Variaciones del perfil genómico de virulencia en aislamientos clínicos de Klebsiella pneumoniae productores de carbapenemasas mediante secuenciación de genoma completo (WGS)
dc.contributor.advisor | Barreto Hernandez, Emiliano | |
dc.contributor.advisor | Leal Castro, Aura Lucía | |
dc.contributor.author | Melo Ortiz, Derly Dallana | |
dc.contributor.researchgroup | Bioinformática | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-08-26T15:33:02Z | |
dc.date.available | 2025-08-26T15:33:02Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías, mapas | spa |
dc.description.abstract | Klebsiella pneumoniae, es un patógeno oportunista asociado a infecciones nosocomiales y comunitarias, representa un desafío clínico debido a su alta virulencia y resistencia antimicrobiana. Este estudio evaluó las variaciones genómicas de 70 aislamientos clínicos de K. pneumoniae productoras de carbapenemasas recolectadas entre 2020 y 2021 en un hospital colombiano, empleando secuenciación de genoma completo (WGS). Los aislamientos fueron obtenidos de diversas fuentes clínicas, predominando sangre (37,14%), orina (30%) y secreciones orotraqueales (14,28%) (Figura 8-1). Las características epidemiológicas revelaron que el 54% de los aislamientos provenían de infecciones intrahospitalarias, con una alta prevalencia en pacientes mayores de 60 años (57%) y una tasa de mortalidad del 40% (Tabla 8-1). El análisis bioinformático identificó 5518 genes en los cromosomas bacterianos, destacando los genes de adherencia, sistemas de secreción (T6SS), mecanismos antifagocíticos (genes del operón capsular), bombas de eflujo y sideróforos básicos como la enterobactina. Asimismo, se detectaron 679 genes en plásmidos, principalmente relacionados con la producción de sideróforos de alta afinidad como la aerobactina y yersiniabactina, así como toxinas genotóxicas como la colibactina. Las divergencias filogenéticas observadas reflejan adaptaciones genéticas que favorecen la colonización en ambientes hospitalarios (Figuras 8-6). La tipificación molecular (MLST) reveló la prevalencia de diversos tipos de secuencia (ST), siendo el ST1082 el más frecuente (43%), seguido por ST236 (11%) y ST258 (10%), este último vinculado a brotes epidémicos y resistencia a carbapenémicos. Además, se identificó un caso del linaje hipervirulento ST23, recientemente alertado por la OMS debido a su capacidad para causar infecciones graves en personas sanas (Figura 8-7). El análisis filogenético mediante ANI permitió identificar cinco clústeres clonales, destacando el clúster 1 como un clado genéticamente distinto, posiblemente adaptado a nichos específicos. Este hallazgo refuerza la necesidad de monitorear linajes emergentes y desarrollar estrategias efectivas de control (Figura 8-8). En conclusión, los resultados subrayan la relevancia de integrar herramientas genómicas para caracterizar factores de virulencia y rastrear la diseminación de cepas de K. pneumoniae. La combinación de resistencia antimicrobiana e hipervirulencia enfatiza la urgencia de enfoques terapéuticos integrales para mitigar el impacto clínico de este patógeno emergente. (Texto tomado de la fuente). | spa |
dc.description.abstract | Klebsiella pneumoniae is an opportunistic pathogen associated with both nosocomial and community-acquired infections, posing a clinical challenge due to its high virulence and antimicrobial resistance. This study evaluated the genomic variations of 70 carbapenemaseproducing K. pneumoniae clinical isolates collected between 2020 and 2021 in a Colombian hospital, using whole-genome sequencing (WGS). The isolates were obtained from various clinical sources, primarily blood cultures (37.14%), urine cultures (30%), and orotracheal secretions (14.28%) (Figure 8-1). Epidemiological characteristics revealed that 54% of the isolates were from nosocomial infections, with a high prevalence among patients over 60 years of age (57%) and a mortality rate of 40% (Table 8-1). Bioinformatic analysis identified 5,518 genes in bacterial chromosomes, highlighting genes involved in adherence, secretion systems (T6SS), anti-phagocytic mechanisms (capsular operon genes), efflux pumps, and basic siderophores such as enterobactin. Additionally, 679 genes were detected in plasmids, mainly associated with high-affinity siderophores like aerobactin and yersiniabactin, as well as genotoxic toxins such as colibactin. The observed phylogenetic divergences reflect genetic adaptations favoring colonization in hospital environments (Figures 8-6). Molecular typing (MLST) revealed the prevalence of various sequence types (ST), with ST1082 being the most frequent (43%), followed by ST236 (11%) and ST258 (10%), the latter associated with epidemic outbreaks and carbapenem resistance. Furthermore, one case of the hypervirulent ST23 lineage was identified, recently highlighted by the WHO due to its ability to cause severe infections in healthy individuals (Figure 8-7). Phylogenetic analysis using ANI identified five clonal clusters, with cluster 1 representing a genetically distinct clade, possibly adapted to specific ecological niches. This finding reinforces the need to monitor emerging lineages and develop effective control strategies (Figure 8-8). In conclusion, the results emphasize the importance of integrating genomic tools to characterize virulence factors and track the dissemination of K. pneumoniae strains. The combination of antimicrobial resistance and hypervirulence underscores the urgency of comprehensive therapeutic approaches to mitigate the clinical impact of this emerging pathogen. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias – Microbiología | |
dc.description.methods | Se incluyeron 70 aislamientos clínicos de Klebsiella pneumoniae con perfil de resistencia a carbapenémicos (CRKP), recolectados en un hospital de alta complejidad de Colombia entre el 2 de enero de 2020 y el 10 de julio de 2021. Los aislamientos se obtuvieron de pacientes con infecciones asociadas a la atención en salud, quienes otorgaron su consentimiento informado bajo aprobación del comité de ética institucional. Identificación y caracterización fenotípica La identificación microbiológica inicial se realizó mediante el sistema automatizado Phoenix™ 100 (BD), empleando paneles NID y NMIC-101. Se confirmaron resultados con pruebas bioquímicas convencionales y espectrometría de masas MALDI-TOF (MicroScan WalkAway 96 Plus, Beckman Coulter). Extracción y control de calidad del ADN El ADN genómico fue extraído con los kits PureLink® Genomic DNA Mini Kit (Invitrogen) y DNeasy Blood & Tissue (Qiagen), siguiendo las instrucciones del fabricante. La calidad del ADN fue evaluada por espectrofotometría (NanoDrop ND-2000C) y electroforesis en gel de agarosa al 1%. La cuantificación se realizó mediante fluorometría con Qubit 4.0 (Invitrogen). Preparación de librerías y secuenciación Las librerías para secuenciación por Illumina se prepararon con el kit Illumina DNA Prep. Para muestras con cobertura <50X, se complementó con secuenciación por Oxford Nanopore Technologies (ONT) usando el kit SQK-LSK109 y el sistema de barcoding EXP-NBD196. La calidad de las librerías se evaluó con el sistema Qseq100 Fragment Analyzer. Las secuencias se generaron en plataformas Illumina MiSeq (2×300 bp) y ONT MinION (48 h). Análisis bioinformático Las lecturas crudas fueron procesadas según un pipeline desarrollado por la Universidad Nacional de Colombia (https://github.com/dctopro/Pipe_Plasmid). La calidad de lecturas Illumina se verificó con FastQC v0.11.5 y Trimmomatic v0.36, y las de ONT con Guppy v6.2.7. El ensamblaje de novo se realizó con SPAdes v3.10.1; los ensamblajes híbridos con Unicycler v0.4.8. La calidad se evaluó con QUAST v5.0.2 y se utilizó como referencia K. pneumoniae HS11286 (NC_016845). Anotación y análisis genómico Los genomas ensamblados fueron anotados con Prokka v1.14.6. La confirmación taxonómica se realizó mediante redes neuronales recurrentes (RNN). La tipificación por multilocus sequence typing (MLST) se ejecutó con MLST v2.22.0. El análisis filogenético empleó Snippy-core para identificación de SNPs y RAxML v8.2.4 para construcción del árbol filogenético, visualizado con iTOL. Identificación de factores de virulencia La identificación de genes de virulencia se realizó utilizando la base de datos VFDB y la herramienta VFanalyzer. Esta permitió detectar sistemáticamente genes ortólogos relacionados con factores de virulencia conocidos y potenciales, refinando los resultados por contexto genómico, sin intervención manual. | |
dc.description.researcharea | Biología Molecular de Agentes Infecciosos | |
dc.format.extent | 124 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88469 | |
dc.language.iso | spa | |
dc.publisher | Univerisidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.relation.references | Andrews, S. (2014). Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ | |
dc.relation.references | Arcari, G. & Carattoli, A. (2023). Global spread and evolutionary convergence of multidrugresistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathogens and Global Health, 117(4), 328. https://doi.org/10.1080/20477724.2022.2121362 | |
dc.relation.references | Bachman, M. A., Oyler, J. E., Burns, S. H., Caza, M., Lépine, F., Dozois, C. M. & Weiser, J. N. (2011). Klebsiella pneumoniae Yersiniabactin Promotes Respiratory Tract Infection through Evasion of Lipocalin 2. Infection and Immunity, 79(8), 3309. https://doi.org/10.1128/IAI.05114-11 | |
dc.relation.references | Bai, R. & Guo, J. (2024). Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infection and Drug Resistance, 17, 449. https://doi.org/10.2147/IDR.S451013 | |
dc.relation.references | Balbontín, R., Villagra, N., Pardos de la Gándara, M., Mora, G., Figueroa-Bossi, N. & Bossi, L. (2016). Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Molecular Microbiology, 100(1), 139–155. https://doi.org/10.1111/MMI.13307 | |
dc.relation.references | Ballén, V., Gabasa, Y., Ratia, C., Ortega, R., Tejero, M. & Soto, S. (2021). Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Frontiers in Cellular and https://doi.org/10.3389/FCIMB.2021.738223/FULL | |
dc.relation.references | Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A. & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 | |
dc.relation.references | Barbosa, V. A. A. & Lery, L. M. S. (2019). Insights into Klebsiella pneumoniae type VI secretion system transcriptional regulation. BMC Genomics, 20(1), 506. https://doi.org/10.1186/S12864-019-5885-9 | |
dc.relation.references | Bengoechea, J. A. & Sa Pessoa, J. (2019). Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiology Reviews, 43(2), 123. https://doi.org/10.1093/FEMSRE/FUY043 | |
dc.relation.references | Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Jones, L., Delannoy-Vieillard, A. S., Garin, B., Hello, S. Le, Arlet, G., Nicolas-Chanoine, M. H., Decré, D. & Brisse, S. (2014). Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis., 20(11), 1812–1820. https://doi.org/10.3201/eid2011.140206 | |
dc.relation.references | Biggel, M., Barmettler, K., Treier, A., Muchaamba, F. & Stephan, R. (2023). Draft Genome Sequences of Two Escherichia albertii Isolates Collected from Healthy Pets in Switzerland. Microbiology Resource Announcements, 12(3). https://doi.org/10.1128/MRA.01356-22 | |
dc.relation.references | Biowulf. (2022). snippy: rapid haploid variant calling and core genome alignment. https://hpc.nih.gov/apps/snippy.html | |
dc.relation.references | Bolger, A. M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, https://doi.org/10.1093/BIOINFORMATICS/BTU170 | |
dc.relation.references | Burmølle, M., Bahl, M. I., Jensen, L. B., Sørensen, S. J. & Hansen, L. H. (2008). Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology, 154(1), 187– 195. https://doi.org/10.1099/MIC.0.2007/010454-0 | |
dc.relation.references | Caneiras, C., Lito, L., Mayoralas-Alises, S., Díaz-Lobato, S., Melo-Cristino, J. & Duarte, A. (2019). Virulence and resistance determinants of Klebsiella pneumoniae isolated from a Portuguese tertiary university hospital centre over a 31-year period. Enfermedades Infecciosas y Microbiología Clínica, 37(6), 387–393. https://doi.org/10.1016/J.EIMC.2018.11.001 | |
dc.relation.references | Chen, L., Mathema, B., Pitout, J. D. D., DeLeo, F. R. & Kreiswirth, B. N. (2014). Epidemic Klebsiella pneumoniae ST258 Is a Hybrid Strain. MBio, 5(3), e01355-14. https://doi.org/10.1128/MBIO.01355-14 | |
dc.relation.references | Cheng, S., Fleres, G., Chen, L., Liu, G., Hao, B., Newbrough, A., Driscoll, E., Shields, R. K., Squires, K. M., Chu, T. Y., Kreiswirth, B. N., Hong Nguyen, M. & Clancy, C. J. (2022). Within-Host Genotypic and Phenotypic Diversity of Contemporaneous Carbapenem-Resistant Klebsiella pneumoniae from Blood Cultures of Patients with Bacteremia. MBio, 13(6). https://doi.org/10.1128/MBIO.02906-22 | |
dc.relation.references | Cherrak, Y., Flaugnatti, N., Durand, E., Journet, L. & Cascales, E. (2019). Structure and Activity of the Type VI Secretion System. Microbiology Spectrum, 7(4), 10.1128/microbiolspec.psib-0031–2019. https://doi.org/10.1128/MICROBIOLSPEC.PSIB-0031-2019 | |
dc.relation.references | Choby, J. E., Howard-Anderson, J. & Weiss, D. S. (2020). Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. Journal of Internal Medicine, 287(3), 283. https://doi.org/10.1111/JOIM.13007 | |
dc.relation.references | Chou, H. C., Lee, C. Z., Ma, L. C., Fang, C. T., Chang, S. C. & Wang, J. T. (2004). Isolation of a Chromosomal Region of Klebsiella pneumoniae Associated with Allantoin Metabolism and Liver Infection. Infection and Immunity, 72(7), 3783. https://doi.org/10.1128/IAI.72.7.3783-3792.2004 | |
dc.relation.references | Collyn, F., Léty, M. A., Nair, S., Escuyer, V., Ben Younes, A., Simonet, M. & Marceau, M. (2002). Yersinia pseudotuberculosis Harbors a Type IV Pilus Gene Cluster That Contributes to Pathogenicity. Infection and Immunity, 70(11), 6196. https://doi.org/10.1128/IAI.70.11.6196-6205.2002 | |
dc.relation.references | Crippa, C., Pasquali, F., Rodrigues, C., De Cesare, A., Lucchi, A., Gambi, L., Manfreda, G., Brisse, S. & Palma, F. (2023). Genomic features of Klebsiella isolates from artisanal ready-to-eat food production facilities. Scientific Reports 2023 13:1, 13(1), 1–12. https://doi.org/10.1038/S41598-023-37821-7 | |
dc.relation.references | Cuaical-Ramos, N. M., Montiel, M. & Marcano Zamora, D. (2019). Variabilidad genética de Klebsiella pneumoniae con carbapenemasa tipo KPC proveniente de diferentes estados de Venezuela. Enfermedades Infecciosas y Microbiología Clínica, 37(2), 76– 81. https://doi.org/10.1016/J.EIMC.2017.12.004 | |
dc.relation.references | Dai, P. & Hu, D. (2022). The making of hypervirulent Klebsiella pneumoniae. Journal of Clinical Laboratory Analysis, 36(12). https://doi.org/10.1002/JCLA.24743 | |
dc.relation.references | Di Pilato, V., Errico, G., Monaco, M., Giani, T., Del Grosso, M., Antonelli, A., David, S., Lindh, E., Camilli, R., Aanensen, D. M., Rossolini, G. M., Pantosti, A., Manso, E., Pedna, M. F., Mungiguerra, M., Mosca, A., Vailati, F., Aschbacher, R., Imbriani, A., … Milano, F. (2021). The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: toward polyclonal evolution with emergence of highrisk lineages. Journal of Antimicrobial Chemotherapy, 76(2), 355–361. https://doi.org/10.1093/JAC/DKAA431 | |
dc.relation.references | Dorman, M. J., Feltwell, T., Goulding, D. A., Parkhill, J. & Short, F. L. (2018). The Capsule Regulatory Network of Klebsiella pneumoniae Defined by density-TraDISort. MBio, 9(6), e01863-18. https://doi.org/10.1128/MBIO.01863-18 | |
dc.relation.references | Effah, C. Y., Sun, T., Liu, S. & Wu, Y. (2020). Klebsiella pneumoniae: an increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials, 19(1), 1. https://doi.org/10.1186/S12941-019-0343-8 | |
dc.relation.references | Enany, S., Zakeer, S., Diab, A. A., Bakry, U. & Sayed, A. A. (2022). Whole genome sequencing of Klebsiella pneumoniae clinical isolates sequence type 627 isolated from Egyptian patients. PLOS https://doi.org/10.1371/JOURNAL.PONE.0265884 O | |
dc.relation.references | Ernst, C. M., Braxton, J. R., Rodriguez-Osorio, C. A., Zagieboylo, A. P., Li, L., Pironti, A., Manson, A. L., Nair, A. V., Benson, M., Cummins, K., Clatworthy, A. E., Earl, A. M., Cosimi, L. A. & Hung, D. T. (2020). Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nature Medicine, 26(5), 705. https://doi.org/10.1038/S41591-020-0825-4 | |
dc.relation.references | Evaluación Rápida de Riesgo para la salud pública relacionada con Klebsiella pneumoniae hipervirulenta portadora de genes de carbapenemasas en la Región de las Américas - 20 marzo de 2024 - OPS/OMS | Organización Panamericana de la Salud. (n.d.). Retrieved January 19, 2025, https://www.paho.org/es/documentos/evaluacion-rapida-riesgo-para-salud publicarelacionada-con-klebsiella-pneumoniae | |
dc.relation.references | Evrard, B., Balestrino, D., Dosgilbert, A., Bouya-Gachancard, J. L. J., Charbonnel, N., Forestier, C. & Tridon, A. (2009). Roles of Capsule and Lipopolysaccharide O Antige in Interactions of Human Monocyte-Derived Dendritic Cells and Klebsiella pneumoniae. Infection and Immunity, 78(1), 210. https://doi.org/10.1128/IAI.00864- 09 | |
dc.relation.references | Eyre, D. W. (2022). Infection prevention and control insights from a decade of pathogen whole-genome sequencing. The Journal of Hospital Infection, 122, 180. https://doi.org/10.1016/J.JHIN.2022.01.024 | |
dc.relation.references | Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. (2018). Colibactin: More Than a New Bacterial Toxin. Toxins, 10(4). https://doi.org/10.3390/TOXINS10040151 | |
dc.relation.references | Fisher, C. R., Davies, N. M. L. L., Wyckoff, E. E., Feng, Z., Oaks, E. V. & Payne, S. M. (2009). Genetics and Virulence Association of the Shigella flexneri Sit Iron Transport System. Infection and Immunity, 77(5), 1992. https://doi.org/10.1128/IAI.00064-09 | |
dc.relation.references | Follador, R., Heinz, E., Wyres, K. L., Ellington, M. J., Kowarik, M., Holt, K. E. & Thomson, N. R. (2016). The diversity of Klebsiella pneumoniae surface polysaccharides. Microbial Genomics, 2(8), e000073. https://doi.org/10.1099/MGEN.0.000073 | |
dc.relation.references | Förster, A., Planamente, S., Manoli, E., Lossi, N. S., Freemont, P. S. & Filloux, A. (2014). Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. The Journal of Biological Chemistry, 289(47), 33032. https://doi.org/10.1074/JBC.M114.600510 | |
dc.relation.references | Gálvez-Silva, M., Arros, P., Berríos-Pastén, C., Villamil, A., Rodas, P. I., Araya, I., Iglesias, R., Araya, P., Hormazábal, J. C., Bohle, C., Chen, Y., Gan, Y. H., Chávez, F. P., Lagos, R. & Marcoleta, A. E. (2024). Carbapenem-resistant hypervirulent ST23 Klebsiella pneumoniae with a highly transmissible dual-carbapenemase plasmid in Chile. Biological Research, 004852/FIGURES/3 | |
dc.relation.references | Gálvez-Silva, M., Arros, P., Berríos-Pastén, C., Villamil, A., Rodas, P. I., Araya, I., Iglesias, R., Araya, P., Hormazábal, J. C., Bohle, C., Chen, Y., Gan, Y. H., Chávez, F. P., Lagos, R. & Marcoleta, A. E. (2024). Carbapenem-resistant hypervirulent ST23 Klebsiella pneumoniae with a highly transmissible dual-carbapenemase plasmid in Chile. Biological Research, 004852/FIGURES/3 | |
dc.relation.references | Gomez-Simmonds, A. & Uhlemann, A. C. (2017a). Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J. Infect. Dis., 215, S18–S27. https://doi.org/10.1093/infdis/jiw378 | |
dc.relation.references | Gomez-Simmonds, A. & Uhlemann, A. C. (2017b). Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. The Journal of Infectious Diseases, https://doi.org/10.1093/INFDIS/JIW378 | |
dc.relation.references | Gonzalez-Ferrer, S., Peñaloza, H. F., Budnick, J. A., Bain, W. G., Nordstrom, H. R., Lee, J. S. & Van Tyne, D. (2021). Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infection and Immunity, 89(4). https://doi.org/10.1128/IAI.00693-20 | |
dc.relation.references | Gorrie, C. L., Mirčeta, M., Wick, R. R., Judd, L. M., Lam, M. M. C., Gomi, R., Abbott, I. J., Thomson, N. R., Strugnell, R. A., Pratt, N. F., Garlick, J. S., Watson, K. M., Hunter, P. C., Pilcher, D. V., McGloughlin, S. A., Spelman, D. W., Wyres, K. L., Jenney, A. W. J. & Holt, K. E. (2022). Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nature Communications 2022 13:1, 13(1), 1–17. https://doi.org/10.1038/S41467-02230717-6 | |
dc.relation.references | Guerra, M. E. S., Destro, G., Vieira, B., Lima, A. S., Ferraz, L. F. C., Hakansson, A. P., Darrieux, M. & Converso, T. R. (2022). Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/FCIMB.2022.877995 | |
dc.relation.references | Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. (2013). QUAST: quality assessment tool for assemblies. Bioinformatics, https://doi.org/10.1093/BIOINFORMATICS/BTT086 | |
dc.relation.references | Han, Y. L., Wen, X. H., Zhao, W., Cao, X. S., Wen, J. X., Wang, J. R., Hu, Z. De & Zheng, W. Q. (2022). Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 13. https://doi.org/10.3389/FMICB.2022.1003783/FULL | |
dc.relation.references | Haudiquet, M., Buffet, A., Rendueles, O. & Rocha, E. P. C. (2021). Interplay between the cell envelope and mobile genetic elements shapes gene flow in populations of the nosocomial pathogen Klebsiella pneumoniae. PLoS Biol., 19(7), 1–28. https://doi.org/10.1371/journal.pbio.3001276 | |
dc.relation.references | Haverkate, M. R., Weiner, S., Lolans, K., Moore, N. M., Weinstein, R. A., Bonten, M. J. M., Hayden, M. K. & Bootsma, M. C. J. (2016). Duration of Colonization With Klebsiella pneumoniae Carbapenemase-Producing Bacteria at Long-Term Acute Care Hospitals in Chicago, Illinois. Open Forum Infectious Diseases, 3(4), ofw178. https://doi.org/10.1093/OFID/OFW178 | |
dc.relation.references | Holden, V. I., Breen, P., Houle, S., Dozois, C. M. & Bachman, M. A. (2016). Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF1α Stabilization during Pneumonia. MBio, 7(5). https://doi.org/10.1128/MBIO.0139716 | |
dc.relation.references | Holt, K. E., Wertheim, H., Zadoks, R. N., Baker, S., Whitehouse, C. A., Dance, D., Jenney, A., Connor, T. R., Hsu, L. Y., Severin, J., Brisse, S., Cao, H., Wilksch, J., Gorrie, C., Schultz, M. B., Edwards, D. J., Van Nguyen, K., Nguyen, T. V., Dao, T. T., … Thomson, N. R. (2015). Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. U. S. https://doi.org/10.1073/pnas.1501049112 | |
dc.relation.references | Horváth, M., Kovács, T., Kun, J., Gyenesei, A., Damjanova, I., Tigyi, Z. & Schneider, G. (2023). Virulence Characteristics and Molecular Typing of Carbapenem-Resistant ST15 Klebsiella pneumoniae Clinical Isolates, Possessing the K24 Capsular Type. Antibiotics, 12(3). https://doi.org/10.3390/ANTIBIOTICS12030479/S1 | |
dc.relation.references | Hsieh, P. F., Lu, Y. R., Lin, T. L., Lai, L. Y. & Wang, J. T. (2018). Klebsiella pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type1 Fimbriae Expression, and In Vivo Colonization. The Journal of Infectious Diseases, 219(4), 637. https://doi.org/10.1093/INFDIS/JIY534 | |
dc.relation.references | Hsu, C. R., Lin, T. L., Chen, Y. C., Chou, H. C. & Wang, J. T. (2011). The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited. Microbiology, 157(12), 3446–3457. https://doi.org/10.1099/MIC.0.0503360/CITE/REFWORKS | |
dc.relation.references | Huang, X., Li, X., An, H., Wang, J., Ding, M., Wang, L., Li, L., Ji, Q., Qu, F., Wang, H., Xu, Y., Lu, X., He, Y. & Zhang, J. R. (2022). Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathogens, 18(8). https://doi.org/10.1371/JOURNAL.PPAT.1010693 | |
dc.relation.references | Ibáñez-Prada, E. D., Bustos, I. G., Gamboa-Silva, E., Josa, D. F., Mendez, L., Fuentes, Y. V., Serrano-Mayorga, C. C., Baron, O., Ruiz-Cuartas, A., Silva, E., Judd, L. M., Harshegyi, T., Africano, H. F., Urrego-Reyes, J., Beltran, C. C., Medina, S., Leal, R., Stewardson, A. J., Wyres, K. L., … Reyes, L. F. (2024). Molecular characterization and descriptive analysis of carbapenemase-producing Gram-negative rod infections in Bogota, Colombia. Microbiology https://doi.org/10.1128/SPECTRUM.01714-23 | |
dc.relation.references | Itani, R., Khojah, H. M. J., Kibrit, R., Raychouni, H., Shuhaiber, P., Dib, C., Hassan, M., Mukattash, T. L. & El-Lakany, A. (2024). Risk factors associated with multidrugresistant Klebsiella pneumoniae infections: a multicenter observational study in Lebanese hospitals. BMC Public Health, https://doi.org/10.1186/S12889-024-20474-0 | |
dc.relation.references | Jati, A. P., Sola-Campoy, P. J., Bosch, T., Schouls, L. M., Hendrickx, A. P. A., Bautista, V., Lara, N., Raangs, E., Aracil, B., Rossen, J. W. A., Friedrich, A. W., Navarro Riaza, A. M., Cañada-García, J. E., Ramírez de Arellano, E., Oteo-Iglesias, J., Pérez-Vázquez, M., García-Cobos, S., Maijer-Reuwer, A., Hall, M. A. L., … Rodríguez-Polo, J. A. (2023). Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICEKp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiology Spectrum, https://doi.org/10.1128/SPECTRUM.04716-22 | |
dc.relation.references | Jian-li, W., Yuan-yuan, S., Shou-yu, G., Fei-fei, D., Jia-yu, Y., Xue-hua, W., Yong-feng, Z., Shi-jin, J. & Zhi-jing, X. (2017). Serotype and virulence genes of Klebsiella pneumoniae isolated from mink and its pathogenesis in mice and mink. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-17681-8 | |
dc.relation.references | Johnson, J. G., Murphy, C. N., Sippy, J., Johnson, T. J. & Clegg, S. (2011). Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae. Journal https://doi.org/10.1128/JB.00286-11 | |
dc.relation.references | Karampatakis, T., Tsergouli, K. & Behzadi, P. (2023). Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics, 12(2). https://doi.org/10.3390/ANTIBIOTICS12020234 | |
dc.relation.references | Kochan, T. J., Nozick, S. H., Medernach, R. L., Cheung, B. H., Gatesy, S. W. M., LebrunCorbin, M., Mitra, S. D., Khalatyan, N., Krapp, F., Qi, C., Ozer, E. A. & Hauser, A. R. (2022). Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infectious Diseases, 22(1). https://doi.org/10.1186/S12879-022-07558-1 | |
dc.relation.references | Kot, B., Piechota, M., Szweda, P., Mitrus, J., Wicha, J., Grużewska, A. & Witeska, M. (2023). Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Scientific Reports, 13(1), 4448. https://doi.org/10.1038/s41598-023-31086-w | |
dc.relation.references | Kumar, A., Chakravorty, S., Yang, T., Russo, T. A., Newton, S. M. & Klebba, P. E. (2024). Siderophore-mediated iron acquisition by Klebsiella pneumoniae. Journal of Bacteriology, 206(5). https://doi.org/10.1128/JB.00024-24/SUPPL_FILE/JB.0002424 S0001.PDF | |
dc.relation.references | Lam, M. M. C., Wick, R. R., Watts, S. C., Cerdeira, L. T., Wyres, K. L. & Holt, K. E. (2021). A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nature Communications 2021 12:1, 12(1), 1–16. https://doi.org/10.1038/S41467-021-24448-3 | |
dc.relation.references | Lam, M. M. C., Wyres, K. L., Duchêne, S., Wick, R. R., Judd, L. M., Gan, Y. H., Hoh, C. H., Archuleta, S., Molton, J. S., Kalimuddin, S., Koh, T. H., Passet, V., Brisse, S. & Holt, K. E. (2018). Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nature Communications 2018 9:1, 9(1), 1–10. https://doi.org/10.1038/S41467-018-05114-7 | |
dc.relation.references | Lam, M. M. C., Wyres, K. L., Judd, L. M., Wick, R. R., Jenney, A., Brisse, S. & Holt, K. E. (2018). Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in Klebsiella pneumoniae. https://doi.org/10.1186/S13073-018-0587-5 | |
dc.relation.references | Le, T., Wang, L., Zeng, C., Fu, L., Liu, Z. & Hu, J. (2021). Clinical and microbiological characteristics of nosocomial, healthcare-associated, and community-acquired Klebsiella pneumoniae infections in Guangzhou, China. Antimicrobial Resistance and Infection Control, 10(1), 41. https://doi.org/10.1186/S13756-021-00910-1 | |
dc.relation.references | Lee, C. R., Lee, J. H., Park, K. S., Kim, Y. B., Jeong, B. C. & Lee, S. H. (2016). Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Frontiers in Microbiology, 7(JUN). https://doi.org/10.3389/FMICB.2016.00895 | |
dc.relation.references | Letunic, I. & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293. https://doi.org/10.1093/NAR/GKAB301 | |
dc.relation.references | Li, W., Huang, X., Li, D., Liu, X., Jiang, X., Bian, X., Li, X. & Zhang, J. (2024). A combination of genomics and transcriptomics provides insights into the distribution and differential mRNA expression of type VI secretion system in clinical Klebsiella pneumoniae. MSphere, 9(3), e00822-23. https://doi.org/10.1128/MSPHERE.00822-23 | |
dc.relation.references | Liu, B. T. & Su, W. Q. (2019). Whole genome sequencing of NDM-1-producing serotype k1 st23 hypervirulent klebsiella pneumoniae in china. Journal of Medical Microbiology, 68(6), 866–873. https://doi.org/10.1099/JMM.0.000996/CITE/REFWORKS | |
dc.relation.references | Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(Database issue), D687. https://doi.org/10.1093/NAR/GKY1080 | |
dc.relation.references | Liu, B., Zheng, D., Zhou, S., Chen, L. & Yang, J. (2022). VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Research, 50(D1), D912–D917. https://doi.org/10.1093/NAR/GKAB1107 | |
dc.relation.references | Liu, L., Ye, M., Li, X., Li, J., Deng, Z., Yu-Feng Yao & Ou, H. Y. (2017). Identification and characterization of an antibacterial type VI secretion System in the carbapenemresistant strain Klebsiella pneumoniae HS11286. Frontiers in Cellular and Infection Microbiology, https://doi.org/10.3389/FCIMB.2017.00442/FULL | |
dc.relation.references | Lu, M. C., Chen, Y. T., Chiang, M. K., Wang, Y. C., Hsiao, P. Y., Huang, Y. J., Lin, C. T., Cheng, C. C., Liang, C. L. & Lai, Y. C. (2017). Colibactin contributes to the hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in mouse meningitis infections. Frontiers in Cellular and Infection Microbiology, 7(MAR), 103. https://doi.org/10.3389/FCIMB.2017.00103/FULL | |
dc.relation.references | Lugo, L. & Hernández, E. B. (2021). A Recurrent Neural Network approach for whole genome bacteria identification. Applied Artificial Intelligence, 35(9), 642–656. https://doi.org/10.1080/08839514.2021.1922842 | |
dc.relation.references | Marcoleta, A. E., Varas, M. A., Ortiz-Severín, J., Vásquez, L., Berríos-Pastén, C., Sabag, A. V., Chávez, F. P., Allende, M. L., Santiviago, C. A., Monasterio, O. & Lagos, R. (2018). Evaluating different virulence traits of Klebsiella pneumoniae using Dictyostelium discoideum and zebrafish larvae as host models. Frontiers in Cellular and Infection Microbiology, https://doi.org/10.3389/FCIMB.2018.00030/FULL | |
dc.relation.references | Martin, R. M. & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8(JAN). https://doi.org/10.3389/FCIMB.2018.00004 | |
dc.relation.references | Matono, T., Morita, M., Nakao, N., Teshima, Y. & Ohnishi, M. (2022). Genomic insights into virulence factors affecting tissue-invasive Klebsiella pneumoniae infection. Annals of Clinical Microbiology and Antimicrobials, 21(1). https://doi.org/10.1186/S12941 02200494-7 | |
dc.relation.references | Merciecca, T., Bornes, S., Nakusi, L., Theil, S., Rendueles, O., Forestier, C. & Miquel, S. (2022). Role of Klebsiella pneumoniae Type VI secretion system (T6SS) in long-term gastrointestinal colonization. Scientific Reports 2022 12:1, 12(1), 1–14. https://doi.org/10.1038/s41598-022-21396-w | |
dc.relation.references | Mey, A. R., Gómez-Garzón, C. & Payne, S. M. (2021). Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus, 9(2), eESP-0034-2020. https://doi.org/10.1128/ECOSALPLUS.ESP-0034-2020 | |
dc.relation.references | Munoz-Price, L. S., Poirel, L., Bonomo, R. A., Schwaber, M. J., Daikos, G. L., Cormican, M., Cornaglia, G., Garau, J., Gniadkowski, M., Hayden, M. K., Kumarasamy, K., Livermore, D. M., Maya, J. J., Nordmann, P., Patel, J. B., Paterson, D. L., Pitout, J., Villegas, M. V., Wang, H., … Quinn, J. P. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. The Lancet. Infectious Diseases, 13(9), 785. https://doi.org/10.1016/S1473-3099(13)70190-7 | |
dc.relation.references | Murigneux, V., Roberts, L. W., Forde, B. M., Phan, M. D., Nhu, N. T. K., Irwin, A. D., Harris, P. N. A., Paterson, D. L., Schembri, M. A., Whiley, D. M. & Beatson, S. A. (2021). MicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome construction. BMC Genomics, 22(1). https://doi.org/10.1186/S12864 02107767-Z | |
dc.relation.references | Murphy, C. N. & Clegg, S. (2012). Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Http://Dx.Doi.Org/10.2217/Fmb.12.74, 7(8), 991–1002. https://doi.org/10.2217/FMB.12.74 | |
dc.relation.references | Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. (2017). Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev., 41(3), 252–275. https://doi.org/10.1093/femsre/fux013 | |
dc.relation.references | Nebreda-Mayoral, T., Miguel-Gómez, M. A., March-Rosselló, G. A., Puente-Fuertes, L., Cantón-Benito, E., Martínez-García, A. M., Muñoz-Martín, A. B. & Orduña-Domingo, A. (2020). Infección bacteriana/fúngica en pacientes con COVID-19 ingresados en un hospital de tercer nivel de Castilla y León, España. Enfermedades Infecciosas Y Microbiologia Clinica, 40(4), 158. https://doi.org/10.1016/J.EIMC.2020.11.003 | |
dc.relation.references | Neumann, B., Stürhof, C., Rath, A., Kieninger, B., Eger, E., Müller, J. U., von Poblocki, A., Gerlitz, N., Wollschläger, P., Schneider-Brachert, W., Schaufler, K., Klaper, K. & Steinmann, J. (2023). Detection and characterization of putative hypervirulent Klebsiella pneumoniae isolates in microbiological diagnostics. Scientific Reports 2023 13:1, 13(1), 1–11. https://doi.org/10.1038/s41598-023-46221-w | |
dc.relation.references | Opoku-Temeng, C., Malachowa, N., Kobayashi, S. D. & Deleo, F. R. (2022). Innate Host Defense against Klebsiella pneumoniae and the Outlook for Development of Immunotherapies. Journal https://doi.org/10.1159/000518679 | |
dc.relation.references | Örmälä-Tiznado, A.-M., Allander, L., Maatallah, M., Kabir, M. H., Brisse, S., Sandegren, L., Patpatia, S., Coorens, M., Giske, C. G. & Tyne, D. Van. (2024). Molecular characteristics, fitness, and virulence of high-risk and non-high-risk clones of carbapenemase-producing Klebsiella pneumoniae. Microbiology Spectrum, 12(2), e04036-22. https://doi.org/10.1128/SPECTRUM.04036-22 | |
dc.relation.references | Paczosa, M. K. & Mecsas, J. (2016). Klebsiella pneumoniae: going on the offense with a strong Microbiol. Mol. https://doi.org/10.1128/mmbr.00078-15 | |
dc.relation.references | Padilla, E., Llobet, E., Doménech-Sánchez, A., Martínez-Martínez, L., Bengoechea, J. A. & Albertí, S. (2010). Klebsiella pneumoniae AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence. Antimicrobial Agents and Chemotherapy, 54(1), 177. https://doi.org/10.1128/AAC.00715-09 | |
dc.relation.references | Peirano, G., Chen, L., Kreiswirth, B. N. & Pitouta, J. D. D. (2020). Emerging AntimicrobialResistant High-Risk Klebsiella pneumoniae Clones ST307 and ST147. Antimicrobial Agents and https://doi.org/10.1128/AAC.0114820 | |
dc.relation.references | Pu, D., Zhao, J., Chang, K., Zhuo, X. & Cao, B. (2023). “Superbugs” with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Science Bulletin, 68(21), 2658–2670. https://doi.org/10.1016/J.SCIB.2023.09.040 | |
dc.relation.references | Rocha, J., Henriques, I., Gomila, M. & Manaia, C. M. (2022). Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings. Scientific Reports https://doi.org/10.1038/S41598-022-14547-6 | |
dc.relation.references | Rodríguez, E. C., Saavedra, S. Y., Leal, A. L., Álvarez, C., Olarte, N., Valderrama, A., Cuervo, S. I. & Escobar, J. (2014). Diseminación de Klebsiella pneumoniae productoras de KPC-3 en hospitales de Bogotá durante un periodo de tres años. Biomedica, 34(SUPPL.1), 224–231. https://doi.org/10.7705/BIOMEDICA.V34I0.1696 | |
dc.relation.references | Rojas, L. J., Weinstock, G. M., De La Cadena, E., Diaz, L., Rios, R., Hanson, B. M., Brown, J. S., Vats, P., Phillips, D. S., Nguyen, H., Hujer, K. M., Correa, A., Adams, M. D., Perez, F., Sodergren, E., Narechania, A., Planet, P. J., Villegas, M. V., Bonomo, R. T. A. & Arias, C. A. (2018). An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the “Perfect Storm.” The Journal of Infectious Diseases, 217(1), 82. https://doi.org/10.1093/INFDIS/JIX524 | |
dc.relation.references | Russell, A. B., Peterson, S. B. & Mougous, J. D. (2014). Type VI secretion effectors: poisons with a purpose. Nature Reviews. Microbiology, 12(2), 137. https://doi.org/10.1038/NRMICRO3185 | |
dc.relation.references | Russo, T. A., Alvarado, C. L., Davies, C. J., Drayer, Z. J., Carlino-MacDonald, U., Hutson, A., Luo, T. L., Martin, M. J., Corey, B. W., Moser, K. A., Kamile Rasheed, J., Halpin, A. L., McGann, P. T. & Lebreton, F. (2024). Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. MBio, 15(2). https://doi.org/10.1128/MBIO.02867-23/SUPPL_FILE/MBIO.02867-23-S0004.XLSX | |
dc.relation.references | Russo, T. A. & Marr, C. M. (2019). Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32(3). https://doi.org/10.1128/CMR.00001-19 | |
dc.relation.references | Russo, T. A., Olson, R., Fang, C. T., Stoesser, N., Miller, M., MacDonald, U., Hutson, A., Barker, J. H., La Hoz, R. M., Johnson, J. R., Backer, M., Bajwa, R., Catanzaro, A. T., Crook, D., De Almeida, K., Fierer, J., Greenberg, D. E., Klevay, M., Patel, P., … Zola, J. (2018). Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. Journal of Clinical Microbiology, 56(9), e00776-18. https://doi.org/10.1128/JCM.00776-18 | |
dc.relation.references | Russo, T. A., Olson, R., MacDonald, U., Beanan, J. & Davidsona, B. A. (2015). Aerobactin, but Not Yersiniabactin, Salmochelin, or Enterobactin, Enables the Growth/Survival of Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Ex Vivo and In Vivo. Infection and Immunity, 83(8), 3325. https://doi.org/10.1128/IAI.00430-15 | |
dc.relation.references | Russo, T. A., Olson, R., MacDonald, U., Metzger, D., Maltese, L. M., Drake, E. J. & Gulick, A. M. (2014). Aerobactin Mediates Virulence and Accounts for Increased Siderophore Production under Iron-Limiting Conditions by Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae. Infection https://doi.org/10.1128/IAI.01667-13 | |
dc.relation.references | Saavedra, S. Y., Bernal, J. F., Montilla-Escudero, E., Arévalo, S. A., Prada, D. A., Valencia, M. F., Moreno, J., Hidalgo, A. M., Garciá-Vega, Á. S., Abrudan, M., Argimón, S., Kekre, M., Underwood, A., Aanensen, D. M., Duarte, C., Donado-Godoy, P., Abudahab, K., Harste, H., Muddyman, D., … Vegvari, C. (2021). Complexity of Genomic Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia Urges the Reinforcement of Whole Genome Sequencing-Based Surveillance Programs. Clinical Infectious Diseases, 73(Supplement_4), S290– S299. https://doi.org/10.1093/CID/CIAB777 | |
dc.relation.references | Sarshar, M., Behzadi, P., Ambrosi, C., Zagaglia, C., Palamara, A. T. & Scribano, D. (2020). FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics, 9(7), 397. https://doi.org/10.3390/ANTIBIOTICS9070397 | |
dc.relation.references | Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153 | |
dc.relation.references | Shankar, C., Basu, S., Lal, B., Shanmugam, S., Vasudevan, K., Mathur, P., Ramaiah, S., Anbarasu, A. & Veeraraghavan, B. (2021). Aerobactin Seems To Be a Promising Marker Compared With Unstable RmpA2 for the Identification of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae: In Silico and In Vitro Evidence. Frontiers in Cellular and Infection https://doi.org/10.3389/FCIMB.2021.709681 | |
dc.relation.references | Shankar, C., Jacob, J. J., Vasudevan, K., Biswas, R., Manesh, A., Sethuvel, D. P. M., Varughese, S., Biswas, I. & Veeraraghavan, B. (2020). Emergence of Multidrug Resistant Hypervirulent ST23 Klebsiella pneumoniae: Multidrug Resistant Plasmid Acquisition Drives Evolution. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.575289/FULL | |
dc.relation.references | Singh, S., Wilksch, J. J., Dunstan, R. A., Mularski, A., Wang, N., Hocking, D., Jebeli, L., Cao, H., Clements, A., Jenney, A. W. J., Lithgow, T. & Strugnell, R. A. (2022). LPS O Antigen Plays a Key Role in Klebsiella pneumoniae Capsule Retention. Microbiology Spectrum, 10(4), e01517-21. https://doi.org/10.1128/SPECTRUM.01517-21 | |
dc.relation.references | Spadar, A., Perdigão, J., Campino, S. & Clark, T. G. (2022). Genomic analysis of hypervirulent Klebsiella pneumoniae reveals potential genetic markers for differentiation from classical strains. Scientific Reports 2022 12:1, 12(1), 1–8. https://doi.org/10.1038/S41598-022-17995-2 | |
dc.relation.references | Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of phylogenies. Bioinformatics, https://doi.org/10.1093/BIOINFORMATICS/BTU033 | |
dc.relation.references | Storey, D., McNally, A., Åstrand, M., Santos, J. P. G., Rodriguez-Escudero, I., Elmore, B., Palacios, L., Marshall, H., Hobley, L., Molina, M., Cid, V. J., Salminen, T. A. & Bengoechea, J. A. (2020). Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathogens, 16(3), e1007969. https://doi.org/10.1371/JOURNAL.PPAT.1007969 | |
dc.relation.references | Struve, C., Bojer, M. & Krogfelt, K. A. (2008). Characterization of Klebsiella pneumoniae Type 1 Fimbriae by Detection of Phase Variation during Colonization and Infection and Impact on Virulence. Infection and Immunity, 76(9), 4055. https://doi.org/10.1128/IAI.00494-08 | |
dc.relation.references | Struve, C. & Krogfelt, K. A. (2004). Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environmental Microbiology, 6(6), 584–590. https://doi.org/10.1111/J.1462-2920.2004.00590.X | |
dc.relation.references | Su, K., Zhou, X., Luo, M., Xu, X., Liu, P., Li, X., Xue, J., Chen, S., Xu, W., Li, Y. & Qiu, J. (2018). Genome-wide identification of genes regulated by RcsA, RcsB, and RcsAB phosphorelay regulators in Klebsiella pneumoniae NTUH-K2044. Microbial Pathogenesis, 123, 36–41. https://doi.org/10.1016/J.MICPATH.2018.06.036 | |
dc.relation.references | Sulayyim, H. J. Al, Ismail, R., Hamid, A. Al & Ghafar, N. A. (2022). Antibiotic Resistance during COVID-19: A Systematic Review. International Journal of Environmental Research and Public Health, 19(19), https://doi.org/10.3390/IJERPH191911931 | |
dc.relation.references | Sydow, K., Doğan, E., Schwabe, M., Heiden, S. E., Khan, M. M., Müller, J. U., Bohnert, J. A., Baecker, D., Schlüter, R., Schierack, P., Eger, E., Idelevich, E. A., Becker, K. & Schaufler, K. (2024). In-host evolution of classic to convergent Klebsiella pneumoniae sequence type 147 isolates and impact of associated capsular changes on different morphotypes. BioRxiv, https://doi.org/10.1101/2024.02.13.580130 | |
dc.relation.references | Tiri, B., Sensi, E., Marsiliani, V., Cantarini, M., Priante, G., Vernelli, C., Martella, L. A., Costantini, M., Mariottini, A., Andreani, P., Bruzzone, P., Suadoni, F., Francucci, M., Cirocchi, R. & Cappanera, S. (2020). Antimicrobial Stewardship Program, COVID19, and Infection Control: Spread of Carbapenem-Resistant Klebsiella Pneumoniae Colonization in ICU COVID-19 Patients. What Did Not Work? Journal of Clinical Medicine, 9(9), 2744. https://doi.org/10.3390/JCM9092744 | |
dc.relation.references | Vargas, J. M., Mochi, M. P. M., Nuñez, J. M., Mochi, S., Cáceres, M., Del Campo, R. & Jure, M. A. (2023). Emergence and clonal spread of KPC-2-producing clinical Klebsiella aerogenes isolates in a hospital from northwest Argentina. Journal of Medical Microbiology, 72(1), https://doi.org/10.1099/JMM.0.001635/CITE/REFWORKS | |
dc.relation.references | VFDB - pathogenesis of Klebsiella. (n.d.). Retrieved April 6, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Klebsiella | |
dc.relation.references | VFDB - Virulence factor Aerobactin in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0565 | |
dc.relation.references | VFDB - Virulence factor Allantion utilization in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0572 | |
dc.relation.references | VFDB - Virulence factor Capsule in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0560 | |
dc.relation.references | VFDB - Virulence factor Colibactin in Klebsiella. (n.d.). Retrieved March 3, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0573 | |
dc.relation.references | VFDB - Virulence factor Ent in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0562 | |
dc.relation.references | VFDB - Virulence factor LPS in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0561 | |
dc.relation.references | VFDB - Virulence factor Sal in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0563 | |
dc.relation.references | VFDB - Virulence factor T6SS in Klebsiella. (n.d.). Retrieved March 3, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0569 | |
dc.relation.references | VFDB - Virulence factor Type 3 fimbriae in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0567 | |
dc.relation.references | VFDB - Virulence factor Type I fimbriae in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0566 | |
dc.relation.references | VFDB - Virulence factor Ybt in Klebsiella. (n.d.). Retrieved March 2, 2024, from http://www.mgc.ac.cn/cgi-bin/VFs/vfs.cgi?VFID=VF0564 | |
dc.relation.references | Walker, K. A., Miner, T. A., Palacios, M., Trzilova, D., Frederick, D. R., Broberg, C. A., Sepúlveda, V. E., Quinn, J. D. & Miller, V. L. (2019). A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity. MBio, 10(2), e00089-19. https://doi.org/10.1128/MBIO.0008919 | |
dc.relation.references | Wang, G., Zhao, G., Chao, X., Xie, L. & Wang, H. (2020). The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 1–17. https://doi.org/10.3390/IJERPH17176278 | |
dc.relation.references | Wang, J., Feng, Y. & Zong, Z. (2023). The Origins of ST11 KL64 Klebsiella pneumoniae: a Genome-Based Study. Microbiology Spectrum, 11(2), e04165-22. https://doi.org/10.1128/SPECTRUM.04165-22 | |
dc.relation.references | Wasfi, R., Elkhatib, W. F. & Ashour, H. M. (2016). Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Scientific Reports https://doi.org/10.1038/SREP38929 | |
dc.relation.references | Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595 | |
dc.relation.references | Wilksch, J. J., Yang, J., Clements, A., Gabbe, J. L., Short, K. R., Cao, H., Cavaliere, R., James, C. E., Whitchurch, C. B., Schembri, M. A., Chuah, M. L. C., Liang, Z. X., Wijburg, O. L., Jenney, A. W., Lithgow, T. & Strugnell, R. A. (2011). MrkH, a Novel cdi GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression. PLoS Pathogens, 7(8), e1002204. https://doi.org/10.1371/JOURNAL.PPAT.1002204 | |
dc.relation.references | Wu, C., Huang, Y., Zhou, P., Gao, H., Wang, B., Zhao, H., Zhang, J., Wang, L., Zhou, Y. & Yu, F. (2024). Emergence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae from 2014 - 2021 in Central and Eastern China: a molecular, biological, and epidemiological study. BMC Microbiology, 24(1), 465. https://doi.org/10.1186/S12866024 03614-9/FIGURES/7 | |
dc.relation.references | Wyres, K. L., Gorrie, C., Edwards, D. J., Wertheim, H. F. L., Hsu, L. Y., Van Kinh, N., Zadoks, R., Baker, S. & Holt, K. E. (2015). Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258. Genome Biology and Evolution, 7(5), 1267. https://doi.org/10.1093/GBE/EVV062 | |
dc.relation.references | Wyres, K. L. & Holt, K. E. (2016). Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends https://doi.org/10.1016/j.tim.2016.09.007 | |
dc.relation.references | Wyres, K. L. & Holt, K. E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol., 45, 131– 139. https://doi.org/10.1016/j.mib.2018.04.004 | |
dc.relation.references | Wyres, K. L., Wick, R. R., Judd, L. M., Froumine, R., Tokolyi, A., Gorrie, C. L., Lam, M. M. C., Duchêne, S., Jenney, A. & Holt, K. E. (2019). Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genetics, 15(4). https://doi.org/10.1371/JOURNAL.PGEN.1008114 | |
dc.relation.references | Xie, M., Yang, X., Xu, Q., Ye, L., Chen, K., Zheng, Z., Dong, N., Sun, Q., Shu, L., Gu, D., Chan, E. W. C., Zhang, R. & Chen, S. (2021). Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae. Communications Biology 2021 4:1, 4(1), 1–9. https://doi.org/10.1038/S42003-021-02148-4 | |
dc.relation.references | Xu, L., Li, J., Wu, W., Wu, X. & Ren, J. (2024). Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence, 15(1), 2439509. https://doi.org/10.1080/21505594.2024.2439509 | |
dc.relation.references | Yang, J., Li, Y., Tang, N., Li, J., Zhou, J., Lu, S., Zhang, G., Song, Y., Wang, C., Zhong, J., Xu, J. & Feng, J. (2022). The human gut serves as a reservoir of hypervirulent Klebsiella pneumoniae. Gut Microbes, https://doi.org/10.1080/19490976.2022.2114739 | |
dc.relation.references | Yue, M., Rankin, S. C., Blanchet, R. T., Nulton, J. D., Edwards, R. A. & Schifferli, D. M. (2012). Diversification of the Salmonella Fimbriae: A Model of Macro- and Microevolution. PLOS ONE, 7(6), e38596. https://doi.org/10.1371/JOURNAL.PONE.0038596 | |
dc.relation.references | Zhang, Z. Y., Qin, R., Lu, Y. H., Shen, J., Zhang, S. Y., Wang, C. Y., Yang, Y. Q., Hu, F. P. & He, P. (2020). Capsular polysaccharide and lipopolysaccharide O type analysis of Klebsiella pneumoniae isolates by genotype in China. Epidemiology and Infection, 148, e191. https://doi.org/10.1017/S0950268820001788 | |
dc.relation.references | Zhao, H., He, Z., Li, Y. & Sun, B. (2022). Epidemiology of carbapenem-resistant Klebsiella pneumoniae ST15 of producing KPC-2, SHV-106 and CTX-M-15 in Anhui, China. BMC Microbiology, 22(1), 1–9. https://doi.org/10.1186/S12866-022-02672-1/FIGURES/5 | |
dc.relation.references | Zhou, M., Lan, Y., Wang, S., Liu, Q., Jian, Z., Li, Y., Chen, X., Yan, Q. & Liu, W. (2020). Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. Journal of Clinical Laboratory Analysis, 34(11), e23459. https://doi.org/10.1002/JCLA.23459 | |
dc.relation.references | Zhu, J., Wang, T., Chen, L. & Du, H. (2021). Virulence Factors in Hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.642484 | |
dc.relation.references | Zhu, M., Valdebenito, M., Winkelmann, G. & Hantke, K. (2005). Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology, 151(7), 2363–2372. https://doi.org/10.1099/MIC.0.27888-0/CITE/REFWORKS | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
dc.subject.ddc | 570 - Biología::579 - Historia natural microorganismos, hongos, algas | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | |
dc.subject.lemb | Genómica | spa |
dc.subject.lemb | Genomics | eng |
dc.subject.lemb | BIOINFORMATICA | spa |
dc.subject.lemb | Bioinformatics | eng |
dc.subject.lemb | GENOMICA MICROBIANA | spa |
dc.subject.lemb | Microbial genomics | eng |
dc.subject.lemb | EPIDEMIOLOGIA | spa |
dc.subject.lemb | Epidemiology | eng |
dc.subject.lemb | MICROBIOLOGIA | spa |
dc.subject.lemb | Microbiology | eng |
dc.subject.lemb | GENOMAS VIRALES | spa |
dc.subject.lemb | Viral genomes | eng |
dc.subject.proposal | Klebsiella pneumoniae | spa |
dc.subject.proposal | Factores de virulencia | spa |
dc.subject.proposal | Secuenciación de genoma completo | spa |
dc.subject.proposal | Virulence factors | eng |
dc.subject.proposal | Whole-genome sequencing | eng |
dc.title | Variaciones del perfil genómico de virulencia en aislamientos clínicos de Klebsiella pneumoniae productores de carbapenemasas mediante secuenciación de genoma completo (WGS) | spa |
dc.title.translated | Variations in the genomic virulence profile of carbapenemase-producing Klebsiella pneumoniae clinical isolates by whole genome sequencing (WGS) | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | DataPaper | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |