Grupos de Weyl y el juego de Kostant
| dc.contributor.advisor | Caviedes Castro, Alexander | |
| dc.contributor.author | Cortés Cruz, Juan Sebastián | |
| dc.date.accessioned | 2026-02-10T20:43:55Z | |
| dc.date.available | 2026-02-10T20:43:55Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones principalmente a color, diagramas | spa |
| dc.description.abstract | Esta tesis desarrolla un nuevo marco combinatorio en la intersección de la teoría de Lie y la combinatoria algebraica, basado en una generalización del juego de Kostant. El trabajo comienza estableciendo los fundamentos de sistemas de raíces, la clasificación de diagramas de Dynkin y la estructura de los grupos de Weyl. Posteriormente, se analiza el juego de Kostant original como herramienta para generar raíces positivas, demostrando su terminación única en diagramas de lazo simple y su papel en una clasificación alternativa de los mismos. La contribución principal y que en nuestro conocimiento no había sido estudiada antes es una \textbf{generalización multivértice} del juego que permite modificar múltiples vértices de un diagrama de Dynkin simultáneamente. Se prueba que las configuraciones resultantes de este nuevo juego establecen una biyección natural con los elementos del cociente $W/W_J$ de grupos de Weyl por subgrupos parabólicos. Este formalismo se aplica a problemas en geometría algebraica, particularmente en casos específicos de la conjetura de Mukai mediante polinomios de Hilbert, y se implementa computacionalmente en Java. Los resultados ofrecen nuevas perspectivas combinatorias para estudiar problemas de conteo de raíces, la regularidad de lenguajes de palabras reducidas y la construcción de Tableaux de Young. (Texto tomado de la fuente) | spa |
| dc.description.abstract | This thesis develops a new combinatorial framework at the intersection of Lie theory and algebraic combinatorics, based on a generalization of the Kostant game. The work begins by establishing the fundamentals of root systems, the classification of Dynkin diagrams, and the structure of Weyl groups. Subsequently, the original Kostant game is analyzed as a combinatorial tool for generating positive roots, demonstrating its unique termination on simply-laced Dynkin diagrams and its role in their alternative classification. The main contribution, which to the best of our knowledge had not been studied previously, is a \textbf{multivertex generalization} of the game that allows one to modify multiple vertices of a Dynkin diagram simultaneously. It is shown that the configurations resulting from this new game establish a natural bijection with the elements of the quotient $W/W_J$ of Weyl groups by parabolic subgroups. This formalism is applied to problems in algebraic geometry, particularly to specific cases of the Mukai conjecture via Hilbert polynomials, and is implemented computationally in Java. The results provide new combinatorial perspectives for studying problems of root counting, the regularity of languages of reduced words, and the construction of Young tableaux. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias - Matemáticas | |
| dc.description.notes | Tesis de maestría en ciencias matemáticas con mención meritoria. | spa |
| dc.format.extent | ix, 99 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89474 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
| dc.relation.references | Björner, A., & Brenti, F. (2005). Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, Berlin, Heidelberg. | |
| dc.relation.references | Chen, E. (2017). Topics in Combinatorics; Lecture Notes (Taught by Alexander Postnikov). MIT Lecture notes. | |
| dc.relation.references | Caviedes Castro, A., Pabiniak, M., & Sabatini, S. (2023). Generalizing the Mukai Conjecture to the symplectic category and the Kostant game. Pure and Applied Mathematics Quarterly, 19(4), 1803-1837. | |
| dc.relation.references | Nie, X. (2014). Which linear combinations of simple roots are roots? MathOverflow. URL: https://mathoverflow.net/questions/171999/which-linear-combinations-of-simple-roots-are-roots | |
| dc.relation.references | Mukai, S. (1988). Problems on characterization of the complex projective space. In Birational Geometry of Algebraic Varieties, Open Problems, Proceedings of the 23rd Symposium of the Taniguchi Foundation at Katata, Japan, pp. 57-60. | |
| dc.relation.references | Elek, B. (2016). Reflection Groups. Notes for a short course at the Ithaca High School Senior Math Seminar, Cornell University. URL: https://pi.math.cornell.edu/~bazse/reflection_groups.pdf | |
| dc.relation.references | Lie, S. (1880). Theorie der Transformationsgruppen I. Mathematische Annalen, 16, 441-528. Springer. | |
| dc.relation.references | Killing, W. (1888). Die Zusammensetzung der stetigen endlichen Transformationsgruppen. Mathematische Annalen, 31, 252-290. Springer. | |
| dc.relation.references | Cartan, É. (1894). Sur la structure des groupes de transformations finis et continus. PhD Thesis, Paris. | |
| dc.relation.references | Weyl, H. (1939). The Structure and Representation of Continuous Groups. Institute for Advanced Study, Princeton. | |
| dc.relation.references | Dynkin, E. B. (1947). The structure of semi-simple Lie algebras. Uspekhi Matematicheskikh Nauk, 2(4), 59-127. | |
| dc.relation.references | Humphreys, J. E. (1972). Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer-Verlag, New York. | |
| dc.relation.references | Humphreys, J. E. (1990). Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press. | |
| dc.relation.references | Fulton, W. (1997). Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts, vol. 35. Cambridge University Press. | |
| dc.relation.references | Winkel, R. (1996). A combinatorial bijection between standard Young tableaux and reduced words of Grassmannian permutations. Séminaire Lotharingien de Combinatoire, 36, B36h. | |
| dc.relation.references | Ngotiaoco, T. (2018). The Spectral Characterization of Simply-Laced Dynkin Diagrams. Undergraduate Seminar paper, Massachusetts Institute of Technology. | |
| dc.relation.references | Jacobson, N. (1979). Lie Algebras. Dover Publications, Inc., New York. (Republication of the 1962 original). | |
| dc.relation.references | Kirillov, A., & Kirillov Jr., A. (2005). Compact groups and their representations. arXiv preprint arXiv:math/0506118. | |
| dc.relation.references | Kirillov, A. A. (2008). An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics, vol. 113. Cambridge University Press. | |
| dc.relation.references | De Castro Korgi, R. (2004). Teoría de la computación: lenguajes, autómatas, gramáticas. Universidad Nacional de Colombia, Sede Medellín. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 510 - Matemáticas::516 - Geometría | |
| dc.subject.ddc | 510 - Matemáticas::515 - Análisis | |
| dc.subject.proposal | Juego de Kostant | spa |
| dc.subject.proposal | Grupos de Weyl | spa |
| dc.subject.proposal | Sistemas de raíces | spa |
| dc.subject.proposal | Diagramas de Dynkin | spa |
| dc.subject.proposal | Subgrupos parabólicos | spa |
| dc.subject.proposal | Kostant game | eng |
| dc.subject.proposal | Weyl groups | eng |
| dc.subject.proposal | Root Systems | eng |
| dc.subject.proposal | Dynkin diagrams | eng |
| dc.subject.proposal | Parabolic subgroups | eng |
| dc.subject.wikidata | combinatoria algebraica | spa |
| dc.subject.wikidata | algebraic combinatorics | eng |
| dc.subject.wikidata | geometría algebraica | spa |
| dc.subject.wikidata | algebraic geometry | eng |
| dc.subject.wikidata | estadística matemática | spa |
| dc.subject.wikidata | mathematical statistics | eng |
| dc.title | Grupos de Weyl y el juego de Kostant | spa |
| dc.title.translated | Weyl groups and the Kostant game | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Grupos de Weyl y el juego de Kostant.pdf
- Tamaño:
- 1.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

