Genetic variation in Rhizophagus irregularis influences soil carbon fluxes in tropical soils under cassava (Manihot esculenta Crantz) cultivation

dc.contributor.advisorRodriguez Villate, Alia
dc.contributor.authorPeña Quemba, Diego Camilo
dc.contributor.orcidPeña Quemba, Diego Camilo [0000-0001-7910-9700]spa
dc.contributor.projectleaderSanders, Ian Robert
dc.date.accessioned2022-11-15T21:06:44Z
dc.date.available2022-11-15T21:06:44Z
dc.date.issued2022-11
dc.descriptionIlustraciones, fotografías a color, gráficas, mapasspa
dc.description.abstractCerrar la brecha entre la producción de alimentos actual y la necesaria, mitigando al mismo tiempo las emisiones antropogénicas de carbono a la atmósfera, es una de las principales limitaciones para la agricultura sostenible. Los hongos micorrícicos arbusculares (AMF) actúan como estabilizadores de la estructura del suelo mediante la agregación física y química de este, encapsulando el carbono orgánico dentro de los agregados y protegiéndolo de la actividad microbiana. Aquí y en estudios de campo anteriores hemos observado diferencias muy grandes en el rendimiento de la yuca cuando se inocula con diversos aislados de Rhizophagus irregularis, lo que sugiere que la dinámica del carbono bajo el suelo podría ser impulsada en gran medida por el hongo. Llevamos a cabo un ensayo de campo en Colombia, Kenia y Tanzania para evaluar el efecto de diferentes aislados de Rhizophagus irregularis sobre la dinámica del carbono, la acumulación (agregación del suelo) y las emisiones a la atmósfera (respiración del suelo) en suelos bajo cultivos comerciales de yuca. Se tomaron muestras de suelo en la capa superior y en el subsuelo para determinar la fracción de tamaño de los agregados del suelo (en Colombia). La respiración del suelo se midió directamente en el campo mediante analizadores de gases infrarrojos (IRGA). Los resultados mostraron que la agregación y la respiración del suelo fueron significativamente afectadas por la simbiosis AMF-Yuca. El tamaño de las partículas aumentó de forma diferencial entre los distintos tratamientos. Se observó un aumento de los agregados de tamaño medio a 10 y 30 cm de profundidad y de los agregados de tamaño pequeño a 30 cm de profundidad. La respiración del suelo fue mayor en algunos tratamientos. Sin embargo, esto no se correlacionó con la agregación del suelo y depende de la ubicación del experimento. Estos resultados muestran el potencial del uso de AMF como una alternativa para reducir la emisión de carbono mediante el aumento del secuestro de carbono mientras se incrementa la producción de alimentos. (Texto tomado de la fuente)spa
dc.description.abstractClosing the gap between current and required food production, while mitigating anthropogenic carbon emissions to the atmosphere, is a major constraint to sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) act as stabilizers of soil structure through physical and chemical soil aggregation by encapsulating organic carbon within aggregates and protecting it from microbial activity. Here and in previous field studies we have observed very large differences in cassava yield when inoculated with diverse isolates of Rhizophagus irregularis, suggesting that carbon dynamics belowground could be greatly driven by the fungus. We carried out a field trials in Colombia, Kenya and Tanzania to evaluate the effect of different isolates of Rhizophagus irregularis on both carbon dynamics, accumulation (soil aggregation and carbon stocks) and emissions to the atmosphere (soil respiration) in soils under commercial cassava crops. Soil samples at topsoil and subsoil were taken to determine soil aggregate size fraction (in Colombia). Soil respiration was directly measured in the field by infrared gas analysers means. Results showed that soil aggregation and soil respiration were significantly affected by AMF-cassava symbiosis. Particle size increased differentially among different treatments. Increases in medium size aggregates at 10 and 30 cm depth and small size aggregates at 30 cm depth were observed. Soil respiration was found to be greater in some treatments. However, this was not correlated with soil aggregation and depends on experiment location. These results show the potential of using AMF as an alternative to reduce carbon emission by increasing Carbon sink while increasing food production.eng
dc.description.degreelevelDoctoradospa
dc.description.researchareaSuelos y Aguasspa
dc.format.extentxvii, 141 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82695
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedBiremespa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdetunji, A. T., Lewu, F. B., Mulidzi, R., and Ncube, B. (2017). The biological activities of B-glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of soil science and plant nutrition 17, 794-807.spa
dc.relation.referencesAdewopo, J. B., Silveira, M. L., Xu, S., Gerber, S., Sollenberger, L. E., and Martin, T. (2015). Management intensification effects on autotrophic and heterotrophic soil respiration in subtropical grasslands. Ecological Indicators 56, 6-14.spa
dc.relation.referencesAgnihotri, R., Bharti, A., Ramesh, A., Prakash, A., and Sharma, M. P. (2021). Glomalin related protein and C16:1ω5 PLFA associated with AM fungi as potential signatures for assessing the soil C sequestration under contrasting soil management practices. European Journal of Soil Biology 103, 103286-103286spa
dc.relation.referencesAl-Kaisi, M. M., Lal, R., Olson, K. R., and Lowery, B. (2017). Chapter 1 - Fundamentals and Functions of Soil Environment. In "Soil Health and Intensification of Agroecosytems" (M. M. Al-Kaisi and B. Lowery, eds.), pp. 1-23. Academic Pressspa
dc.relation.referencesAl-Karaki, G. N. (2002). FIELD RESPONSE OF GARLIC INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI TO PHOSPHORUS FERTILIZATION. Journal of Plant Nutrition 25, 747-756.spa
dc.relation.referencesAlef K, and Nannipieri, P. (1995). 5 - Estimation of microbial activities A2 - Alef, Kassem. In "Methods in Applied Soil Microbiology and Biochemistry" (P. Nannipieri, ed.), pp. 193-270. Academic Press, London.spa
dc.relation.referencesAlexandratos, N., and Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision.spa
dc.relation.referencesAliyu, I. A., Yusuf, A. A., Uyovbisere, E. O., Masso, C., and Sanders, I. R. (2019). Effect of co-application of phosphorus fertilizer and in vitro-produced mycorrhizal fungal inoculants on yield and leaf nutrient concentration of cassava. PLOS ONE 14, e0218969.spa
dc.relation.referencesAmador, J., and Jones, R. D. (1993). Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biology and Biochemistry 25, 793-801.spa
dc.relation.referencesAndersen, C. P., Nikolov, I., Nikolova, P., Matyssek, R., and Häberle, K.-H. (2005). Estimating “autotrophic” belowground respiration in spruce and beech forests: decreases following girdling. European Journal of Forest Research 124, 155-163.spa
dc.relation.referencesAngelard, C., Colard, A., Niculita-Hirzel, H., Croll, D., and Sanders, I. R. (2010). Segregation in a Mycorrhizal Fungus Alters Rice Growth and Symbiosis-Specific Gene Transcription. Current Biology 20, 1216-1221.spa
dc.relation.referencesAngelard, C., Tanner, C. J., Fontanillas, P., Niculita-Hirzel, H., Masclaux, F., and Sanders, I. R. (2014). Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. The ISME Journal 8, 284-294.spa
dc.relation.referencesAnyanwu, C. N., Ibeto, C. N., Ezeoha, S. L., and Ogbuagu, N. J. (2015). Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renewable Energy 81, 745-752.spa
dc.relation.referencesBago, B., Zipfel, W., Williams, R. M., Jun, J., Arreola, R., Lammers, P. J., Pfeffer, P. E., and Shachar-Hill, Y. (2002). Translocation and Utilization of Fungal Storage Lipid in the Arbuscular Mycorrhizal Symbiosis. Plant Physiology 128, 108.spa
dc.relation.referencesBagyaraj, D. J., Sharma, M. P., and Maiti, D. (2015). Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science 108, 1288-1293.spa
dc.relation.referencesBai, Z. G., Dent, D. L., Olsson, L., and Schaepman, M. E. (2008). "Global assessment of land degradation and improvement: 1. identification by remote sensing." ISRIC-World Soil Information.spa
dc.relation.referencesBaligar, V. C., Wright, R. J., and Hern, J. L. (2005). Enzyme Activities in Soil Influenced by Levels of Applied Sulfur and Phosphorus. Communications in Soil Science and Plant Analysis 36, 1727-1735.spa
dc.relation.referencesBalogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., and Nagy, Z. (2011). Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biology and Biochemistry 43, 1006-1013.spa
dc.relation.referencesBalser, T. C., McMahon, K. D., Bart, D., Bronson, D., Coyle, D. R., Craig, N., Flores-Mangual, M. L., Forshay, K., Jones, S. E., Kent, A. E., and Shade, A. L. (2006). Bridging the gap between micro - and macro-scale perspectives on the role of microbial communities in global change ecology. Plant and Soil 289, 59-70.spa
dc.relation.referencesBandick, A. K., and Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry 31, 1471-1479.spa
dc.relation.referencesBarbosa, M. V., Pedroso, D. d. F., Curi, N., and Carneiro, M. A. C. (2019). Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciência e Agrotecnologia 43.spa
dc.relation.referencesBarto, E. K., Alt, F., Oelmann, Y., Wilcke, W., and Rillig, M. C. (2010). Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology and Biochemistry 42, 2316-2324.spa
dc.relation.referencesBatjes, N. H., and Sombroek, W. G. (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology 3, 161-173.spa
dc.relation.referencesBatten, K. M., Six, J., Scow, K. M., and Rillig, M. C. (2005). Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biology and Biochemistry 37, 2277-2282.spa
dc.relation.referencesBécard, G., and Fortin, J. A. (1988). Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist 108, 211-218.spa
dc.relation.referencesBedini, S., Pellegrino, E., Avio, L., Pellegrini, S., Bazzoffi, P., Argese, E., and Giovannetti, M. (2009). Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry 41, 1491-1496.spa
dc.relation.referencesBird, S. B., Herrick, J. E., Wander, M. M., and Wright, S. F. (2002). Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environmental Pollution 116, 445-455.spa
dc.relation.referencesBond-Lamberty, B., and Thomson, A. (2010). A global database of soil respiration data. Biogeosciences 7, 1915-1926.spa
dc.relation.referencesBorowik, A., and Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment 62, 250-255.spa
dc.relation.referencesBowden, R. D., Davidson, E., Savage, K., Arabia, C., and Steudler, P. (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196, 43-56.spa
dc.relation.referencesBrockett, B. F., Prescott, C. E., and Grayston, S. J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil biology and biochemistry 44, 9-20.spa
dc.relation.referencesBronick, C. J., and Lal, R. (2005). Soil structure and management: a review. Geoderma 124, 3-22.spa
dc.relation.referencesBurbano-Orjuela, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas 33, 117-124.spa
dc.relation.referencesBurney, J. A., Davis, S. J., and Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences 107, 12052.spa
dc.relation.referencesCampos, A. C. (2006). Response of soil surface CO2–C flux to land use changes in a tropical cloud forest (Mexico). Forest Ecology and Management 234, 305-312.spa
dc.relation.referencesCaruso, T., and Rillig, M. C. (2011). Direct, positive feedbacks produce instability in models of interrelationships among soil structure, plants and arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 43, 1198-1206.spa
dc.relation.referencesCavagnaro, T. R., Barrios-Masias, F. H., and Jackson, L. E. (2012). Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant and Soil 353, 181-194.spa
dc.relation.referencesCavagnaro, T. R., Smith, F. A., Smith, S. E., and Jakobsen, I. (2005). Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell & Environment 28, 642-650.spa
dc.relation.referencesCeballos, I., Mateus, I. D., Peña, R., Peña-Quemba, D. C., Robbins, C., Ordoñez, Y. M., Rosikiewicz, P., Rojas, E. C., Thuita, M., Mlay, D. P., Masso, C., Vanlauwe, B., Rodriguez, A., and Sanders, I. R. (2019). Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava. bioRxiv, 830547.spa
dc.relation.referencesCeballos, I., Ruiz, M., Fern·ndez, C., PeÒa, R., RodrÌguez, A., and Sanders, I. R. (2013a). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLoS ONE 8, e70633-e70633.spa
dc.relation.referencesCeballos, I., Ruiz, M., Fernández, C., Peña, R., Rodríguez, A., and Sanders, I. R. (2013b). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLOS ONE 8, e70633.spa
dc.relation.referencesCerri, C., Galdos, M., Maia, S., Bernoux, M., Feigl, B., Powlson, D. s., and Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data. European Journal of Soil Science 62, 23-28.spa
dc.relation.referencesCerri, C. E. P., Sparovek, G., Bernoux, M., Easterling, W. E., Melillo, J. M., and Cerri, C. C. (2007). Tropical agriculture and global warming: impacts and mitigation options. Scientia Agricola 64, 83-99.spa
dc.relation.referencesChaturvedi, A., Cruz Corella, J., Robbins, C., Loha, A., Menin, L., Gasilova, N., Masclaux, F. G., Lee, S.-J., and Sanders, I. R. (2021). The methylome of the model arbuscular mycorrhizal fungus, Rhizophagus irregularis, shares characteristics with early diverging fungi and Dikarya. Communications Biology 4, 901.spa
dc.relation.referencesChen, C., Liu, W., Jiang, X., and Wu, J. (2017). Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 299, 13-24.spa
dc.relation.referencesChen, S., Zou, J., Hu, Z., Chen, H., and Lu, Y. (2014). Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology 198-199, 335-346.spa
dc.relation.referencesCheng, L., Booker, F. L., Tu, C., Burkey, K. O., Zhou, L., Shew, H. D., Rufty, T. W., and Hu, S. (2012). Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO<sub>2</sub&gt. Science 337, 1084.spa
dc.relation.referencesCorradi, N., and Brachmann, A. (2017). Fungal Mating in the Most Widespread Plant Symbionts? Trends in Plant Science 22, 175-183.spa
dc.relation.referencesCotrufo, M. F., Wallenstein, M., Boot, C., Denef, K., and Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global change biology 19, 988-995.spa
dc.relation.referencesCrowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., and Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature 540, 104-108.spa
dc.relation.referencesCuriel Yuste, J., Baldocchi, D. D., Gershenson, A., Goldstein, A., Misson, L., and Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology 13, 2018-2035.spa
dc.relation.referencesDe Deyn, G. B., Cornelissen, J. H., and Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology letters 11, 516-531.spa
dc.relation.referencesde Oliveira Ferreira, A., de Moraes Sá, J. C., Lal, R., Jorge Carneiro Amado, T., Massao Inagaki, T., Briedis, C., and Tivet, F. (2021). Can no-till restore soil organic carbon to levels under natural vegetation in a subtropical and tropical Typic Quartzipisamment? Land Degradation & Development 32, 1742-1750.spa
dc.relation.referencesDeb, S., Kumar, D., Chakraborty, S., Weindorf, D. C., Choudhury, A., Banik, P., Deb, D., De, P., Saha, S., Patra, A. K., Majhi, M., Naskar, P., Panda, P., and Hoque, A. (2019). Comparative carbon stability in surface soils and subsoils under submerged rice and upland non-rice crop ecologies: A physical fractionation study. CATENA 175, 400-410.spa
dc.relation.referencesDelgado-Baquerizo, M., Giaramida, L., Reich, P. B., Khachane, A. N., Hamonts, K., Edwards, C., Lawton, L. A., and Singh, B. K. (2016). Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology 104, 936-946.spa
dc.relation.referencesDiagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., and Svistoonoff, S. (2020). Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. In "Diversity", Vol. 12.spa
dc.relation.referencesDilustro, J. J., Collins, B., Duncan, L., and Crawford, C. (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management 204, 87-97.spa
dc.relation.referencesDindal, D. L. (1990). "Soil biology guide," Wiley, New York.spa
dc.relation.referencesDoran, J. W., and Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15, 3-11.spa
dc.relation.referencesDuchicela, J., Sullivan, T. S., Bontti, E., and Bever, J. D. (2013). Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. Journal of Applied Ecology 50, 1266-1273.spa
dc.relation.referencesDunbabin, V. M., Diggle, A. J., Rengel, Z., and van Hugten, R. (2002). Modelling the interactions between water and nutrient uptake and root growth. Plant and Soil 239, 19-38.spa
dc.relation.referencesEglin, T., Ciais, P., Piao, S. L., Barre, P., Bellassen, V., Cadule, P., Chenu, C., Gasser, T., Koven, C., Reichstein, M., and Smith, P. (2010). Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B 62, 700-718.spa
dc.relation.referencesEhinger, M. O., Croll, D., Koch, A. M., and Sanders, I. R. (2012). Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytologist 196, 853-861.spa
dc.relation.referencesEkschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., Gleixner, G., Hartmann, A., Kästner, M., Marhan, S., Miltner, A., Scheu, S., and Wolters, V. (2008). Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science 171, 27-35.spa
dc.relation.referencesEmran, M., Gispert, M., and Pardini, G. (2012). Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. European Journal of Soil Science 63, 637-649.spa
dc.relation.referencesFan, L.-C., Yang, M.-Z., and Han, W.-Y. (2015). Soil Respiration under Different Land Uses in Eastern China. PLOS ONE 10, e0124198.spa
dc.relation.referencesFang, C., and Moncrieff, J. B. (2005). The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil 268, 243-253.spa
dc.relation.referencesFang, X.-M., Zhang, X.-L., Chen, F.-S., Zong, Y.-Y., Bu, W.-S., Wan, S.-Z., Luo, Y., and Wang, H. (2019). Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest. Soil Biology and Biochemistry 133, 119-128.spa
dc.relation.referencesFAO (2013). "Ahorrar para crecer: La yuca, guía a la intensificación sostenible de su producción."spa
dc.relation.referencesFAO (2014). "Ahorrar para crecer: La yuca, guía a la intensificación sostenible de su producción," FAO Publications: Food and Agriculture Organization of the United Nations, Rome, Italy.spa
dc.relation.referencesFAO (2018). Principles of Conservation Agriculture. In "Rome: Food and Agriculture Organization of the United Nations".spa
dc.relation.referencesFAO (2020). Emissions due to agriculture. Global, regional and country trends 2000–2018. FAOSTAT Analytical Brief Series 18, 14-14.spa
dc.relation.referencesFeddermann, N., Finlay, R., Boller, T., and Elfstrand, M. (2010). Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology 3, 1-8.spa
dc.relation.referencesFeng, J., and Zhu, B. (2019). A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biology and Biochemistry 135, 38-47.spa
dc.relation.referencesFiener, P., Dlugoß, V., Korres, W., and Schneider, K. (2012). Spatial variability of soil respiration in a small agricultural watershed — Are patterns of soil redistribution important? CATENA 94, 3-16.spa
dc.relation.referencesForster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., and Van Dorland, R. (2007). "Changes in atmospheric constituents and in radiative forcing." Cambridge University Press, Cambridge, United Kingdom.spa
dc.relation.referencesFriedrichsen, C. N., Hagen-Zakarison, S., Friesen, M. L., McFarland, C. R., Tao, H., and Wulfhorst, J. D. (2021). Soil health and well-being: Redefining soil health based upon a plurality of values. Soil Security 2, 100004.spa
dc.relation.referencesFrosi, G., Barros, V. A., Oliveira, M. T., Cavalcante, U. M. T., Maia, L. C., and Santos, M. G. (2016). Increase in biomass of two woody species from a seasonal dry tropical forest in association with AMF with different phosphorus levels. Applied Soil Ecology 102, 46-52.spa
dc.relation.referencesGao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z., and Zeng, F. (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports 10, 2084.spa
dc.relation.referencesGerbens-Leenes, P. W., Nonhebel, S., and Krol, M. S. (2010). Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 55, 597-608.spa
dc.relation.referencesGhosh, A., Bhattacharyya, R., Meena, M. C., Dwivedi, B. S., Singh, G., Agnihotri, R., and Sharma, C. (2018). Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil and Tillage Research 177, 134-144.spa
dc.relation.referencesGianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of soil science and plant nutrition 15, 283-306.spa
dc.relation.referencesGianinazzi, S., Gollotte, A., Binet, M.-N., van Tuinen, D., Redecker, D., and Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519-530.spa
dc.relation.referencesGiovannetti, M. (2008). Structure, Extent and Functional Significance of Belowground Arbuscular Mycorrhizal Networks. In "Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics" (A. Varma, ed.), pp. 59-72. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesGiovannetti, M., and B., M. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84, 489-500.spa
dc.relation.referencesGougoulias, C., Clark, J. M., and Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture 94, 2362-2371.spa
dc.relation.referencesGrace, J., José, J. S., Meir, P., Miranda, H. S., and Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography 33, 387-400.spa
dc.relation.referencesGuo, H., Ye, C., Zhang, H., Pan, S., Ji, Y., Li, Z., Liu, M., Zhou, X., Du, G., Hu, F., and Hu, S. (2017). Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biology and Biochemistry 113, 26-34.spa
dc.relation.referencesGupta, S. R., and Singh, J. S. (1981). Soil respiration in a tropical grassland. Soil Biology and Biochemistry 13, 261-268.spa
dc.relation.referencesHansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Masson-Delmotte, V., Pagani, M., Raymo, M., Royer, D. L., and Zachos, J. C. (2008). Target atmospheric CO2: Where should humanity aim? arXiv preprint arXiv:0804.1126.spa
dc.relation.referencesHanyabui, E., Obeng, A., Frimpong, K., Atiah, K., Abindaw, T., Ali, M., Asiamah, J., and Byalebeka, J. (2020). Phosphorus sorption in tropical soils. AIMS Agriculture and Food 5, 599-616.spa
dc.relation.referencesHartemink, A. E., and McSweeney, K. (2014). "Soil Carbon," Springer International Publishing.spa
dc.relation.referencesHaynes, R. J., and Swift, R. S. (1988). Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soil. Biology and Fertility of Soils 6, 153-158.spa
dc.relation.referencesHijri, M. (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26.spa
dc.relation.referencesHögberg, P., Nordgren, A., Högberg, M. N., Ottosson-Löfvenius, M., Bhupinderpal, S., Olsson, P., and Linder, S. (2005). Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests. SEB Exp Biol Ser, 251-67.spa
dc.relation.referencesHolátko, J., Brtnický, M., Kučerík, J., Kotianová, M., Elbl, J., Kintl, A., Kynický, J., Benada, O., Datta, R., and Jansa, J. (2021). Glomalin – Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry 153, 108116.spa
dc.relation.referencesHossain, M. (2021). Glomalin and Contribution of Glomalin to Carbon Sequestration in Soil: A Review. Turkish Journal of Agriculture - Food Science and Technology 9, 191-196.spa
dc.relation.referencesHoweler, R. H. (2012). The cassava handbook: A reference manual based on the Asian Regional Cassava Training Course, held in Thailand. International Center for Tropical Agriculture.spa
dc.relation.referencesHoweler, R. H., and Sieverding, E. (1983). Potentials and limitations of mycorrhizal inoculation illustrated by experiments with field-grown cassava. Plant and Soil 75, 245-261.spa
dc.relation.referencesIPCC, I. P. o. C. C. (2007). Agriculture. In "Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC" (I. P. o. C. Change, ed.), pp. 497-540. Cambridge University Press, Cambridge.spa
dc.relation.referencesIslam, M. U., Jiang, F., Guo, Z., and Peng, X. (2021). Does biochar application improve soil aggregation? A meta-analysis. Soil and Tillage Research 209, 104926-104926.spa
dc.relation.referencesJanos, D. P. (2007). Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17, 75-91.spa
dc.relation.referencesJansa, J., Finlay, R., Wallander, H., Smith, F. A., and Smith, S. E. (2011). Role of Mycorrhizal Symbioses in Phosphorus Cycling. In "Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling" (E. Bünemann, A. Oberson and E. Frossard, eds.), pp. 137-168. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesJastrow, J. D. (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry 28, 665-676.spa
dc.relation.referencesJenkinson, D., Brookes, P., and Powlson, D. s. (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry 36, 5–7.spa
dc.relation.referencesJi, L., Tan, W., and Chen, X. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil and Tillage Research 185, 1-8.spa
dc.relation.referencesJiménez, J. J., and Lal, R. (2006). Mechanisms of C Sequestration in Soils of Latin America. Critical Reviews in Plant Sciences 25, 337-365.spa
dc.relation.referencesJobbágy, E. G., and Jackson, R. B. (2000). THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION. Ecological Applications 10, 423-436.spa
dc.relation.referencesJohnson, D., Leake, J. R., Ostle, N., Ineson, P., and Read, D. J. (2002). In situ13CO2 pulse‐labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153, 327-334.spa
dc.relation.referencesJohnson, N. C., and Graham, J. H. (2013). The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant and Soil 363, 411-419.spa
dc.relation.referencesJuriga, M., and Šimanský, V. (2019). Effects of biochar and its reapplication on soil pH and sorption properties of silt loam haplic luvisol. Acta Horticulturae et Regiotecturae 22, 65-70.spa
dc.relation.referencesKaiser, C., Kilburn, M. R., Clode, P. L., Fuchslueger, L., Koranda, M., Cliff, J. B., Solaiman, Z. M., and Murphy, D. V. (2015). Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. The New phytologist 205, 1537-1551.spa
dc.relation.referencesKandeler, E., and Murer, E. (1993). Aggregate stability and soil microbial processes in a soil with different cultivation. Geoderma 56, 503-513spa
dc.relation.referencesKara, Ö., and Bolat, İ. (2008). The effect of different land uses on soil microbial biomass carbon and nitrogen in Bartin Province. Turkish Journal of Agriculture and Forestry 32, 281-288.spa
dc.relation.referencesKaraca, A., Cetin, S. C., Turgay, O. C., and Kizilkaya, R. (2011). Soil Enzymes as Indication of Soil Quality. In "Soil Enzymology" (G. Shukla and A. Varma, eds.), pp. 119-148. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesKarlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., and Schuman, G. E. (1997). Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Science Society of America Journal 61, 4-10.spa
dc.relation.referencesKeymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S. L., Delaux, P. M., Klingl, V., Röpenack-Lahaye, E. V., Wang, T. L., Eisenreich, W., Dörmann, P., Parniske, M., and Gutjahr, C. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6.spa
dc.relation.referencesKoch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O'Donnell, A., Angers, D., Baldock, J., Barbier, E., Binkley, D., Parton, W., Wall, D. H., Bird, M., Bouma, J., Chenu, C., Flora, C. B., Goulding, K., Grunwald, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C. L., Rice, C. W., Whitehead, D., Young, I., and Zimmermann, M. (2013). Soil Security: Solving the Global Soil Crisis. Global Policy 4, 434-441.spa
dc.relation.referencesKoch, A., McBratney, A., and Lal, R. (2012). Global soil week: Put soil security on the global agenda. Nature 492, 186.spa
dc.relation.referencesKoch, A. M., Antunes, P. M., Maherali, H., Hart, M. M., and Klironomos, J. N. (2017). Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist 214, 1330-1337.spa
dc.relation.referencesKoch, A. M., Kuhn, G., Fontanillas, P., Fumagalli, L., Goudet, J., and Sanders, I. R. (2004). High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America 101, 2369-2374.spa
dc.relation.referencesKravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Quigley, M. Y., Robertson, G. P., and Kuzyakov, Y. (2019). Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications 10, 3121.spa
dc.relation.referencesKumar, R., Rawat, K. S., Singh, J., Singh, A., and Rai, A. (2013). Soil aggregation dynamics and carbon sequestration. Journal of Applied and Natural Science 5, 250-267.spa
dc.relation.referencesKurmi, B., Nath, A. J., Lal, R., and Das, A. K. (2020). Water stable aggregates and the associated active and recalcitrant carbon in soil under rubber plantation. Science of The Total Environment 703, 135498-135498.spa
dc.relation.referencesLal, R. (2003). Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Critical Reviews in Plant Sciences 22, 151-184.spa
dc.relation.referencesLal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304, 1623.spa
dc.relation.referencesLal, R. (2010). Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. BioScience 60, 708-721.spa
dc.relation.referencesLal, R. (2011). Soil Health and Climate Change: An Overview. In "Soil Health and Climate Change" (B. P. Singh, A. L. Cowie and K. Y. Chan, eds.), pp. 3-24. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesLal, R. (2014). Societal value of soil carbon. Journal of Soil and Water Conservation 69, 186A.spa
dc.relation.referencesLal, R. (2016). Soil health and carbon management. Food and Energy Security 5, 212-222.spa
dc.relation.referencesLal, R., Mohtar, R. H., Assi, A. T., Ray, R., Baybil, H., and Jahn, M. (2017). Soil as a Basic Nexus Tool: Soils at the Center of the Food–Energy–Water Nexus. Current Sustainable/Renewable Energy Reports 4, 117-129.spa
dc.relation.referencesLambers, H., Martinoia, E., and Renton, M. (2015). Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25, 23-31.spa
dc.relation.referencesLangley, J. A., Johnson, N. C., and Koch, G. W. (2005). Mycorrhizal Status Influences the Rate but not the Temperature Sensitivity of Soil Respiration. Plant and Soil 277, 335-344.spa
dc.relation.referencesLe Quéré, C., Peters, G. P., Andres, R. J., Andrew, R. M., Boden, T. A., Ciais, P., Friedlingstein, P., Houghton, R. A., Marland, G., Moriarty, R., Sitch, S., Tans, P., Arneth, A., Arvanitis, A., Bakker, D. C. E., Bopp, L., Canadell, J. G., Chini, L. P., Doney, S. C., Harper, A., Harris, I., House, J. I., Jain, A. K., Jones, S. D., Kato, E., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Koven, C., Lefèvre, N., Maignan, F., Omar, A., Ono, T., Park, G. H., Pfeil, B., Poulter, B., Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Schwinger, J., Segschneider, J., Stocker, B. D., Takahashi, T., Tilbrook, B., van Heuven, S., Viovy, N., Wanninkhof, R., Wiltshire, A., and Zaehle, S. (2014). Global carbon budget 2013. Earth Syst. Sci. Data 6, 235-263.spa
dc.relation.referencesLeake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82, 1016-1045.spa
dc.relation.referencesLee, D. R., Barrett, C. B., and McPeak, J. G. (2006). Policy, technology, and management strategies for achieving sustainable agricultural intensification. Agricultural Economics 34, 123-127.spa
dc.relation.referencesLehmann, A., Leifheit, E., and Rillig, M. (2017a). Mycorrhizas and Soil Aggregation. pp. 241-262.spa
dc.relation.referencesLehmann, A., Leifheit, E. F., and Rillig, M. C. (2017b). Chapter 14 - Mycorrhizas and Soil Aggregation. (N. C. Johnson, C. Gehring and J. B. T. M. M. o. S. Jansa, eds.), pp. 241-262. Elsevier.spa
dc.relation.referencesLehmann, A., Zheng, W., and Rillig, M. C. (2017c). Soil biota contributions to soil aggregation. Nature Ecology & Evolution 1, 1828-1835.spa
dc.relation.referencesLeifheit, E. F., Verbruggen, E., and Rillig, M. C. (2015). Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biology and Biochemistry 81, 323-328.spa
dc.relation.referencesLeifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K., and Rillig, M. C. (2014). Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374, 523-537.spa
dc.relation.referencesLi, Q., Leroy, F., Zocatelli, R., Gogo, S., Jacotot, A., Guimbaud, C., and Laggoun-Défarge, F. (2020). Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biology and Biochemistry 153.spa
dc.relation.referencesLi, Q., Leroy, F., Zocatelli, R., Gogo, S., Jacotot, A., Guimbaud, C., and Laggoun-Défarge, F. (2021). Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biology and Biochemistry 153, 108077.spa
dc.relation.referencesLipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Sen, P. T., Sessa, R., Shula, R., Tibu, A., and Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature Climate Change 4, 1068-1072.spa
dc.relation.referencesLiu, H., Zhou, G., Bai, S. H., Song, J., Shang, Y., He, M., Wang, X., and Zheng, Z. (2019). Differential response of soil respiration to nitrogen and phosphorus addition in a highly phosphorus-limited subtropical forest, China. Forest Ecology and Management 448, 499-508.spa
dc.relation.referencesLiu, Y.-R., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Yang, Z., and He, J.-Z. (2018). New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology and Biochemistry 118, 35-41.spa
dc.relation.referencesLuo, Y., and Zhou, X. (2006a). CHAPTER 2 - Importance and Roles of Soil Respiration. In "Soil Respiration and the Environment", pp. 17-32. Academic Press, Burlington.spa
dc.relation.referencesLuo, Y., and Zhou, X. (2006b). CHAPTER 6 - Temporal and Spatial Variations in Soil Respiration. In "Soil Respiration and the Environment", pp. 107-131. Academic Press, Burlington.spa
dc.relation.referencesLynden, G., and Oldeman, L. R. (1997). The assessment of the status of human-induced soil degradation in South and Southeast Asia.spa
dc.relation.referencesMa, F., Zhang, S. J., Wang, L., Shan, D., Jiang, X. F., Zhang, X., and Li, Z. (2015). How Inoculation with Arbuscular Mycorrhizal Fungi Impact on Soil Respiration? Advanced Materials Research 1073-1076, 628-631.spa
dc.relation.referencesMalhotra, H., Vandana, Sharma, S., and Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In "Plant Nutrients and Abiotic Stress Tolerance" (M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak, eds.), pp. 171-190. Springer Singapore, Singapore.spa
dc.relation.referencesMarschner, P., and Timonen, S. (2006). Bacterial Community Composition and Activity in Rhizosphere of Roots Colonized by Arbuscular Mycorrhizal Fungi. In "Microbial Activity in the Rhizoshere" (K. G. Mukerji, C. Manoharachary and J. Singh, eds.), pp. 139-154. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesMasclaux, F. G., Wyss, T., Mateus-Gonzalez, I. D., Aletti, C., and Sanders, I. R. (2018). Variation in allele frequencies at the bg112 locus reveals unequal inheritance of nuclei in a dikaryotic isolate of the fungus Rhizophagus irregularis. Mycorrhiza.spa
dc.relation.referencesMasclaux, F. G., Wyss, T., Pagni, M., Rosikiewicz, P., and Sanders, I. R. (2019). Investigating unexplained genetic variation and its expression in the arbuscular mycorrhizal fungus Rhizophagus irregularis: A comparison of whole genome and RAD sequencing data. PLOS ONE 14, e0226497.spa
dc.relation.referencesMcBratney, A., Stockmann, U., Angers, D., Minasny, B., and Field, D. (2014). Challenges for Soil Organic Carbon Research. pp. 3-16.spa
dc.relation.referencesMeier, I. C., Pritchard, S. G., Brzostek, E. R., McCormack, M. L., and Phillips, R. P. (2015). The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂. New Phytol 205, 1164-1174.spa
dc.relation.referencesMinasny, B., Sulaeman, Y., and McBratney, A. (2011). Is soil carbon disappearing? The dynamics of soil organic carbon in Java. Global Change Biology 17, 1917-1924.spa
dc.relation.referencesMorris, E., Morris, J., Vogt, S., Gleber, S. C., Bigalke, M., Wilcke, W., and Rillig, M. (2019). Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. The ISME Journal 13.spa
dc.relation.referencesMoscatelli, M. C., Lagomarsino, A., Garzillo, A. M. V., Pignataro, A., and Grego, S. (2012). β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecological Indicators 13, 322-327.spa
dc.relation.referencesMunkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S., and Jakobsen, I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist 164, 357-364.spa
dc.relation.referencesMurage, E. W., and Voroney, P. R. (2007). Modification of the original chloroform fumigation extraction technique to allow measurement of δ13C of soil microbial biomass carbon. Soil Biology and Biochemistry 39, 1724-1729.spa
dc.relation.referencesNannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., Renella, G., and Valori, F. (2008). Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils. In "Molecular Mechanisms of Plant and Microbe Coexistence" (C. S. Nautiyal and P. Dion, eds.), pp. 339-365. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesNelson, D. W., and Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In "Methods of Soil Analysis", pp. 961-1010.spa
dc.relation.referencesNottingham, A. T., Turner, B. L., Winter, K., van der Heijden, M. G. A., and Tanner, E. V. J. (2010). Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytologist 186, 957-967.spa
dc.relation.referencesO'Rourke, S. M., Angers, D. A., Holden, N. M., and McBratney, A. B. (2015). Soil organic carbon across scales. Global Change Biology 21, 3561-3574.spa
dc.relation.referencesOades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319-337.spa
dc.relation.referencesOnwuka, B. M., and Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Advances in Plants and Agriculture Research 8.spa
dc.relation.referencesRaiesi, F., and Ghollarata, M. (2006). Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50, 413-425.spa
dc.relation.referencesÖpik, M., Zobel, M., Cantero, J. J., Davison, J., Facelli, J. M., Hiiesalu, I., Jairus, T., Kalwij, J. M., Koorem, K., Leal, M. E., Liira, J., Metsis, M., Neshataeva, V., Paal, J., Phosri, C., Põlme, S., Reier, Ü., Saks, Ü., Schimann, H., Thiéry, O., Vasar, M., and Moora, M. (2013). Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411-430.spa
dc.relation.referencesOrtas, I., Lal, R., and Kapur, S. (2017). Carbon Sequestration and Mycorrhizae in Turkish Soils. Vol. 15, pp. 139-149.spa
dc.relation.referencesOspina, B., and Ceballos, H. (2002). "La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización," CIAT: CLAYUCA: Ministerio de Agricultura y Desarrollo Rural, FENAVI.spa
dc.relation.referencesOyonarte, C., Rey, A., Raimundo, J., Miralles, I., and Escribano, P. (2012). The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: Spatial variability and controlling factors. Ecological Indicators 14, 40-49.spa
dc.relation.referencesPacific, V. J., McGlynn, B. L., Riveros-Iregui, D. A., Welsch, D. L., and Epstein, H. E. (2008). Variability in soil respiration across riparian-hillslope transitions. Biogeochemistry 91, 51-70.spa
dc.relation.referencesPalm, C., Sanchez, P., Ahamed, S., and Awiti, A. (2007). Soils: A Contemporary Perspective. Annual Review of Environment and Resources 32, 99-129.spa
dc.relation.referencesParkin, T. B., Doran, J. W., and Franco-VizcaÌno, E. (1996). Field and Laboratory Tests of Soil Respiration.spa
dc.relation.referencesParniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6, 763-775.spa
dc.relation.referencesPaustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P. (2016). Climate-smart soils. Nature 532, 49-57.spa
dc.relation.referencesPenalba, O., and Rivera, J. (2016a). Precipitation response to El Niño/La Niña events in Southern South America - Emphasis in regional drought occurrences. Advances in Geosciences 41, 1-14.spa
dc.relation.referencesPenalba, O. C., and Rivera, J. A. (2016b). Precipitation response to El Niño/La Niña events in Southern South America – emphasis in regional drought occurrences. Adv. Geosci. 42, 1-14.spa
dc.relation.referencesPeng, X., Peng, Y., Yue, K., and Deng, Y. (2017). Different Responses of Terrestrial C, N, and P Pools and C/N/P Ratios to P, NP, and NPK Addition: a Meta-Analysis. Water, Air, & Soil Pollution 228, 197.spa
dc.relation.referencesPeng, X., Yan, X., Zhou, H., Zhang, Y. Z., and Sun, H. (2015). Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil and Tillage Research 146, Part A, 89-98.spa
dc.relation.referencesPeña, R., Robbins, C., Corella, J., Thuita, M., Masso, C., Vanlauwe, B., Signarbieux, C., Rodriguez, A., and Sanders, I. (2020). Genetically Different Isolates of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Induce Differential Responses to Stress in Cassava. Frontiers in Plant Science 11, 1.spa
dc.relation.referencesPeña, R., Sanders, I., Masso, C., Thuita, M., Lee, S.-J., Rodriguez, A., Vanlauwe, B., and Mlay, D. (2021). The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. Frontiers in Plant Science 12, 1.spa
dc.relation.referencesPeña-Quemba, D., Rubiano-Sanabria, Y., and Riveros-Iregui, D. (2016). Effects of land use on soil C02 flux in the Paramo de Guerrero, Colombia. Agronomía Colombiana 34, 364-373.spa
dc.relation.referencesPeñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications 4, 2934.spa
dc.relation.referencesPeterson, R. L., Massicotte, H. B., and Melville, L. H. (2004). "Mycorrhizas: anatomy and cell biology," NRC Research Press.spa
dc.relation.referencesPiccolo, A. (2012). The Nature of Soil Organic Matter and Innovative Soil Managements to Fight Global Changes and Maintain Agricultural Productivity. In "Carbon Sequestration in Agricultural Soils: A Multidisciplinary Approach to Innovative Methods" (A. Piccolo, ed.), pp. 1-19. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesPiotrowska, A., and Wilczewski, E. (2012). Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma 189-190, 72-80.spa
dc.relation.referencesPiotrowski, J. S., Denich, T., Klironomos, J. N., Graham, J. M., and Rillig, M. C. (2004). The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytologist 164, 365-373.spa
dc.relation.referencesPorta, J., Lopez-Acevedo, M., and Roquero de Laburu, C. (2003). "Edafología : para la agricultura y el medio ambiente," Ediciones Mundi-Prensa, Madrid.spa
dc.relation.referencesPowlson, D. S., Whitmore, A. P., and Goulding, K. W. T. (2010). Soil Carbon Sequestration for Mitigating Climate Change: Distinguishing the Genuine from the Imaginary. In "Handbook of Climate Change and Agroecosystems", Vol. Volume 1, pp. 393-402. IMPERIAL COLLEGE PRESS.spa
dc.relation.referencesPozza, L. E., and Field, D. J. (2020). The science of Soil Security and Food Security. Soil Security 1, 100002.spa
dc.relation.referencesPugh, T. A. M., Müller, C., Arneth, A., Haverd, V., and Smith, B. (2016). Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. Journal of Plant Physiology 203, 3-15.spa
dc.relation.referencesRahman, M. A., Lee, S.-H., Ji, H. C., Kabir, A. H., Jones, C. S., and Lee, K.-W. (2018). Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. International journal of molecular sciences 19, 3073.spa
dc.relation.referencesRaich, J., and Potter, C. (1995). Global Patterns of Carbon Dioxide Emissions from Soils. Global Biogeochemical Cycles - GLOBAL BIOGEOCHEM CYCLE 9, 23-36.spa
dc.relation.referencesRaich, J. W., Potter, C. S., and Bhagawati, D. (2002). Interannual variability in global soil respiration, 1980–94. Global Change Biology 8, 800-812.spa
dc.relation.referencesRaiesi, F. (2006). Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agriculture, Ecosystems & Environment 112, 13-20.spa
dc.relation.referencesRaiesi, F., and Ghollarata, M. (2006). Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50, 413-425.spa
dc.relation.referencesRaiesi, F., and Kabiri, V. (2016). Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators 71, 198-207.spa
dc.relation.referencesRemy, W., Taylor, T. N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America 91, 11841-11843.spa
dc.relation.referencesRillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84, 355-363.spa
dc.relation.referencesRillig, M. C., Aguilar-Trigueros, C. A., Camenzind, T., Cavagnaro, T. R., Degrune, F., Hohmann, P., Lammel, D. R., Mansour, I., Roy, J., van der Heijden, M. G. A., and Yang, G. (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist 222, 1171-1175.spa
dc.relation.referencesRillig, M. C., Aguilar‐Trigueros, C. A., Bergmann, J., Verbruggen, E., Veresoglou, S. D., and Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist 205, 1385-1388.spa
dc.relation.referencesRillig, M. C., Mardatin, N. F., Leifheit, E. F., and Antunes, P. M. (2010). Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology and Biochemistry 42, 1189-1191.spa
dc.relation.referencesRillig, M. C., and Mummey, D. L. (2006a). Mycorrhizas and soil structure. New Phytologist 171, 41-53.spa
dc.relation.referencesRillig, M. C., Wright, S. F., and Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238, 325-333.spa
dc.relation.referencesRillig, M. C., Wright, S. F., Nichols, K. A., Schmidt, W. F., and Torn, M. S. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil 233, 167-177.spa
dc.relation.referencesRiveros-Iregui, D. A., McGlynn, B. L., Epstein, H. E., and Welsch, D. L. (2008). Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes. J. Geophys. Res 113, G04027.spa
dc.relation.referencesRobbins, C., Cruz Corella, J., Aletti, C., Seiler, R., Mateus, I. D., Lee, S. J., Masclaux, F. G., and Sanders, I. R. (2021). Generation of unequal nuclear genotype proportions in Rhizophagus irregularis progeny causes allelic imbalance in gene transcription. New Phytol 231, 1984-2001.spa
dc.relation.referencesRodriguez, A., and Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9, 1053-1061.spa
dc.relation.referencesRopars, J., Toro, K. S., Noel, J., Pelin, A., Charron, P., Farinelli, L., Marton, T., Krüger, M., Fuchs, J., Brachmann, A., and Corradi, N. (2016). Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology 1, 16033.spa
dc.relation.referencesRoy, E., Richards, P., Martinelli, L., Coletta, L., Lins, S. R., Vazquez, F., Willig, E., Spera, S., Vanwey, L., and Porder, S. (2016). The phosphorus cost of agricultural intensification in the tropics. Nature Plants 2, 16043.spa
dc.relation.referencesRuamps, L. S., Nunan, N., Pouteau, V., Leloup, J., Raynaud, X., Roy, V., and Chenu, C. (2013). Regulation of soil organic C mineralisation at the pore scale. FEMS Microbiology Ecology 86, 26-35.spa
dc.relation.referencesSales, F. R., Silva, A. O., Sales, L. R., Rodrigues, T. L., de Souza Moreira, F. M., and Carneiro, M. A. C. (2021). Native Arbuscular Mycorrhizal Fungi Exhibit Biotechnological Potential in Improvement of Soil Biochemical Quality and in Increasing Yield in Sugarcane Cultivars. Sugar Tech 23, 1235-1246.spa
dc.relation.referencesSalomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C. (2010). Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology 16, 416-426.spa
dc.relation.referencesSanders, I. R., and Croll, D. (2010). Arbuscular Mycorrhiza: The Challenge to Understand the Genetics of the Fungal Partner. Annual Review of Genetics 44, 271-292.spa
dc.relation.referencesSanders, I. R., and Rodriguez, A. (2016). Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J.spa
dc.relation.referencesSavary, R., Dupuis, C., Masclaux, F., Mateus, I., Rojas, E., and Sanders, I. (2020). Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava. The ISME Journal 14.spa
dc.relation.referencesSavary, R., Masclaux, F. G., Wyss, T., Droh, G., Cruz Corella, J., Machado, A. P., Morton, J. B., and Sanders, I. R. (2018). A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. Isme j 12, 17-30.spa
dc.relation.referencesSaygın, S. D., Cornelis, W. M., Erpul, G., and Gabriels, D. (2012). Comparison of different aggregate stability approaches for loamy sand soils. Applied Soil Ecology 54, 1-6.spa
dc.relation.referencesSchlesinger, W. H., and Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry 48, 7-20.spa
dc.relation.referencesShi, Z. Y., Miao, Y. F., and Wang, F. Y. (2014). Forest soil autotrophic and heterotrophic respiration under different mycorrhizal strategies and their responses to temperature and precipitation. Contemporary Problems of Ecology 7, 32-38.spa
dc.relation.referencesShuangkai, Z., Kelong, C., Chengyong, W., and Yahui, M. (2018). Effects of simulated warming on soil respiration to XiaoPo lake. IOP Conference Series: Earth and Environmental Science 113, 012219.spa
dc.relation.referencesSiddiky, M. R. K., Kohler, J., Cosme, M., and Rillig, M. C. (2012). Soil biota effects on soil structure: Interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biology and Biochemistry 50, 33-39.spa
dc.relation.referencesŠimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N. P., Uzarowicz, L., Juriga, M., Šrank, D., and Pauková, Ž. (2018). Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilization. J Hydrol Hydromech 66, 429-436.spa
dc.relation.referencesSingh, B. K., Bardgett, R. D., Smith, P., and Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8, 779-790.spa
dc.relation.referencesSingh, B. P., de Rémy de Courcelles, V., and Adams, M. A. (2011). Soil Respiration in Future Global Change Scenarios. In "Soil Health and Climate Change" (B. P. Singh, A. L. Cowie and K. Y. Chan, eds.), pp. 131-153. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesSingh, M. K., Astley, H., Smith, P., and Ghoshal, N. (2015). Soil CO2–C flux and carbon storage in the dry tropics: Impact of land-use change involving bioenergy crop plantation. Biomass and Bioenergy 83, 123-130.spa
dc.relation.referencesSix, J., Conant, R. T., Paul, E. A., and Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241, 155-176.spa
dc.relation.referencesSix, J., Paustian, K., Elliott, E. T., and Combrink, C. (2000). Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal 64, 681-689.spa
dc.relation.referencesSmith, K. A. (2000). "Soil and environmental analysis: physical methods, revised, and expanded," CRC Press.spa
dc.relation.referencesSmith, P., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, S., and McAllister, T. (2007). Agriculture. In "Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ".spa
dc.relation.referencesSmith, P., and Trines, E. (2006). Commentary: Agricultural measures for mitigating climate change: will the barriers prevent any benefits to developing countries? International Journal of Agricultural Sustainability 4, 173-175.spa
dc.relation.referencesSmith, S., Jakobsen, I., Grønlund, M., and Smith, F. (2011). Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant physiology 156, 1050-7.spa
dc.relation.referencesSmith, S. E., and Read, D. (2008a). 1 - The symbionts forming arbuscular mycorrhizas. In "Mycorrhizal Symbiosis (Third Edition)", pp. 13-41. Academic Press, London.spa
dc.relation.referencesSmith, S. E., and Read, D. (2008b). 2 - Colonization of roots and anatomy of arbuscular mycorrhizas. In "Mycorrhizal Symbiosis (Third Edition)", pp. 42-90. Academic Press, London.spa
dc.relation.referencesSoil Survey Staff (2014). "Kellogg Soil Survey Laboratory Methods Manual," United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Kellogg Soil Survey Laboratory.spa
dc.relation.referencesSolaiman, Z. M. (2014). Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration. In "Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration" (Z. M. Solaiman, L. K. Abbott and A. Varma, eds.), pp. 287-296. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesSosa-Hernández, M. A., Leifheit, E. F., Ingraffia, R., and Rillig, M. C. (2019). Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet? In "Frontiers in Microbiology", Vol. 10, pp. 744-744.spa
dc.relation.referencesSoudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M. C., Gomes, S. I. F., Merckx, V., and Tedersoo, L. (2020). FungalRoot: global online database of plant mycorrhizal associations. New Phytologist 227, 955-966.spa
dc.relation.referencesSouza, M. F. d., Franco, H. C. J., and Amaral, L. R. d. (2020). Estimation of soil phosphorus availability via visible and near-infrared spectroscopy. Scientia Agricola 77.spa
dc.relation.referencesSouza, T. (2015). "Handbook of Arbuscular Mycorrhizal Fungi," Springer International Publishing, Switzerland.spa
dc.relation.referencesSpatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O'Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M., and Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028-1046.spa
dc.relation.referencesSteinberg, P. D., and Rillig, M. C. (2003). Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology and Biochemistry 35, 191-194.spa
dc.relation.referencesStockinger, H., Walker, C., and Schüßler, A. (2009). ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytologist 183, 1176-1187.spa
dc.relation.referencesStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. d. R. d., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., and Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164, 80-99.spa
dc.relation.referencesStott, D., Andrews, S., Liebig, M., Wienhold, B. J., and Karlen, D. (2009). Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework.spa
dc.relation.referencesSubke, J.-A., and Bahn, M. (2010). On the ‘temperature sensitivity’ of soil respiration: Can we use the immeasurable to predict the unknown? Soil Biology and Biochemistry 42, 1653-1656.spa
dc.relation.referencesSun, R., Dsouza, M., Gilbert, J. A., Guo, X., Wang, D., Guo, Z., Ni, Y., and Chu, H. (2016). Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ Microbiol 18, 5137-5150.spa
dc.relation.referencesSun, R., Zhang, X.-X., Guo, X., Wang, D., and Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry 88, 9-18.spa
dc.relation.referencesSundquist, E. T., Ackerman, K. V., Parker, L., and Huntzinger, D. N. (2013). An Introduction to Global Carbon Cycle Management. In "Carbon Sequestration and Its Role in the Global Carbon Cycle", pp. 1-23. American Geophysical Union.spa
dc.relation.referencesTedersoo, L., and Bahram, M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews 94, 1857-1880.spa
dc.relation.referencesTedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., Schigel, D., May, T., Ryberg, M., and Abarenkov, K. (2018). High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90, 135-159.spa
dc.relation.referencesThirukkumaran, C. M., and Parkinson, D. (2000). Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry 32, 59-66.spa
dc.relation.referencesTisdall, J. M., and Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science 33, 141-163.spa
dc.relation.referencesTisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., Charron, P., Duensing, N., Frei dit Frey, N., Gianinazzi-Pearson, V., Gilbert, L. B., Handa, Y., Herr, J. R., Hijri, M., Koul, R., Kawaguchi, M., Krajinski, F., Lammers, P. J., Masclaux, F. G., Murat, C., Morin, E., Ndikumana, S., Pagni, M., Petitpierre, D., Requena, N., Rosikiewicz, P., Riley, R., Saito, K., San Clemente, H., Shapiro, H., van Tuinen, D., Bécard, G., Bonfante, P., Paszkowski, U., Shachar-Hill, Y. Y., Tuskan, G. A., Young, J. P. W., Sanders, I. R., Henrissat, B., Rensing, S. A., Grigoriev, I. V., Corradi, N., Roux, C., and Martin, F. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences 110, 20117.spa
dc.relation.referencesTrejo, D., Sangabriel-Conde, W., Gavito-Pardo, M. E., and Banuelos, J. (2021). Mycorrhizal Inoculation and Chemical Fertilizer Interactions in Pineapple under Field Conditions. Agriculture 11, 934.spa
dc.relation.referencesTreseder, K. K., and Allen, M. F. (2000). Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist 147, 189-200.spa
dc.relation.referencesTrivedi, P., Rochester, I. J., Trivedi, C., Van Nostrand, J. D., Zhou, J., Karunaratne, S., Anderson, I. C., and Singh, B. K. (2015). Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biology and Biochemistry 91, 169-181.spa
dc.relation.referencesTubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Layrea, G., Conchedda, G., Pan, X., Qi, S. Y., Halldórudóttir Heiðarsdóttir, H., Wanner, N., Quadrelli, R., Rocha Souza, L., Benoit, P., Hayek, M., Sandalow, D., Mencos-Contreras, E., Rosenzweig, C., Rosero Moncayo, J., Conforti, P., and Torero, M. (2021). Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth System Science Data Discussions 2021, 1-24.spa
dc.relation.referencesTwyman, C., Smith, T. A., and Arnall, A. (2015). What is carbon? Conceptualising carbon and capabilities in the context of community sequestration projects in the global South. Wiley Interdisciplinary Reviews: Climate Change 6, 627-641.spa
dc.relation.referencesUnited Nations Population Division (2002). World Population Prospects: The 2002 Revision. 36.spa
dc.relation.referencesUnited States. Natural Resources Conservation Service. (2014). "Keys to soil taxonomy," Twelfth edition./Ed. United States Department of Agriculture, Natural Resources Conservation Service, Washington, D.C.spa
dc.relation.referencesvan der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. The New phytologist 205, 1406-1423.spa
dc.relation.referencesVasquez Murrieta, M., B, G., and Dendooven, L. (2007). Microbial biomass C measurements in soil of the Central Highlands of Mexico. Applied Soil Ecology 35, 432-440.spa
dc.relation.referencesVen, A., Verlinden, M., Fransen, E., Olsson, P., Verbruggen, E., Wallander, H., and Vicca, S. (2020). Phosphorus addition increased carbon partitioning to autotrophic respiration but not to biomass production in an experiment with Zea mays. Plant, Cell & Environment 43.spa
dc.relation.referencesVierheilig, H., Coughlan, A. P., Wyss, U., and Piché, Y. (1998). Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi. Applied and Environmental Microbiology 64, 5004-5007.spa
dc.relation.referencesVlček, V., and Pohanka, M. (2019). Glomalin – an interesting protein part of the soil organic matter. Soil and Water Research 15.spa
dc.relation.referencesWang, C., Qu, L., Yang, L., Liu, D., Morrissey, E., Miao, R., Liu, Z., Wang, Q., Fang, Y., and Bai, E. (2020). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology n/a.spa
dc.relation.referencesWang, C., Yang, J., and Zhang, Q. (2006). Soil respiration in six temperate forests in China. Global Change Biology 12, 2103-2114.spa
dc.relation.referencesWang, Q., He, T., Wang, S., and Liu, L. (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology 178-179, 152-160.spa
dc.relation.referencesWang, W. J., Dalal, R. C., Moody, P. W., and Smith, C. J. (2003). Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry 35, 273-284.spa
dc.relation.referencesWang, Z., Bi, Y.-L., Jiang, B., Zhakypbek, Y., Peng, S.-P., Liu, W.-w., and Liu, H. (2016). Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. In "Scientific reports".spa
dc.relation.referencesWhitaker, J., Ostle, N., Nottingham, A. T., Ccahuana, A., Salinas, N., Bardgett, R. D., Meir, P., and McNamara, N. P. (2014). Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. Journal of Ecology 102, 1058-1071.spa
dc.relation.referencesWiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333, 149-162.spa
dc.relation.referencesWilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., and Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12, 452-461.spa
dc.relation.referencesWirsenius, S., Azar, C., and Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agricultural Systems 103, 621-638.spa
dc.relation.referencesWright, S. F., and Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198, 97-107.spa
dc.relation.referencesWu, Z., Dijkstra, P., Koch, G. W., PeÑUelas, J., and Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17, 927-942.spa
dc.relation.referencesWyss, T., Masclaux, F. G., Rosikiewicz, P., Pagni, M., and Sanders, I. R. (2016). Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. The Isme Journal 10, 2514.spa
dc.relation.referencesXu, M., and Shang, H. (2016). Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology 203, 16-28.spa
dc.relation.referencesYadav, A., and Pandey, S. (2014). Role of Glomalin in Improving Soil Fertility: A Review.spa
dc.relation.referencesYue, K., Fornara, D. A., Yang, W., Peng, Y., Peng, C., Liu, Z., and Wu, F. (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters 20, 663-672.spa
dc.relation.referencesZhang, B., Li, S., Chen, S., Ren, T., Yang, Z., Zhao, H., Liang, Y., and Han, X. (2016). Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports 6, 19990.spa
dc.relation.referencesZhang, J., Tang, X., He, X., and Liu, J. (2015). Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: Potential consequences for soil carbon accumulation. Soil Biology and Biochemistry 83, 142-149.spa
dc.relation.referencesZhang, S., Lehmann, A., Zheng, W., You, Z., and Rillig, M. C. (2019). Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytologist 222, 543-555.spa
dc.relation.referencesZhao, Z. M., Zhao, C. Y., Yan, Y. Y., Li, J. Y., Li, J., and Shi, F. Z. (2013). Interpreting the dependence of soil respiration on soil temperature and moisture in an oasis cotton field, central Asia. Agriculture, Ecosystems & Environment 168, 46-52.spa
dc.relation.referencesZheng, H., Liu, W., Zheng, J., Luo, Y., Li, R., Wang, H., and Qi, H. (2018). Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLOS ONE 13, e0199523.spa
dc.relation.referencesZhou, J., Zang, H., Loeppmann, S., Gube, M., Kuzyakov, Y., and Pausch, J. (2020). Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biology and Biochemistry 140, 107641.spa
dc.relation.referencesZhou, L., Zhou, X., Shao, J., Nie, Y., He, Y., Jiang, L., Wu, Z., and Hosseini Bai, S. (2016). Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology 22, 3157-3169.spa
dc.relation.referencesZhu, Q., Liao, K., Lai, X., and Lv, L. (2020). Scale-dependent effects of environmental factors on soil organic carbon, soil nutrients and stoichiometry under two contrasting land-use types. Soil Use and Management n/a.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocAgricultural transformationeng
dc.subject.agrovocTransformación agrícolaspa
dc.subject.agrovocYucaspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalRespiración del suelospa
dc.subject.proposalAMFspa
dc.subject.proposalYucaspa
dc.subject.proposalAgregación del suelospa
dc.subject.proposalAlmacenamiento de Carbonospa
dc.subject.proposalSoil respirationeng
dc.subject.proposalCassava
dc.subject.proposalSoil aggregationeng
dc.subject.proposalCarbon storageeng
dc.titleGenetic variation in Rhizophagus irregularis influences soil carbon fluxes in tropical soils under cassava (Manihot esculenta Crantz) cultivationeng
dc.title.translatedGenetic variation in Rhizophagus irregularis influences soil carbon fluxes in tropical soils under cassava (Manihot esculenta Crantz) cultivationeng
dc.title.translatedLa variación genética en Rhizophagus irregularis influye en los flujos de carbono del suelo en suelos tropicales bajo el cultivo de yuca (Manihot esculenta Crantz)spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032440095.2022.pdf
Tamaño:
48.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: