1i afectaron la actividad neuronal oscilatoria en ambas cortezas, alterando la potencia espectral y la organización temporal en distintas bandas de frecuencia, tanto en la actividad espontánea como en la provocada por estimulación en el parche de vibrisas izquierdo. En conclusión, la inyección intracortical de lidocaína modifica la actividad del circuito no sólo en la corteza inyectada, sino también en la contralateral; este efecto varía en función de la dosis indicando que la interacción comisural en vM1 tiene un carácter dual, inhibidor y excitador, con capacidad para modular el procesamiento sensorial en el circuito de vM1. Además, las modificaciones dependientes de la dosis en la potencia espectral y la organización temporal de la actividad oscilatoria en diferentes bandas de frecuencia sugieren que tales oscilaciones dependen de diferentes poblaciones de interneuronas inhibidoras con diferentes sensibilidades ante la lidocaína. (Texto tomado de la fuente).spa
dc.description.abstractStudying the integration of sensory and motor information is essential to understanding how we coordinate and plan our movements accurately and execute them according to what we perceive from the outside world and our own body. Due to the complexity of the circuits involved and the invasiveness of studying them in humans, the use of animal models is crucial. A widely used sensorimotor system is the whisker system in rodents, which offers advantages for studying the integration of sensory and motor information, experience-dependent and experimentally induced synaptic plasticity, and motor learning. This system is of significant ecological importance for rodents and is composed of extensively interconnected subcortical and cortical structures. Commissural projections from the primary motor cortex of the whiskers (vM1) to the contralateral homotopic cortex are fundamental for the bilateral synchronization of whisker movements. However, there are no previous studies on the role of commissural connections in somatosensory processing in vM1. Therefore, this thesis studied the role of commissural connections in the potentials evoked in vM1 by electrical stimulation of the whisker pad. The evoked responses in ipsilateral (vM1i) and contralateral (vM1d) vM1 by stimulation of the left whisker pad (WPi) were compared before and after transiently inactivating vM1i with a 2 % (LIDO2) or 5 % (LIDO5) lidocaine injection. Lidocaine injected into vM1i affected the functioning of both ipsilateral and contralateral vM1 in a concentration-dependent manner. With LIDO2, the ipsilateral cortical response decreased up to 20 minutes and then increased steadily up to 140 minutes in the contralateral cortex; with LIDO5, the response in vM1i decreased consistently up to 140 minutes, while in vM1d it initially increased and then decreased between 80 and 140 minutes. Regarding the response to the second of a pair of pulses, with an inter-interval of 50 ms, LIDO5 decreased the facilitation of the response in vM1i and vM1d, while LIDO2 only initially decreased the facilitation in vM1d. With an inter-interval of 200 ms, LIDO2 continuously decreased the facilitation in vM1i, but only transiently in vM1d. With an inter-interval of 400 ms, LIDO2 decreased the facilitation in both cortices at a later time. LIDO2 and LIDO5 injections in vM1i affected neuronal oscillatory activity in both cortices, altering the spectral power and temporal organization in different frequency bands, in both spontaneous and whisker pad stimulation-induced activity. In conclusion, intracortical lidocaine injection modifies circuit activity not only in the injected cortex but also in the contralateral cortex; this effect varies depending on the dose, indicating that commissural interaction in vM1 has a dual inhibitory and excitatory nature, with the ability to modulate sensory processing in the vM1 circuit. Additionally, dose-dependent modifications in spectral power and the temporal organization of oscillatory activity in different frequency bands suggest that such oscillations depend on different populations of inhibitory interneurons with varying sensitivities to lidocaine.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Neurocienciasspa
dc.description.researchareaNeurofisiología comportamentalspa
dc.format.extent123 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86185
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Neurocienciasspa
dc.relation.indexedBiremespa
dc.relation.referencesAboitiz, F. and Montiel, J. (2003). One hundred million years of interhemispheric communication: the history of the corpus callosum. Brazilian journal of medical and biological research, 36:409–420.spa
dc.relation.referencesAhissar, E. (2008). And motion changes it all. Nature neuroscience, 11(12):1369–1370.spa
dc.relation.referencesAn, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020a). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.spa
dc.relation.referencesAn, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020b). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.spa
dc.relation.referencesAntonoudiou, P., Tan, Y. L., Kontou, G., Upton, A. L., and Mann, E. O. (2019). Complementary roles for parvalbumin and somatostatin interneurons in the generation of hippocampal gamma oscillations. bioRxiv, page 595546.spa
dc.relation.referencesAroniadou, V. A. and Keller, A. (1995). Mechanisms of ltp induction in rat motor cortex in vitro. Cerebral Cortex, 5(4):353–362.spa
dc.relation.referencesAxelson, H. W., Winkler, T., Flygt, J., Djupsj¨o, A., H˚anell, A., and Marklund, N. (2013). Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative neurology and neuroscience, 31(1):73–85.spa
dc.relation.referencesBachiller, A., Gomez-Pilar, J., Poza, J., N´u˜nez, P., G´omez, C., Lubeiro, A., Molina, V., and Hornero, R. (2017). Event-related phase-amplitude coupling: A comparative study. In Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), October 18-21, 2016, Segovia, Spain, pages 757–761. Springer.spa
dc.relation.referencesBailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 1(1):11–20.spa
dc.relation.referencesBalakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006). In silico approaches to prediction of aqueous and dmso solubility of drug-like compounds: Trends, problems and solutions. Current Medicinal Chemistry.spa
dc.relation.referencesBaranyi, A. and Feh´er, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Experimental brain research, 33(2):283–298.spa
dc.relation.referencesBasu, K., Appukuttan, S., Manchanda, R., and Sik, A. (2023). Difference in axon diameter and myelin thickness between excitatory and inhibitory callosally projecting axons in mice. Cerebral Cortex, 33(7):4101–4115.spa
dc.relation.referencesBenamer, N., Vidal, M., Balia, M., and Angulo, M. (2020). Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. nat. commun. 11, 5151.spa
dc.relation.referencesBiane, J. S., Takashima, Y., Scanziani, M., Conner, J. M., and Tuszynski, M. H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron, 89(6):1173–1179.spa
dc.relation.referencesBonnefond, M. and Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PloS one, 10(6):e0128667.spa
dc.relation.referencesBosman, L. W., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H., Ju, C., Gong, W., Koekkoek, S. K., et al. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in integrativespa
dc.relation.referencesBreshears, J., Sharma, M., Anderson, N., Rashid, S., and Leuthardt, E. C. (2010). Electrocorticographic frequency alteration mapping of speech cortex during an awake craniotomy: case report. Stereotactic and Functional Neurosurgery, 88(1):11–15.spa
dc.relation.referencesBrus-Ramer, M., Carmel, J. B., and Martin, J. H. (2009). Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. Journal of Neuroscience, 29(19):6196–6206.spa
dc.relation.referencesBuzs´aki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience, 13(6):407–420.spa
dc.relation.referencesBuzs´aki, G. and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35:203–225.spa
dc.relation.referencesCarson, R. G. (2020). Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. The Journal of Physiology, 598(21):4781–4802.spa
dc.relation.referencesCastro-Alamancos, M. A. (2013). The motor cortex: a network tuned to 7-14 hz. Frontiers in neural circuits, 7:21.spa
dc.relation.referencesCharan, J. and Kantharia, N. (2013). How to calculate sample size in animal studies? Journal of pharmacology & pharmacotherapeutics, 4(4):303.spa
dc.relation.referencesChen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H. W., Rasch, M. J., and Zhang, X. (2017). Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96(6):1403–1418.spa
dc.relation.referencesChistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M. (2014). Heterosynaptic plasticity: multiple mechanisms and multiple roles. The Neuroscientist, 20(5):483–498.spa
dc.relation.referencesChung, J. W., Ofori, E., Misra, G., Hess, C. W., and Vaillancourt, D. E. (2017). Betaband activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage, 144:164–173.spa
dc.relation.referencesCicinelli, P., Traversa, R., Oliveri, M., Palmieri, M. G., Filippi, M. M., Pasqualetti, P., and Rossini, P. M. (2000). Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neuroscience letters, 288(3):171–174.spa
dc.relation.referencesCitri, A. and Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1):18–41.spa
dc.relation.referencesDavid-J¨urgens, M. and Dinse, H. R. (2010). Effects of aging on paired-pulse behavior of rat somatosensory cortical neurons. Cerebral Cortex, 20(5):1208–1216.spa
dc.relation.referencesDib-Hajj, S. D., Cummins, T. R., Black, J. A., andWaxman, S. G. (2010). Sodium channels in normal and pathological pain. Annual Review of Neuroscience.spa
dc.relation.referencesDina, L. (2017). Roger sperry’s split brain experiments. Embryo Project Encyclopedia, 27spa
dc.relation.referencesDiwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under ltp and ltd control. PloS one, 6(7):e21928.spa
dc.relation.referencesDoesburg, S. M., Ibrahim, G. M., Smith, M. L., Sharma, R., Viljoen, A., Chu, B., Rutka, J. T., Snead III, O. C., and Pang, E. W. (2013). Altered rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 8(1):e54943.spa
dc.relation.referencesDooley, J. C., Glanz, R. M., Sokoloff, G., and Blumberg, M. S. (2020). Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex.spa
dc.relation.referencesDorst, M. C., Tokarska, A., Zhou, M., Lee, K., Stagkourakis, S., Broberger, C., Masmanidis, S., and Silberberg, G. (2020). Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nature Communications, 11(1):5113.spa
dc.relation.referencesEbbesen, C. L. and Brecht, M. (2017). Motor cortex—to act or not to act? Nature Reviews Neuroscience, 18(11):694–705.spa
dc.relation.referencesEbbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017a). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.spa
dc.relation.referencesEbbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017b). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.spa
dc.relation.referencesEconomo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L. T., Nguyen, T. N., Smith, K. A., Yao, Z., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729):79–84.spa
dc.relation.referencesEstebanez, L., Hoffmann, D., Voigt, B. C., and Poulet, J. F. (2017). Parvalbuminexpressing gabaergic neurons in primary motor cortex signal reaching. Cell reports, 20(2):308– 318.spa
dc.relation.referencesFalandysz, J., Medyk, M., and Treu, R. (2018). Bio-concentration potential and associations of heavy metals in amanita muscaria (l.) lam. from northern regions of poland. Environmental Science and Pollution Research, 25:25190–25206.spa
dc.relation.referencesFeurra, M., Bianco, G., Santarnecchi, E., Del Testa, M., Rossi, A., and Rossi, S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. Journal of Neuroscience, 31(34):12165–12170.spa
dc.relation.referencesFries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience, 32:209–224.spa
dc.relation.referencesFunken, M., Malan, D., Sasse, P., and Bruegmann, T. (2019). Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Frontiers in physiology, 10:498.spa
dc.relation.referencesF´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., and Petersen, C. C. H. (2007a). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.spa
dc.relation.referencesF´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R.,Weber, B., and Petersen, C. C. H. (2007b). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.spa
dc.relation.referencesGaetz, W., Edgar, J. C., Wang, D., and Roberts, T. P. (2011). Relating meg measured motor cortical oscillations to resting γ-aminobutyric acid (gaba) concentration. Neuroimage, 55(2):616–621.spa
dc.relation.referencesGao, L., Wu, H., Cheng, W., Lan, B., Ren, H., Zhang, L., and Wang, L. (2021). Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force. Clinical EEG and Neuroscience, 52(6):436–443.spa
dc.relation.referencesGauthier-Uma˜na, C., Valderrama, M., M´unera, A., and Nava-Mesa, M. O. (2023). Boardftd- pacc: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1):1–17.spa
dc.relation.referencesGloor, C., Luft, A., and Hosp, J. (2015). Biphasic plasticity of dendritic fields in layer v motor neurons in response to motor learning. Neurobiology of learning and memory, 125:189– 194.spa
dc.relation.referencesGokin, A. P., Philip, B., and Strichartz, G. R. (2001). Preferential block of small myelinated sensory and motor fibers by lidocaine: In vivoelectrophysiology in the rat sciatic nerve. The Journal of the American Society of Anesthesiologists, 95(6):1441–1454.spa
dc.relation.referencesGreenough, W. T., Larson, J. R., and Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motorsensory forelimb cortex. Behavioral and neural biology, 44(2):301–314.spa
dc.relation.referencesGross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS biology, 5(5):e133.spa
dc.relation.referencesHaider, B., Duque, A., Hasenstaub, A. R., and McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17):4535–4545.spa
dc.relation.referencesHattox, A. M., Priest, C. A., and Keller, A. (2002). Functional circuitry involved in the regulation of whisker movements. Journal of Comparative Neurology, 442(3):266–276.spa
dc.relation.referencesHerreras, O. (2016). Local field potentials: myths and misunderstandings. Frontiers in neural circuits, 10:101.spa
dc.relation.referencesHess, G. (2004a). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.spa
dc.relation.referencesHess, G. (2004b). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.spa
dc.relation.referencesHess, G. and Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of neurophysiology, 71 6:2543–7.spa
dc.relation.referencesH¨offken, O., Veit, M., Knossalla, F., Lissek, S., Bliem, B., Ragert, P., Dinse, H. R., and Tegenthoff, M. (2007). Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. The Journal of Physiology, 584(2):463–471.spa
dc.relation.referencesHooks, B. M. (2017). Sensorimotor convergence in circuitry of the motor cortex. The Neuroscientist, 23(3):251–263.spa
dc.relation.referencesHooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., and Shepherd, G. M. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience, 33(2):748–760.spa
dc.relation.referencesHu, S., Liu, Y., Chen, T., Liu, Z., Yu, Q., Deng, L., Yin, Y., and Hosaka, S. (2013). Emulating the paired-pulse facilitation of a biological synapse with a niox-based memristor. Applied Physics Letters, 102(18):183510.spa
dc.relation.referencesHussain, S. J., Cohen, L. G., and B¨onstrup, M. (2019). Beta rhythm events predict corticospinal motor output. Scientific Reports, 9(1):18305.spa
dc.relation.referencesIbarra-Lecue, I., Haegens, S., and Harris, A. Z. (2022). Breaking down a rhythm: Dissecting the mechanisms underlying task-related neural oscillations. Frontiers in Neural Circuits, 16.spa
dc.relation.referencesIbrahim, G. M., Akiyama, T., Ochi, A., Otsubo, H., Smith, M. L., Taylor, M. J., Donner, E., Rutka, J. T., Snead III, O. C., and Doesburg, S. M. (2012). Disruption of rolandic gammaband functional connectivity by seizures is associated with motor impairments in children with epilepsy. PloS one, 7(6):e39326.spa
dc.relation.referencesIgarashi, J., Isomura, Y., Arai, K., Harukuni, R., and Fukai, T. (2013). A θ–γ oscillation code for neuronal coordination during motor behavior. Journal of Neuroscience, 33(47):18515– 18530.spa
dc.relation.referencesInnocenti, G. M., Vercelli, A., and Caminiti, R. (2014). The diameter of cortical axons depends both on the area of origin and target. Cerebral Cortex, 24(8):2178–2188.spa
dc.relation.referencesIriki, A., Pavlides, C., Keller, A., and Asanuma, H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. Journal of neurophysiology, 65(6):1435–1441.spa
dc.relation.referencesIshikawa, M., Otaka, M., Huang, Y. H., Neumann, P. A., Winters, B. D., Grace, A. A., Schl¨uter, O. M., and Dong, Y. (2013). Dopamine triggers heterosynaptic plasticity. Journal of Neuroscience, 33(16):6759–6765.spa
dc.relation.referencesJensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8):1395– 1399.spa
dc.relation.referencesJia, Q., Ye, C., Naskar, S., In´acio, A. R., and Lee, M. K. (2022). Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination.spa
dc.relation.referencesJones, M. W. and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS biology, 3(12):e402.spa
dc.relation.referencesJones, T. A., Chu, C. J., Grande, L. A., and Gregory, A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19(22):10153–10163.spa
dc.relation.referencesJoundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., and Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5):403–407.spa
dc.relation.referencesKaas, J. H. (2014). Mutable Brain: Dynamic and Plastic Features of the Developing and Mature Brain. CRC Press.spa
dc.relation.referencesKami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. (1995). Functional mri evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545):155–158.spa
dc.relation.referencesKarameh, F. N., Dahleh, M. A., Brown, E. N., and Massaquoi, S. G. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency eeg phenomena. Biological cybernetics, 95:289–310.spa
dc.relation.referencesKauer, J. A. and Malenka, R. C. (2006). Ltp: Ampa receptors trading places. Nature neuroscience, 9(5):593–594.spa
dc.relation.referencesKozai, T. D. Y., Jaquins-Gerstl, A., Vazquez, A. L., Michael, A. C., and Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. Acs Chemical Neuroscience.spa
dc.relation.referencesKrishnan, C. (2019). Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restorative neurology and neuroscience, 37(4):363–374.spa
dc.relation.referencesLee, C., Cˆot´e, S. L., Raman, N., Chaudhary, H., Mercado, B. C., and Chen, S. X. (2023). Whole-brain mapping of long-range inputs to the vip-expressing inhibitory neurons in the primary motor cortex. Frontiers in Neural Circuits, 17:41.spa
dc.relation.referencesLee, S.-H., Carvell, G. E., and Simons, D. J. (2008). Motor modulation of afferent somatosensory circuits. Nature Neuroscience.spa
dc.relation.referencesLi, H., Chalavi, S., Rasooli, A., Rodr´ıguez-Nieto, G., Seer, C., Mikkelsen, M., Edden, R. A., Sunaert, S., Peeters, R., Mantini, D., et al. (2023). Baseline gaba+ levels in areas associated with sensorimotor control predict initial and long-term motor learning progress. Human Brain Mapping.spa
dc.relation.referencesLind´en, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Gr¨un, S., Diesmann, M., and Einevoll, G. T. (2011). Modeling the spatial reach of the lfp. Neuron, 72(5):859–872.spa
dc.relation.referencesLudvig, N., Baptiste, S. L., Tang, H. M., Medveczky, G., Von Gizycki, H., Charchaflieh, J., Devinsky, O., and Kuzniecky, R. I. (2009). Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications. Epilepsia, 50(4):678–693.spa
dc.relation.referencesMaggiolini, E., Veronesi, C., and Franchi, G. (2007). Plastic changes in the vibrissa motor cortex in adult rats after output suppression in the homotopic cortex. European Journal of Neuroscience, 25(12):3678–3690.spa
dc.relation.referencesMajdi, S., Najafinobar, N., Dunevall, J., Lovric, J., and Ewing, A. G. (2017). Dmso chemically alters cell membranes to slow exocytosis and increase the fraction of partial transmitter released. ChemBioChem, 18(19):1898–1902.spa
dc.relation.referencesMalenka, R. C. (2003). The long-term potential of ltp. Nature Reviews Neuroscience, 4(11):923–926.spa
dc.relation.referencesManita, S., Suzuki, T., Inoue, M., Kudo, Y., and Miyakawa, H. (2007). Paired-pulse ratio of synaptically induced transporter currents at hippocampal ca1 synapses is not related to release probability. Brain research, 1154:71–79.spa
dc.relation.referencesMao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., and Svoboda, K. (2011). Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron, 72(1):111–123.spa
dc.relation.referencesMartin, J. H. and Ghez, C. (1999). Pharmacological inactivation in the analysis of the central control of movement. Journal of neuroscience methods, 86(2):145–159.spa
dc.relation.referencesMatsumoto, R., Kinoshita, M., Taki, J., Hitomi, T., Mikuni, N., Shibasaki, H., Fukuyama, H., Hashimoto, N., and Ikeda, A. (2005). In vivo epileptogenicity of focal cortical dysplasia: a direct cortical paired stimulation study. Epilepsia, 46(11):1744–1749.spa
dc.relation.referencesMelzer, S. and Monyer, H. (2020). Diversity and function of corticopetal and corticofugal gabaergic projection neurons. Nature Reviews Neuroscience, 21(9):499–515.spa
dc.relation.referencesMicheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., and Bock, D. D. (2016). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. elife, 5:e15784.spa
dc.relation.referencesM´unera, A., Cuestas, D., and Troncoso, J. (2012). Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience, 223:140–151.spa
dc.relation.referencesMu˜noz-Cabrera, J. M., Sandoval-Hern´andez, A. G., Ni˜no, A., B´aez, T., Bustos-Rangel, A., Cardona-G´omez, G. P., M´unera, A., and Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old triple transgenic mice model of alzheimer´ s disease. PloS one, 14(10).spa
dc.relation.referencesMusall, S. (2015). The relation of sensory adaptation and stimulus perception in the rat whisker-system. PhD thesis, University of Zurich.spa
dc.relation.referencesM´unera, A. (2019). Vibrissal primary motor cortex (vm1) functional interactions during motor command generation. Simposio Max Planck, Colombia, Fronteras de la Ciencia, Bogot ´a, DC, Bogot´a, Colombia.spa
dc.relation.referencesNi, Z., Gunraj, C., Kailey, P., Cash, R. F., and Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21):7314–7321.spa
dc.relation.referencesNie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., and Slutzky, M. W. (2024). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. Eneuro.spa
dc.relation.referencesNishimura, K., Shimada, R., Yamana, K., Kawasaki, R., Nakaya, T., and Ikeda, A. (2022). Effect of ¡i¿meso¡/i¿positioned substituents on the stability and photodynamic activity of lipid-membrane-incorporated porphyrin derivatives. Chemmedchem.spa
dc.relation.referencesNishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812):584– 588.spa
dc.relation.referencesNitsche, M. A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(Pt 3):633.spa
dc.relation.referencesNowak, M., Zich, C., and Stagg, C. J. (2018). Motor cortical gamma oscillations: what have we learnt and where are we headed? Current behavioral neuroscience reports, 5:136–142.spa
dc.relation.referencesNu˜nez, A. and Bu˜no, W. (2021). The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Frontiers in cellular neuroscience, 15:649262.spa
dc.relation.referencesObara, K., Matsuoka, Y., Iwata, N., Abe, Y., Ikegami, Y., Fujii, A., Yoshioka, K., and Tanaka, Y. (2023). Dimethyl sulfoxide enhances acetylcholine-induced contractions in rat urinary bladder smooth muscle by inhibiting acetylcholinesterase activities. Biological and Pharmaceutical Bulletin.spa
dc.relation.referencesOswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M., and Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in cellular neuroscience, 7:174.spa
dc.relation.referencesPapale, A. E. and Hooks, B. M. (2018). Circuit changes in motor cortex during motor skill learning. Neuroscience, 368:283–297.spa
dc.relation.referencesPeters, A. J., Liu, H., and Komiyama, T. (2017). Learning in the rodent motor cortex. Annual review of neuroscience, 40:77–97.spa
dc.relation.referencesPi, H.-J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature, 503(7477):521–524.spa
dc.relation.referencesPimiento, J., Ram´ırez, E., Mart´ınez, A., and M´unera, A. (2023). La potenciaci ´On de las proyecciones interhemisf´Ericas a la corteza motora primaria de las vibrisas se propaga heterosin´Apticamente al procesamiento de informaci ´On somatosensorial. Congreso Nacional de Neurociencias - COLNE, Cali, colombia.spa
dc.relation.referencesRam´ırez Mosquera, E. (2021). Estimulaci´on cortical motora contralateral como mecanismo para inducir plasticidad sin´aptica en la corteza motora primaria de las vibrisas. Magister thesis.spa
dc.relation.referencesRaymond, C. R. (2007). Ltp forms 1, 2 and 3: different mechanisms for the ‘long’in long-term potentiation. Trends in neurosciences, 30(4):167–175.spa
dc.relation.referencesReis, J., Swayne, O. B., Vandermeeren, Y., Camus, M., Dimyan, M. A., Harris-Love, M., Perez, M. A., Ragert, P., Rothwell, J. C., and Cohen, L. G. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. The Journal of physiology, 586(2):325–351.spa
dc.relation.referencesRema, V., Armstrong-James, M., and Ebner, F. (1998). Experience-dependent plasticity of adult rat s1 cortex requires local nmda receptor activation. Journal of Neuroscience, 18(23):10196–10206.spa
dc.relation.referencesRock, C. and junior Apicella, A. (2015). Callosal projections drive neuronal-specific responses in the mouse auditory cortex. Journal of Neuroscience, 35(17):6703–6713.spa
dc.relation.referencesRock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018a). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.spa
dc.relation.referencesRock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018b). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.spa
dc.relation.referencesRoopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E., Bibbig, A., Whittington, M. A., and Traub, R. D. (2006). A beta2-frequency (20–30 hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of Sciences, 103(42):15646–15650.spa
dc.relation.referencesSaito, K., Onishi, H., Miyaguchi, S., Kotan, S., and Fujimoto, S. (2015). Effect of pairedpulse electrical stimulation on the activity of cortical circuits. Frontiers in Human Neuroscience, 9:671.spa
dc.relation.referencesSakamoto, T., Porter, L. L., and Asanuma, H. (1987). Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain research, 413(2):360–364.spa
dc.relation.referencesSano, S., Yokono, S., Kinoshita, H., Ogli, K., Satake, H., Kageyama, T., and Kaneshina, S. (1999). Intra-axonal continuous measurement of lidocaine concentration and ph in squid giant axon. Canadian Journal of Anesthesia, 46:1156–1163.spa
dc.relation.referencesScheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., and Bastiaansen, M. C. (2011). Neuronal dynamics underlying high-and lowfrequency eeg oscillations contribute independently to the human bold signal. Neuron, 69(3):572–583.spa
dc.relation.referencesSchwarz, C. and Chakrabarti, S. (2015). Whisking control by motor cortex. Scholarpedia, 10(3):7466. revision #150634.spa
dc.relation.referencesSherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., H¨am¨al¨ainen, M. S., Moore, C. I., and Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proceedings of the National Academy of Sciences, 113(33):E4885–E4894.spa
dc.relation.referencesSlater, B. J. and Isaacson, J. S. (2020). Interhemispheric callosal projections sharpen frequency tuning and enforce response fidelity in primary auditory cortex. Eneuro, 7(4).spa
dc.relation.referencesSohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009a). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.spa
dc.relation.referencesSohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009b). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.spa
dc.relation.referencesStedehouder, J. and Kushner, S. (2017). Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Molecular psychiatry, 22(1):4–12.spa
dc.relation.referencesStefan, K., Kunesch, E., Benecke, R., Cohen, L. G., and Classen, J. (2002). Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. The Journal of physiology, 543(2):699–708.spa
dc.relation.referencesSwanson, O. K. and Maffei, A. (2019). From hiring to firing: activation of inhibitory neurons and their recruitment in behavior. Frontiers in molecular neuroscience, 12:168.spa
dc.relation.referencesSzadai, Z., Pi, H.-J., Chevy, Q., ´ Ocsai, K., Albeanu, D. F., Chiovini, B., Szalay, G., Katona, G., Kepecs, A., and R´ozsa, B. (2022). Cortex-wide response mode of vip-expressing inhibitory neurons by reward and punishment. Elife, 11:e78815.spa
dc.relation.referencesTam, W.-k., Wu, T., Zhao, Q., Keefer, E., and Yang, Z. (2019). Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 1:1–22.spa
dc.relation.referencesTan, L. L., Oswald, M. J., Heinl, C., Retana Romero, O. A., Kaushalya, S. K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature communications, 10(1):983.spa
dc.relation.referencesTeskey, G. C. and Kolb, B. (2011). Functional organization of rat and mouse motor cortex. In Animal Models of Movement Disorders, pages 117–137. Springer.spa
dc.relation.referencesThomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in neuroanatomy, 4:13.spa
dc.relation.referencesTomasi, S., Caminiti, R., and Innocenti, G. M. (2012). Areal differences in diameter and length of corticofugal projections. Cerebral Cortex, 22(6):1463–1472.spa
dc.relation.referencesTomassy, G. S., Berger, D. R., Chen, H.-H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., and Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181):319–324.spa
dc.relation.referencesTorii, T., Sato, A., Iwahashi, M., and Iramina, K. (2019). Using repetitive paired-pulse transcranial magnetic stimulation for evaluation motor cortex excitability. AIP Advances, 9(12).spa
dc.relation.referencesTorp, K. D., Metheny, E., and Simon, L. V. (2022). Lidocaine toxicity. In StatPearls [Internet]. StatPearls Publishing.spa
dc.relation.referencesTremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91(2):260–292.spa
dc.relation.referencesUrrutia-Pi˜nones, J., Morales-Moraga, C., Sanguinetti-Gonz´alez, N., Escobar, A. P., and Chiu, C. Q. (2022). Long-range gabaergic projections of cortical origin in brain function. Frontiers in Systems Neuroscience, 16:841869.spa
dc.relation.referencesVan Der Cruijsen, J., Manoochehri, M., Jonker, Z. D., Andrinopoulou, E.-R., Frens, M. A., Ribbers, G. M., Schouten, A. C., and Selles, R. W. (2021). Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage, 240:118373.spa
dc.relation.referencesVolgushe, M., Voronin, L. L., Chistiakova, M., and Singer, W. (1997). Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. European Journal of Neuroscience, 9(8):1656–1665.spa
dc.relation.referencesWang, L., Conner, J. M., Rickert, J., and Tuszynski, M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences, 108(6):2545–2550.spa
dc.relation.referencesWendiggensen, P., Prochnow, A., Pscherer, C., M¨unchau, A., Frings, C., and Beste, C. (2023). Interplay between alpha and theta band activity enables management of perceptionaction representations for goal-directed behavior. Communications Biology, 6(1):494.spa
dc.relation.referencesWilliams, R. H. and Riedemann, T. (2021). Development, diversity, and death of mgederived cortical interneurons. International Journal of Molecular Sciences, 22(17):9297.spa
dc.relation.referencesWise, S. (2001). Motor cortex. In Smelser, N. J. and Baltes, P. B., editors, International Encyclopedia of the Social & Behavioral Sciences, pages 10137–10140. Pergamon, Oxford.spa
dc.relation.referencesWong, F. K., Bercsenyi, K., Sreenivasan, V., Portal´es, A., Fern´andez-Otero, M., and Mar´ın, O. (2018). Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 557(7707):668–673.spa
dc.relation.referencesWu, G. K., Arbuckle, R., Liu, B.-h., Tao, H. W., and Zhang, L. I. (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1):132– 143.spa
dc.relation.referencesXu, W., de Carvalho, F., and Jackson, A. (2019). Sequential neural activity in primary motor cortex during sleep. Journal of Neuroscience, 39(19):3698–3712.spa
dc.relation.referencesYang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275):920–924.spa
dc.relation.referencesYordanova, J., Falkenstein, M., and Kolev, V. (2020). Aging-related changes in motor response-related theta activity. International Journal of Psychophysiology, 153:95–106.spa
dc.relation.referencesYordanova, J., Falkenstein, M., and Kolev, V. (2024). Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clinical Neurophysiology, 158:137– 148.spa
dc.relation.referencesYu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.spa
dc.relation.referencesYu, X. and Zuo, Y. (2011). Spine plasticity in the motor cortex. Current opinion in neurobiology, 21(1):169–174.spa
dc.relation.referencesZeigler, P. and Keller, A. (2009). Whisking pattern generation. Scholarpedia, 4(12):7271. revision #150519.spa
dc.relation.referencesZhao, S., Zhou, J., Zhang, Y., and Wang, D.-H. (2023). γ and β band oscillation in working memory given sequential or concurrent multiple items: A spiking network model. eneuro, 10(11).spa
dc.relation.referencesZhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., Tao, H. W., and Zhang, L. I. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature neuroscience, 17(6):841–850.spa
dc.relation.referencesZhu, D.-Y., Cao, T.-T., Fan, H.-W., Zhang, M.-Z., Duan, H.-K., Li, J., Zhang, X.-J., Li, Y.-Q., Wang, P., and Chen, T. (2022). The increased in vivo firing of pyramidal cells but not interneurons in the anterior cingulate cortex after neuropathic pain. Molecular Brain, 15(1):1–10.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.decsVibrisas/fisiologíaspa
dc.subject.decsVibrissae/physiologyeng
dc.subject.decsCorteza Motoraspa
dc.subject.decsMotor Cortexeng
dc.subject.decsLidocaínaspa
dc.subject.decsLidocaineeng
dc.subject.proposalIntegración sensoriomotoraspa
dc.subject.proposalVibrisas en roedoresspa
dc.subject.proposalCorteza motora primariaspa
dc.subject.proposalConexiones interhemisféricasspa
dc.subject.proposalSensorimotor integrationeng
dc.subject.proposalWhiskers in rodentseng
dc.subject.proposalPrimary motor cortexeng
dc.subject.proposalInterhemispheric connectionseng
dc.titleParticipación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorialspa
dc.title.translatedParticipation of commissural projections in the evoked potentials in the primary motor cortex of the vibrissae by somatosensory stimulationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010231802.2024.pdf
Tamaño:
10.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Neurociencias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: