Aproximación al estudio de la poli ADP ribosilación en protozoarios de interés en salud : identificación y caracterización de un candidato a poli (ADP-ribosa) polimerasa de Leishmania braziliensis
dc.contributor.advisor | Ramírez Hernández, María Helena | |
dc.contributor.author | Ramírez Enríquez, Luis David | |
dc.contributor.researchgroup | Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-17T16:49:35Z | |
dc.date.available | 2025-09-17T16:49:35Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, mapa | spa |
dc.description.abstract | Las poli ADP-ribosa polimerasas (PARPs) son miembros de una amplia familia de proteínas que catalizan la transferencia de motivos ADP-ribosa provenientes del NAD+ a diferentes moléculas blanco. En mamíferos se ha encontrado que los polímeros de ADP-ribosa están involucrados en diversos procesos celulares como la preservación de la integridad del genoma, transcripción génica, reparación del ADN, entre otras. Las PARP han sido poco estudiadas en organismos unicelulares de alta incidencia en la salud pública. A la fecha esta proteína ha sido identificada y caracterizada en algunos miembros de la familia Trypanosomatidae. Por otro lado, en parásito del género Leishmania se han presentado varios reportes que dejan en la ambigüedad la existencia de una PARP en estos parásitos. El principal propósito de esta investigación pretende realizar una incursión en la determinación de la existencia de una proteína tipo PARP en Leishmania braziliensis (LbPARP), una de las especies del género Leishmania que causa leishmaniasis en humanos. Para lo anterior, se partió de la amplificación de un candidato a LbPARP a partir de DNA genómico de promastigotes de Leishmania braziliensis, de donde fue posible clonar tres versiones del candidato en vectores de expresión en E.coli: pQE30-tLbPARP, pET26b(+)-Cter LbPARP y pET SUMO Nter LbPARP. La evaluación de las dos primeras versiones fue posible mediante estrategias in vitro (6xHis-tLbPARP) e in vivo (MTS-EGFP-Cter LbPARP) a través de su expresión en células de mamífero. La obtención del candidato recombinante permitió la generación de anticuerpos α-6xHis tLbPARP a partir de un modelo aviar, con esta herramienta fue posible determinar la localización intracelular del candidato en promastigotes. Adicionalmente, se hizo una exploración a través de herramientas bioinformáticas para la identificación de proteínas candidatas a varios factores del sistema de ADP-ribosilación en parásitos del género Leishmania. La identificación funcional de la proteína candidato a LbPARP se abordó combinando diferentes estrategia metodológicas y niveles celulares haciendo evidente la complejidad de los mecanismos de regulación que modulan la actividad de una proteína, los cuales deben ser considerados en estos estudios. Los resultados obtenidos representan un paso importante en la determinación de la existencia de una proteína tipo PARP en parásitos del género Leishmania. (Texto tomado de la fuente) | spa |
dc.description.abstract | Poly ADP-ribose polymerases (PARPs) are members of a large family of proteins that catalyze the transfer of ADP-ribose motifs from NAD+ to different target molecules. In mammals, ADP-ribose polymers have been found to be involved in diverse cellular processes such as preservation of genome integrity, gene transcription, DNA repair, among others. PARPs have been studied little in unicellular organisms of high incidence in public health. To date, this protein has been identified and characterized in some members of the Trypanosomatidae family. On the other hand, in parasites of the genus Leishmania there have been several reports that leave the existence of a PARP in these parasites ambiguous. The main purpose of this research is to make an incursion into the determination of the existence of a PARP-like protein in Leishmania braziliensis (LbPARP), one of the species of the genus Leishmania that causes leishmaniasis in humans. For this purpose, a candidate LbPARP was amplified from genomic DNA of Leishmania braziliensis promastigotes, from which it was possible to clone three versions of the candidate in expression vectors in E.coli: pQE30-tLbPARP, pET26b(+)-Cter LbPARP and pET SUMO Nter LbPARP. The evaluation of the first two versions was possible by in vitro (6xHis-tLbPARP) and in vivo (MTS-EGFP-Cter LbPARP) strategies through their expression in mammalian cells. Obtaining the recombinant candidate allowed the generation of α-6xHis tLbPARP antibodies from an avian model, with this tool it was possible to determine the intracellular localization of the candidate in promastigotes. Additionally, an exploration was made through bioinformatics tools for the identification of candidate proteins for several factors of the ADP-ribosylation system in parasites of the genus Leishmania. The functional identification of the LbPARP candidate protein was approached combining different methodological strategies and cellular levels, making evident the complexity of the regulatory mechanisms that modulate the activity of a protein, which must be considered in these studies. The results obtained represent an important step in the determination of the existence of a PARP-like protein in parasites of the genus Leishmania. | eng |
dc.description.curriculararea | Química.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Bioquímica | |
dc.description.researcharea | Bioquímica | |
dc.format.extent | xvii, 109 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88871 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.relation.references | Ghorbani, M.; Farhoudi, R. Leishmaniasis in Humans: Drug or Vaccine Therapy? Drug Des Devel Ther 2017, 12, 25. https://doi.org/10.2147/DDDT.S146521. | |
dc.relation.references | Sunter, J.; Gull, K. Shape, Form, Function and Leishmania Pathogenicity: From Textbook Descriptions to Biological Understanding. Open Biol 2017, 7 (9). https://doi.org/10.1098/RSOB.170165. | |
dc.relation.references | Kaye, P. M.; Cruz, I.; Picado, A.; Van Bocxlaer, K.; Croft, S. L. Leishmaniasis Immunopathology—Impact on Design and Use of Vaccines, Diagnostics and Drugs. Seminars in Immunopathology 2020 42:3 2020, 42 (3), 247–264. https://doi.org/10.1007/S00281-020-00788-Y. | |
dc.relation.references | Leishmaniasis - OPS/OMS | Organización Panamericana de la Salud. https://www.paho.org/es/temas/leishmaniasis (accessed 2025-04-19). | |
dc.relation.references | Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed 2025-04-19). | |
dc.relation.references | Boletín Epidemiológico. https://www.ins.gov.co/buscador-eventos/Paginas/Vista-Boletin-Epidemilogico.aspx (accessed 2025-04-19). | |
dc.relation.references | Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; Granouillac, B.; Gradoni, L.; Sereno, D. Leishmania Infections: Molecular Targets and Diagnosis. Mol Aspects Med 2017, 57, 1–29. https://doi.org/10.1016/J.MAM.2016.11.012. | |
dc.relation.references | De Menezes, J. P. B.; Guedes, C. E. S.; De Oliveira Almeida Petersen, A. L.; Fraga, D. B. M.; Veras, P. S. T. Advances in Development of New Treatment for Leishmaniasis. Biomed Res Int 2015, 2015. https://doi.org/10.1155/2015/815023. | |
dc.relation.references | Lüscher, B.; Bütepage, M.; Eckei, L.; Krieg, S.; Verheugd, P.; Shilton, B. H. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. Chem Rev 2018, 118 (3), 1092–1136. https://doi.org/10.1021/acs.chemrev.7b00122. | |
dc.relation.references | Manco, G.; Lacerra, G.; Porzio, E.; Catara, G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022, 12 (3), 443. https://doi.org/10.3390/BIOM12030443/S1. | |
dc.relation.references | Lüscher, B.; Ahel, I.; Altmeyer, M.; Ashworth, A.; Bai, P.; Chang, P.; Cohen, M.; Corda, D.; Dantzer, F.; Daugherty, M. D.; Dawson, T. M.; Dawson, V. L.; Deindl, S.; Fehr, A. R.; Feijs, K. L. H.; Filippov, D. V.; Gagné, J. P.; Grimaldi, G.; Guettler, S.; Hoch, N. C.; Hottiger, M. O.; Korn, P.; Kraus, W. L.; Ladurner, A.; Lehtiö, L.; Leung, A. K. L.; Lord, C. J.; Mangerich, A.; Matic, I.; Matthews, J.; Moldovan, G. L.; Moss, J.; Natoli, G.; Nielsen, M. L.; Niepel, M.; Nolte, F.; Pascal, J.; Paschal, B. M.; Pawłowski, K.; Poirier, G. G.; Smith, S.; Timinszky, G.; Wang, Z. Q.; Yélamos, J.; Yu, X.; Zaja, R.; Ziegler, M. ADP-Ribosyltransferases, an Update on Function and Nomenclature. FEBS J 2022, 289 (23), 7399–7410. https://doi.org/10.1111/FEBS.16142. | |
dc.relation.references | Suskiewicz, M. J.; Prokhorova, E.; Rack, J. G. M.; Ahel, I. ADP-Ribosylation from Molecular Mechanisms to Therapeutic Implications. Cell 2023, 186 (21), 4475–4495. https://doi.org/10.1016/J.CELL.2023.08.030/ASSET/2EC61D61-AE80-4939-8AB7-53F51782C3BF/MAIN.ASSETS/GR4.JPG. | |
dc.relation.references | Groslambert, J.; Prokhorova, E.; Ahel, I. ADP-Ribosylation of DNA and RNA. DNA Repair (Amst) 2021, 105, 103144. https://doi.org/10.1016/J.DNAREP.2021.103144. | |
dc.relation.references | Richard, I. A.; Burgess, J. T.; O’Byrne, K. J.; Bolderson, E. Beyond PARP1: The Potential of Other Members of the Poly (ADP-Ribose) Polymerase Family in DNA Repair and Cancer Therapeutics. Front Cell Dev Biol 2022, 9, 801200. https://doi.org/10.3389/FCELL.2021.801200/BIBTEX. | |
dc.relation.references | Aravind, L.; Zhang, D.; De Souza, R. F.; Anand, S.; Iyer, L. M. The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System. Curr Top Microbiol Immunol 2015, 384, 3–32. https://doi.org/10.1007/82_2014_414. | |
dc.relation.references | Li, P.; Lei, Y.; Qi, J.; Liu, W.; Yao, K. Functional Roles of ADP-Ribosylation Writers, Readers and Erasers. Front Cell Dev Biol 2022, 10, 941356. https://doi.org/10.3389/FCELL.2022.941356/XML/NLM. | |
dc.relation.references | Ray Chaudhuri, A.; Nussenzweig, A. The Multifaceted Roles of PARP1 in DNA Repair and Chromatin Remodelling. Nat Rev Mol Cell Biol 2017, 18 (10), 610. https://doi.org/10.1038/NRM.2017.53. | |
dc.relation.references | Vyas, S.; Chesarone-Cataldo, M.; Todorova, T.; Huang, Y. H.; Chang, P. A Systematic Analysis of the PARP Protein Family Identifies New Functions Critical for Cell Physiology. Nature Communications 2013 4:1 2013, 4 (1), 1–13. https://doi.org/10.1038/ncomms3240. | |
dc.relation.references | Alemasova, E. E.; Lavrik, O. I. Poly(ADP-Ribosyl)Ation by PARP1: Reaction Mechanism and Regulatory Proteins. Nucleic Acids Res 2019, 47 (8), 3811. https://doi.org/10.1093/NAR/GKZ120. | |
dc.relation.references | Karlberg, T.; Langelier, M. F.; Pascal, J. M.; Schüler, H. Structural Biology of the Writers, Readers, and Erasers in Mono- and Poly(ADP-Ribose) Mediated Signaling. Mol Aspects Med 2013, 34 (6), 1088. https://doi.org/10.1016/J.MAM.2013.02.002. | |
dc.relation.references | O’Sullivan, J.; Tedim Ferreira, M.; Gagné, J. P.; Sharma, A. K.; Hendzel, M. J.; Masson, J. Y.; Poirier, G. G. Emerging Roles of Eraser Enzymes in the Dynamic Control of Protein ADP-Ribosylation. Nature Communications 2019 10:1 2019, 10 (1), 1–14. https://doi.org/10.1038/s41467-019-08859-x. | |
dc.relation.references | Cohen, M. S.; Chang, P. Insights into the Biogenesis, Function, and Regulation of ADP-Ribosylation. Nature Chemical Biology 2018 14:3 2018, 14 (3), 236–243. https://doi.org/10.1038/nchembio.2568. | |
dc.relation.references | Liu, C.; Vyas, A.; Kassab, M. A.; Singh, A. K.; Yu, X. The Role of Poly ADP-Ribosylation in the First Wave of DNA Damage Response. Nucleic Acids Res 2017, 45 (14), 8129. https://doi.org/10.1093/NAR/GKX565. | |
dc.relation.references | Rouleau-Turcotte, É.; Pascal, J. M. ADP-Ribose Contributions to Genome Stability and PARP Enzyme Trapping on Sites of DNA Damage; Paradigm Shifts for a Coming-of-Age Modification. Journal of Biological Chemistry 2023, 299 (12). https://doi.org/10.1016/J.JBC.2023.105397/ASSET/4957B1B5-517A-4A77-B8B5-71C3C8BDB242/MAIN.ASSETS/GR3.JPG. | |
dc.relation.references | Duma, L.; Ahel, I. The Function and Regulation of ADP-Ribosylation in the DNA Damage Response. Biochem Soc Trans 2023, 51 (3), 995–1008. https://doi.org/10.1042/BST20220749. | |
dc.relation.references | Pandey, N.; Black, B. E. Rapid Detection and Signaling of DNA Damage by PARP-1. Trends Biochem Sci 2021, 46 (9), 744–757. https://doi.org/10.1016/J.TIBS.2021.01.014/ASSET/813AE6C9-14B0-45DA-A24D-1C544FF06B63/MAIN.ASSETS/GR3.SML. | |
dc.relation.references | Boehler, C.; Gauthier, L.; Yelamos, J.; Noll, A.; Schreiber, V.; Dantzer, F. Phenotypic Characterization of Parp-1 and Parp-2 Deficient Mice and Cells. Methods Mol Biol 2011, 780, 313–336. https://doi.org/10.1007/978-1-61779-270-0_19. | |
dc.relation.references | Citarelli, M.; Teotia, S.; Lamb, R. S. Evolutionary History of the Poly(ADP-Ribose) Polymerase Gene Family in Eukaryotes. BMC Evol Biol 2010, 10 (1), 1–26. https://doi.org/10.1186/1471-2148-10-308/FIGURES/12. | |
dc.relation.references | Protozoa: Structure, Classification, Growth, and Development - PubMed. https://pubmed.ncbi.nlm.nih.gov/21413323/ (accessed 2025-04-19). | |
dc.relation.references | Saari, S.; Näreaho, A.; Nikander, S. Protozoa. In Canine Parasites and Parasitic Diseases; Elsevier, 2019; pp 5–34. https://doi.org/10.1016/B978-0-12-814112-0.00002-7. | |
dc.relation.references | Finlay, B. J.; Esteban, G. F. Protozoa. Encyclopedia of Biodiversity: Second Edition 2013, 286–297. https://doi.org/10.1016/B978-0-12-384719-5.00118-0. | |
dc.relation.references | Bogitsh, B. J.; Carter, C. E.; Oeltmann, T. N. Human Parasitology, Fourth Edition. Human Parasitology, Fourth Edition 2012, 1–430. https://doi.org/10.1016/C2010-0-65681-1. | |
dc.relation.references | Andrews, K. T.; Fisher, G.; Skinner-Adams, T. S. Drug Repurposing and Human Parasitic Protozoan Diseases. Int J Parasitol Drugs Drug Resist 2014, 4 (2), 95–111. https://doi.org/10.1016/J.IJPDDR.2014.02.002. | |
dc.relation.references | Monzote, L.; Siddiq, A. Drug Development to Protozoan Diseases. Open Med Chem J 2011, 5, 1. https://doi.org/10.2174/1874104501105010001. | |
dc.relation.references | Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The Evolution of Trypanosomatid Taxonomy. Parasites & Vectors 2017 10:1 2017, 10 (1), 1–17. https://doi.org/10.1186/S13071-017-2204-7. | |
dc.relation.references | Salgado-Almario, J.; Hernández, C. A.; Ovalle-Bracho, C. Distribución Geográfica de Las Especies de Leishmania En Colombia, 1985-2017. Biomédica 2019, 39 (2), 278–290. https://doi.org/10.7705/BIOMEDICA.V39I3.4312. | |
dc.relation.references | Burza, S.; Croft, S. L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392 (10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2. | |
dc.relation.references | Podestá, D.; García-Herreros, M. I.; Cannata, J. J. B.; Stoppani, A. O. M.; Fernández Villamil, S. H. Purification and Properties of Poly(ADP-Ribose)Polymerase from Crithidia Fasciculata: Automodification and Poly(ADP-Ribosyl)Ation of DNA Topoisomerase I. Mol Biochem Parasitol 2004, 135 (2), 211–219. https://doi.org/10.1016/J.MOLBIOPARA.2004.02.005. | |
dc.relation.references | Fernández Villamil, S. H.; Baltanás, R.; Alonso, G. D.; Vilchez Larrea, S. C.; Torres, H. N.; Flawiá, M. M. TcPARP: A DNA Damage-Dependent Poly(ADP-Ribose) Polymerase from Trypanosoma Cruzi. Int J Parasitol 2008, 38 (3–4), 277–287. https://doi.org/10.1016/J.IJPARA.2007.08.003. | |
dc.relation.references | Vilchez Larrea, S. C.; Haikarainen, T.; Narwal, M.; Schlesinger, M.; Venkannagari, H.; Flawiá, M. M.; Villamil, S. H. F.; Lehtiö, L. Inhibition of Poly(ADP-Ribose) Polymerase Interferes with Trypanosoma Cruzi Infection and Proliferation of the Parasite. PLoS One 2012, 7 (9), e46063. https://doi.org/10.1371/JOURNAL.PONE.0046063. | |
dc.relation.references | Leung, L.; Fehr, A.; Abraham, R.; Dowling, J.; Doig, C. L. Roles of ADP-Ribosylation during Infection Establishment by Trypanosomatidae Parasites. Pathogens 2023, Vol. 12, Page 708 2023, 12 (5), 708. https://doi.org/10.3390/PATHOGENS12050708. | |
dc.relation.references | Haikarainen, T.; Lehtiö, L. Proximal ADP-Ribose Hydrolysis in Trypanosomatids Is Catalyzed by a Macrodomain. Scientific Reports 2016 6:1 2016, 6 (1), 1–9. https://doi.org/10.1038/srep24213. | |
dc.relation.references | Taylor, D. R.; Williams, G. T. Leishmania Mexicana Amazonensis: ADP-Ribosyltransferase Antagonists Specifically Inhibit Amastigote to Promastigote Differentiation. Exp Parasitol 1988, 66 (2), 189–196. https://doi.org/10.1016/0014-4894(88)90090-2. | |
dc.relation.references | Das, M.; Mukherjee, S. B.; Shaha, C. Hydrogen Peroxide Induces Apoptosis-like Death in Leishmania Donovani Promastigotes. J Cell Sci 2001, 114 (Pt 13), 2461–2469. https://doi.org/10.1242/JCS.114.13.2461. | |
dc.relation.references | Verma, N. K.; Dey, C. S. Possible Mechanism of Miltefosine-Mediated Death of Leishmania Donovani. Antimicrob Agents Chemother 2004, 48 (8), 3010–3015. https://doi.org/10.1128/AAC.48.8.3010-3015.2004. | |
dc.relation.references | Ardestani, S. K.; Poorrajab, F.; Razmi, S.; Foroumadi, A.; Ajdary, S.; Gharegozlou, B.; Behrouzi-Fardmoghadam, M.; Shafiee, A. Cell Death Features Induced in Leishmania Major by 1,3,4-Thiadiazole Derivatives. Exp Parasitol 2012, 132 (2), 116–122. https://doi.org/10.1016/J.EXPPARA.2012.06.002. | |
dc.relation.references | Sen, N.; Das, B. B.; Ganguly, A.; Mukherjee, T.; Tripathi, G.; Bandyopadhyay, S.; Rakshit, S.; Sen, T.; Majumder, H. K. Camptothecin Induced Mitochondrial Dysfunction Leading to Programmed Cell Death in Unicellular Hemoflagellate Leishmania Donovani. Cell Death Differ 2004, 11 (8), 924–936. https://doi.org/10.1038/SJ.CDD.4401435. | |
dc.relation.references | Khademvatan, S.; Gharavi, M. J.; Saki, J. Miltefosine Induces Metacaspase and PARP Genes Expression in Leishmania Infantum. Braz J Infect Dis 2011, 15 (5), 442–448. https://doi.org/10.1016/S1413-8670(11)70225-2. | |
dc.relation.references | Genois, M.-M.; Paquet, E. R.; Laffitte, M.-C. N.; Maity, R.; Rodrigue, A.; Ouellette, M.; Masson, J.-Y. DNA Repair Pathways in Trypanosomatids: From DNA Repair to Drug Resistance. Microbiol Mol Biol Rev 2014, 78 (1), 40. https://doi.org/10.1128/MMBR.00045-13. | |
dc.relation.references | Ramírez-Enríquez, L. D.; Ramírez-Hernández, M. H. Estudio de La Poli ADP Ribosilación En Leishmania Braziliensis: En Busca de Una Posible Poli ADP Ribosil Polimerasa. https://dog.biocuckoo.org. | |
dc.relation.references | González, C.; Wang, O.; Strutz, S. E.; González-Salazar, C.; Sánchez-Cordero, V.; Sarkar, S. Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species. PLoS Negl Trop Dis 2010, 4 (1), e585. https://doi.org/10.1371/JOURNAL.PNTD.0000585. | |
dc.relation.references | Scott, P.; Novais, F. O. Cutaneous Leishmaniasis: Immune Responses in Protection and Pathogenesis. Nat Rev Immunol 2016, 16 (9), 581–592. https://doi.org/10.1038/NRI.2016.72. | |
dc.relation.references | Metzker, M. L.; Caskey, C. T. Polymerase Chain Reaction (PCR). Encyclopedia of Life Sciences 2009. https://doi.org/10.1002/9780470015902.A0000998.PUB2. | |
dc.relation.references | Sutherland, J. C.; Lin, B.; Monteleone, D. C.; Mugavero, J. A.; Sutherland, B. M.; Trunk, J. Electronic Imaging System for Direct and Rapid Quantitation of Fluorescence from Electrophoretic Gels: Application to Ethidium Bromide-Stained DNA. Anal Biochem 1987, 163 (2), 446–457. https://doi.org/10.1016/0003-2697(87)90247-8. | |
dc.relation.references | V20230208 (For Research Use Only) Important Notes: Gel Extraction Protocol: For Extraction of DNA Fragments from Agarose Gel Specification: Kit Contents. | |
dc.relation.references | Ntsomboh-Ntsefong, G.; Mbi, K. T.; Getachew Seyum, E. The Carboxyl-Terminal Domain of Human Poly(ADP-Ribose) Polymerase. Overproduction in Escherichia Coli, Large Scale Purification, and Characterization. Journal of Biological Chemistry 1993. https://doi.org/10.20935/ACADBIOL6264. | |
dc.relation.references | pGEM®-T Vector Systems | T Vector Cloning. https://worldwide.promega.com/products/pcr/pcr-cloning/pgem-t-vector-systems/?catNum=A3600 (accessed 2025-04-19). | |
dc.relation.references | Sambrook, J. and Russell, D.W. (2001) Molecular Cloning A Laboratory Manual. 3rd Edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York. - References - Scientific Research Publishing. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1765722 (accessed 2025-04-19). | |
dc.relation.references | Engebrecht, J.; Brent, R.; Kaderbhai, M. A. Minipreps of Plasmid DNA. Curr Protoc Mol Biol 2001, Chapter 1 (1). https://doi.org/10.1002/0471142727.MB0106S15. | |
dc.relation.references | BamHI (10 U/μL). https://www.thermofisher.com/order/catalog/product/ER0051 (accessed 2025-04-19). | |
dc.relation.references | HindIII (10 U/μL). https://www.thermofisher.com/order/catalog/product/ER0501 (accessed 2025-04-19). | |
dc.relation.references | The QIAexpressionist - (EN) - QIAGEN. https://www.qiagen.com/us/resources/resourcedetail?id=79ca2f7d-42fe-4d62-8676-4cfa948c9435&lang=en (accessed 2025-04-19). | |
dc.relation.references | Prasad, S.; Khadatare, P. B.; Roy, I. Effect of Chemical Chaperones in Improving the Solubility of Recombinant Proteins in Escherichia Coli. Appl Environ Microbiol 2011, 77 (13), 4603–4609. https://doi.org/10.1128/AEM.05259-11/SUPPL_FILE/REPLACEMENT__SUPPLEMENTAL_FILE.PDF. | |
dc.relation.references | Schägger, H. Tricine-SDS-PAGE. Nat Protoc 2006, 1 (1), 16–22. https://doi.org/10.1038/NPROT.2006.4. | |
dc.relation.references | Mahmood, T.; Yang, P. C. Western Blot: Technique, Theory, and Trouble Shooting. N Am J Med Sci 2012, 4 (9), 429–434. https://doi.org/10.4103/1947-2714.100998. | |
dc.relation.references | Palmer, I.; Wingfield, P. T. Preparation and Extraction of Insoluble (Inclusion-Body) Proteins from Escherichia Coli. Current protocols in protein science / editorial board, John E. Coligan ... [et al.] 2012, 0 6 (SUPPL.70), 10.1002/0471140864.ps0603s70. https://doi.org/10.1002/0471140864.PS0603S70. | |
dc.relation.references | Purification of Polyhistidine-Containing Recombinant Proteins with Ni-NTA Purification System | Thermo Fisher Scientific - CO. https://www.thermofisher.com/co/en/home/references/protocols/proteins-expression-isolation-and-analysis/protein-purification-protocol/purification-of-polyhistidine-containing-recombinant-proteins-with-ni-nta-purification-system.html (accessed 2025-04-19). | |
dc.relation.references | Haikarainen, T.; Schlesinger, M.; Obaji, E.; Fernández Villamil, S. H.; Lehtiö, L. Structural and Biochemical Characterization of Poly-ADP-Ribose Polymerase from Trypanosoma Brucei. Scientific Reports 2017 7:1 2017, 7 (1), 1–12. https://doi.org/10.1038/s41598-017-03751-4. | |
dc.relation.references | Langelier, M. F.; Steffen, J. D.; Riccio, A. A.; McCauley, M.; Pascal, J. M. Purification of DNA Damage-Dependent PARPs from E. Coli for Structural and Biochemical Analysis. Methods in Molecular Biology 2017, 1608, 431–444. https://doi.org/10.1007/978-1-4939-6993-7_27. | |
dc.relation.references | Nikiforov, A.; Dölle, C.; Niere, M.; Ziegler, M. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells: From Entry of Extracellular Precursors to Mitochondrial NAD Generation. J Biol Chem 2011, 286 (24), 21767–21778. https://doi.org/10.1074/JBC.M110.213298. | |
dc.relation.references | Alegria-Schaffer, A. Western Blotting Using Chemiluminescent Substrates. Methods Enzymol 2014, 541, 251–259. https://doi.org/10.1016/B978-0-12-420119-4.00019-7. | |
dc.relation.references | Platinum SuperFi II DNA Polymerase-High Fidelity PCR Enzyme | Thermo Fisher Scientific - CO. https://www.thermofisher.com/co/en/home/life-science/pcr/pcr-enzymes-master-mixes/platinum-high-fidelity-pcr-enzyme.html?ef_id=EAIaIQobChMIivysponojAMVPahaBR2V_STDEAAYASAAEgLCP_D_BwE:G:s&s_kwcid=AL!3652!3!558936143454!e!!g!!platinum%20superfi%20dna%20polymerase!11329799882!107921850861&cid=bid_mol_pch_r01_co_cp1358_pjt0000_bid00000_0se_gaw_bt_pur_con&gad_source=1&gbraid=0AAAAADxi_GTldDV6BynnoeboiUL4we8gj&gclid=EAIaIQobChMIivysponojAMVPahaBR2V_STDEAAYASAAEgLCP_D_BwE (accessed 2025-04-19). | |
dc.relation.references | Sistema QIAEX II | Purificación ADN en gel agarosa | QIAGEN. https://www.qiagen.com/es-es/products/discovery-and-translational-research/dna-rna-purification/dna-purification/dna-clean-up/qiaex-ii-system (accessed 2025-04-19). | |
dc.relation.references | T4 Polynucleotide Kinase | NEB. https://www.neb.com/en/products/m0201-t4-polynucleotide-kinase?srsltid=AfmBOorOvyJ58Wg4CWgAx0J1ipwoGAySztHO4rfgch2e-nTQui-Kt6uX (accessed 2025-04-19). | |
dc.relation.references | Doherty, A. J.; Suh, S. W. Structural and Mechanistic Conservation in DNA Ligases. Nucleic Acids Res 2000, 28 (21), 4051. https://doi.org/10.1093/NAR/28.21.4051. | |
dc.relation.references | SalI (10 U/μL). https://www.thermofisher.com/order/catalog/product/ER0641 (accessed 2025-04-19). | |
dc.relation.references | PstI (10 U/μL). https://www.thermofisher.com/order/catalog/product/ER0611 (accessed 2025-04-19). | |
dc.relation.references | Plasmid purification—miniprep kits. https://www.takarabio.com/products/nucleic-acid-purification/plasmid-purification-kits/miniprep?srsltid=AfmBOooRglNjXL-5dRDxQUWzvjzfL5f6L-3Tl5sZLmGXJ2cEqb132IFq (accessed 2025-04-19). | |
dc.relation.references | Maxipreps for plasmid DNA purification—NucleoBond Xtra Maxi/Maxi Plus. https://www.takarabio.com/products/nucleic-acid-purification/plasmid-purification-kits/maxiprep/nucleobond-xtra?srsltid=AfmBOorEYJGdQD9CVYtnHn6Y3BIaeXcoQhLAguDR_84rw4qnhbmFEgae (accessed 2025-04-19). | |
dc.relation.references | VanLinden, M. R.; Niere, M.; Nikiforov, A. A.; Ziegler, M.; Dölle, C. Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools. Methods Mol Biol 2017, 1608, 45–56. https://doi.org/10.1007/978-1-4939-6993-7_4. | |
dc.relation.references | X-tremeGENETM HP DNA Transfection Reagent Protocol. https://www.sigmaaldrich.com/CO/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/transfection-and-gene-editing/xtghp-general-protocol?srsltid=AfmBOoqWwm3rFWid7cLWq9GKV_YNb-cVwIYaTtgxYaFfbaDzmgYZJa6f (accessed 2025-04-19). | |
dc.relation.references | Shubach, L. M. J.; Rodríguez, L. E. C.; Castañeda, J. E. G.; Hernández, M. H. R.; Shubach, L. M. J.; Rodríguez, L. E. C.; Castañeda, J. E. G.; Hernández, M. H. R. Functional Identification and Subcellular Localization of NAD Kinase in the Protozoan Parasite Giardia Intestinalis. Revista Colombiana de Química 2019, 48 (1), 16–25. https://doi.org/10.15446/rev.colomb.quim.v48n1.75273. | |
dc.relation.references | Making and Using Antibodies: A Practical Handbook, Second Edition - Google Libros. https://books.google.com.co/books?id=AfnRBQAAQBAJ&pgis=1&redir_esc=y (accessed 2025-04-20). | |
dc.relation.references | Pauly, D.; Chacana, P. A.; Calzado, E. G.; Brembs, B.; Schade, R. IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation. J Vis Exp 2011, No. 51. https://doi.org/10.3791/3084. | |
dc.relation.references | Guilmineau, F.; Krause, I.; Kulozik, U. Efficient Analysis of Egg Yolk Proteins and Their Thermal Sensitivity Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis under Reducing and Nonreducing Conditions. J Agric Food Chem 2005, 53 (24), 9329–9336. https://doi.org/10.1021/JF050475F. | |
dc.relation.references | Kohl, T. O.; Ascoli, C. A. Immunometric Antibody Sandwich Enzyme-Linked Immunosorbent Assay. Cold Spring Harb Protoc 2017, 2017 (6), 450–457. https://doi.org/10.1101/PDB.PROT093716. | |
dc.relation.references | Moreno-González, P. A.; Diaz, G. J.; Ramírez-Hernández, M. H. Producción y Purificación de Anticuerpos Aviares (IgYs) a Partir de Cuerpos de Inclusión de Una Proteína Recombinante Central En El Metabolismo Del NAD+. Revista Colombiana de Química 2013, 42 (2), 12–20. | |
dc.relation.references | Magi, B.; Liberatori, S. Immunoblotting Techniques. Methods Mol Biol 2005, 295, 227–254. https://doi.org/10.1385/1-59259-873-0:227. | |
dc.relation.references | van Kempen, M.; Kim, S. S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C. L. M.; Söding, J.; Steinegger, M. Fast and Accurate Protein Structure Search with Foldseek. Nature Biotechnology 2023 42:2 2023, 42 (2), 243–246. https://doi.org/10.1038/s41587-023-01773-0. | |
dc.relation.references | Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A. J.; Bambrick, J.; Bodenstein, S. W.; Evans, D. A.; Hung, C. C.; O’Neill, M.; Reiman, D.; Tunyasuvunakool, K.; Wu, Z.; Žemgulytė, A.; Arvaniti, E.; Beattie, C.; Bertolli, O.; Bridgland, A.; Cherepanov, A.; Congreve, M.; Cowen-Rivers, A. I.; Cowie, A.; Figurnov, M.; Fuchs, F. B.; Gladman, H.; Jain, R.; Khan, Y. A.; Low, C. M. R.; Perlin, K.; Potapenko, A.; Savy, P.; Singh, S.; Stecula, A.; Thillaisundaram, A.; Tong, C.; Yakneen, S.; Zhong, E. D.; Zielinski, M.; Žídek, A.; Bapst, V.; Kohli, P.; Jaderberg, M.; Hassabis, D.; Jumper, J. M. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024 630:8016 2024, 630 (8016), 493–500. https://doi.org/10.1038/s41586-024-07487-w. | |
dc.relation.references | Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Meng, E. C.; Couch, G. S.; Croll, T. I.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Science 2021, 30 (1), 70–82. https://doi.org/10.1002/PRO.3943. | |
dc.relation.references | Wilkins, M. R.; Gasteiger, E.; Bairoch, A.; Sanchez, J. C.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F. Protein Identification and Analysis Tools in the ExPASy Server. Methods Mol Biol 1999, 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531. | |
dc.relation.references | Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites. J Mol Biol 1999, 294 (5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310. | |
dc.relation.references | Zhao, Q.; Xie, Y.; Zheng, Y.; Jiang, S.; Liu, W.; Mu, W.; Liu, Z.; Zhao, Y.; Xue, Y.; Ren, J. GPS-SUMO: A Tool for the Prediction of Sumoylation Sites and SUMO-Interaction Motifs. Nucleic Acids Res 2014, 42 (W1), W325–W330. https://doi.org/10.1093/NAR/GKU383. | |
dc.relation.references | Wang, D.; Liu, D.; Yuchi, J.; He, F.; Jiang, Y.; Cai, S.; Li, J.; Xu, D. MusiteDeep: A Deep-Learning Based Webserver for Protein Post-Translational Modification Site Prediction and Visualization. Nucleic Acids Res 2020, 48 (W1), W140–W146. https://doi.org/10.1093/NAR/GKAA275. | |
dc.relation.references | Bhatwa, A.; Wang, W.; Hassan, Y. I.; Abraham, N.; Li, X. Z.; Zhou, T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia Coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol 2021, 9, 630551. https://doi.org/10.3389/FBIOE.2021.630551/XML/NLM. | |
dc.relation.references | Ooi, S. K.; Sato, S.; Tomomori-Sato, C.; Zhang, Y.; Wen, Z.; Banks, C. A. S.; Washburn, M. P.; Unruh, J. R.; Florens, L.; Conaway, R. C.; Conaway, J. W. Multiple Roles for PARP1 in ALC1-Dependent Nucleosome Remodeling. Proc Natl Acad Sci U S A 2021, 118 (36), e2107277118. https://doi.org/10.1073/PNAS.2107277118/SUPPL_FILE/PNAS.2107277118.SD01.XLSX. | |
dc.relation.references | Miranda, E. A.; Dantzer, F.; O’Farrell, M.; de Demurcia, G.; De murcia, J. M. Characterization of a Gain-of-Function Mutant of Poly(ADP-Ribose) Polymerase. Biochem Biophys Res Commun 1995, 212 (2), 317–325. https://doi.org/10.1006/bbrc.1995.1972. | |
dc.relation.references | Hopp, A.-K.; Hottiger, M. O.; Hopp, A.-K. ;; Hottiger, M. O. Uncovering the Invisible: Mono-ADP-Ribosylation Moved into the Spotlight. Cells 2021, Vol. 10, Page 680 2021, 10 (3), 680. https://doi.org/10.3390/CELLS10030680. | |
dc.relation.references | Rosano, G. L.; Ceccarelli, E. A. Rare Codon Content Affects the Solubility of Recombinant Proteins in a Codon Bias-Adjusted Escherichia Coli Strain. Microb Cell Fact 2009, 8 (1), 1–9. https://doi.org/10.1186/1475-2859-8-41/FIGURES/5. | |
dc.relation.references | Liu, Y.; Yang, Q.; Zhao, F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021, 90, 375–401. https://doi.org/10.1146/ANNUREV-BIOCHEM-071320-112701. | |
dc.relation.references | Daniel, E.; Onwukwe, G. U.; Wierenga, R. K.; Quaggin, S. E.; Vainio, S. J.; Krause, M. ATGme: Open-Source Web Application for Rare Codon Identification and Custom DNA Sequence Optimization. BMC Bioinformatics 2015, 16 (1), 1–6. https://doi.org/10.1186/S12859-015-0743-5/FIGURES/2. | |
dc.relation.references | Enhanced Protein Coexpression in E. Coli. 2003. | |
dc.relation.references | Steitz, T. A. The Structural Changes of T7 RNA Polymerase from Transcription Initiation to Elongation. Curr Opin Struct Biol 2009, 19 (6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001. | |
dc.relation.references | Gentz, R.; Bujard, H. Promoters Recognized by Escherichia Coli RNA Polymerase Selected by Function: Highly Efficient Promoters from Bacteriophage T5. J Bacteriol 1985, 164 (1), 70–77. https://doi.org/10.1128/JB.164.1.70-77.1985. | |
dc.relation.references | Studier, F. W.; Moffatt, B. A. Use of Bacteriophage T7 RNA Polymerase to Direct Selective High-Level Expression of Cloned Genes. J Mol Biol 1986, 189 (1), 113–130. https://doi.org/10.1016/0022-2836(86)90385-2. | |
dc.relation.references | Singh, U.; Deb, D.; Singh, A.; Grover, A. Glycine-Rich RNA Binding Protein of Oryza Sativa Inhibits Growth of M15 E. Coli Cells. BMC Res Notes 2011, 4 (1), 1–7. https://doi.org/10.1186/1756-0500-4-18/FIGURES/4. | |
dc.relation.references | Kong, B.; Guo, G. L. Soluble Expression of Disulfide Bond Containing Proteins FGF15 and FGF19 in the Cytoplasm of Escherichia Coli. PLoS One 2014, 9 (1), e85890. https://doi.org/10.1371/JOURNAL.PONE.0085890. | |
dc.relation.references | Auton, M.; Rösgen, J.; Sinev, M.; Holthauzen, L. M. F.; Bolen, D. W. Osmolyte Effects on Protein Stability and Solubility: A Balancing Act between Backbone and Side-Chains. Biophys Chem 2011, 159 (1), 90–99. https://doi.org/10.1016/J.BPC.2011.05.012. | |
dc.relation.references | Bolen, D. W. Protein Stabilization by Naturally Occurring Osmolytes. Methods Mol Biol 2001, 168, 17–36. https://doi.org/10.1385/1-59259-193-0:017. | |
dc.relation.references | Kumar, R. Role of Naturally Occurring Osmolytes in Protein Folding and Stability. Arch Biochem Biophys 2009, 491 (1–2), 1–6. https://doi.org/10.1016/J.ABB.2009.09.007. | |
dc.relation.references | Singh, A.; Upadhyay, V.; Upadhyay, A. K.; Singh, S. M.; Panda, A. K. Protein Recovery from Inclusion Bodies of Escherichia Coli Using Mild Solubilization Process. Microb Cell Fact 2015, 14 (1), 1–10. https://doi.org/10.1186/S12934-015-0222-8/TABLES/3. | |
dc.relation.references | Hart, R. A.; Rinas, U.; Bailey, J. E. Protein Composition of Vitreoscilla Hemoglobin Inclusion Bodies Produced in Escherichia Coli. Journal of Biological Chemistry 1990, 265 (21), 12728–12733. https://doi.org/10.1016/S0021-9258(19)38405-4. | |
dc.relation.references | Singh, S. M.; Panda, A. K. Solubilization and Refolding of Bacterial Inclusion Body Proteins. J Biosci Bioeng 2005, 99 (4), 303–310. https://doi.org/10.1263/JBB.99.303. | |
dc.relation.references | Bolanos-Garcia, V. M.; Davies, O. R. Structural Analysis and Classification of Native Proteins from E. Coli Commonly Co-Purified by Immobilised Metal Affinity Chromatography. Biochimica et Biophysica Acta (BBA) - General Subjects 2006, 1760 (9), 1304–1313. https://doi.org/10.1016/J.BBAGEN.2006.03.027. | |
dc.relation.references | Villamil-Silva, S. E.; Ortiz-Joya, L. J.; Contreras-Rodriguez, L. E.; Díaz, G. J.; Ramírez-Hernández, M. H.; Villamil-Silva, S. E.; Ortiz-Joya, L. J.; Contreras-Rodriguez, L. E.; Díaz, G. J.; Ramírez-Hernández, M. H. Identificación de Una Triparedoxina Peroxidasa Citoplasmática En Leishmania Braziliensis. Revista Colombiana de Química 2021, 50 (2), 3–14. https://doi.org/10.15446/REV.COLOMB.QUIM.V50N2.91721. | |
dc.relation.references | Hebditch, M.; Carballo-Amador, M. A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein–Sol: A Web Tool for Predicting Protein Solubility from Sequence. Bioinformatics 2017, 33 (19), 3098. https://doi.org/10.1093/BIOINFORMATICS/BTX345. | |
dc.relation.references | Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, J. M.; Sachs, M. S.; Liu, Y. Non-Optimal Codon Usage Affects Expression, Structure and Function of Clock Protein FRQ. Nature 2013 495:7439 2013, 495 (7439), 111–115. https://doi.org/10.1038/nature11833. | |
dc.relation.references | Zhang, G.; Ignatova, Z. Folding at the Birth of the Nascent Chain: Coordinating Translation with Co-Translational Folding. Curr Opin Struct Biol 2011, 21 (1), 25–31. https://doi.org/10.1016/J.SBI.2010.10.008. | |
dc.relation.references | Bornhorst, J. A.; Falke, J. J. Purification of Proteins Using Polyhistidine Affinity Tags. Methods Enzymol 2000, 326, 245–254. https://doi.org/10.1016/S0076-6879(00)26058-8. | |
dc.relation.references | Langelier, M. F.; Planck, J. L.; Servent, K. M.; Pascal, J. M. Purification of Human PARP-1 and PARP-1 Domains from Escherichia Coli for Structural and Biochemical Analysis. Methods in Molecular Biology 2011, 780, 209–226. https://doi.org/10.1007/978-1-61779-270-0_13. | |
dc.relation.references | Green, M. R.; Sambrook, J. Screening Bacterial Colonies Using X-Gal and IPTG: α-Complementation. Cold Spring Harb Protoc 2019, 2019 (12), 790–794. https://doi.org/10.1101/PDB.PROT101329. | |
dc.relation.references | Challa, S.; Ryu, K. W.; Whitaker, A. L.; Abshier, J. C.; Camacho, C. V.; Kraus, W. L. Development and Characterization of New Tools for Detecting Poly(ADP-Ribose) in Vitro and in Vivo. Elife 2022, 11. https://doi.org/10.7554/ELIFE.72464. | |
dc.relation.references | Simonin, F.; Briand, J. P.; Muller, S.; de Murcia, G. Detection of Poly(ADP Ribose) Polymerase in Crude Extracts by Activity-Blot. Anal Biochem 1991, 195 (2), 226–231. https://doi.org/10.1016/0003-2697(91)90321-J. | |
dc.relation.references | Gagnon, S. N.; Desnoyers, S. Single Amino Acid Substitution Enhances Bacterial Expression of PARP-1D214A. Mol Cell Biochem 2003, 243 (1–2), 15–22. https://doi.org/10.1023/A:1021645327079/METRICS. | |
dc.relation.references | Li, Y. R.; Liu, M. J. Prevalence of Alternative AUG and Non-AUG Translation Initiators and Their Regulatory Effects across Plants. Genome Res 2020, 30 (10), 1418–1433. https://doi.org/10.1101/GR.261834.120/-/DC1. | |
dc.relation.references | Navas, L. E.; Carnero, A. NAD+ Metabolism, Stemness, the Immune Response, and Cancer. Signal Transduction and Targeted Therapy 2020 6:1 2021, 6 (1), 1–20. https://doi.org/10.1038/s41392-020-00354-w. | |
dc.relation.references | Niere, M.; Mashimo, M.; Agledal, L.; Dölle, C.; Kasamatsu, A.; Kato, J.; Moss, J.; Ziegler, M. ADP-Ribosylhydrolase 3 (ARH3), Not Poly(ADP-Ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-Associated Poly(ADP-Ribose). J Biol Chem 2012, 287 (20), 16088–16102. https://doi.org/10.1074/JBC.M112.349183. | |
dc.relation.references | Butash, K. A.; Natarajan, P.; Young, A.; Fox, D. K. Reexamination of the Effect of Endotoxin on Cell Proliferation and Transfection Efficiency. Biotechniques 2000, 29 (3), 610–619. https://doi.org/10.2144/00293RR04. | |
dc.relation.references | Chong, Z. X.; Yeap, S. K.; Ho, W. Y. Transfection Types, Methods and Strategies: A Technical Review. PeerJ 2021, 9, e11165. https://doi.org/10.7717/PEERJ.11165/SUPP-1. | |
dc.relation.references | Xiong, L.; Peng, M.; Zhao, M.; Liang, Z. Truncated Expression of a Carboxypeptidase A from Bovine Improves Its Enzymatic Properties and Detoxification Efficiency of Ochratoxin A. Toxins 2020, Vol. 12, Page 680 2020, 12 (11), 680. https://doi.org/10.3390/TOXINS12110680. | |
dc.relation.references | Yu, Y.; Liu, Z.; Yang, M.; Chen, M.; Wei, Z.; Shi, L.; Li, L.; Mou, H. Characterization of Full-Length and Truncated Recombinant κ-Carrageenase Expressed in Pichia Pastoris. Front Microbiol 2017, 8 (AUG), 281086. https://doi.org/10.3389/FMICB.2017.01544/BIBTEX. | |
dc.relation.references | Lee, J. M.; Hammarén, H. M.; Savitski, M. M.; Baek, S. H. Control of Protein Stability by Post-Translational Modifications. Nature Communications 2023 14:1 2023, 14 (1), 1–16. https://doi.org/10.1038/s41467-023-35795-8. | |
dc.relation.references | Kun, E.; Kirsten, E.; Mendeleyev, J.; Ordahl, C. P. Regulation of the Enzymatic Catalysis of Poly(ADP-Ribose) Polymerase by DsDNA, Polyamines, Mg2+, Ca2+, Histones H1 and H3, and ATP†. Biochemistry 2003, 43 (1), 210–216. https://doi.org/10.1021/BI0301791. | |
dc.relation.references | Qin, H. R.; Kim, H. J.; Kim, J. Y.; Hurt, E. M.; Klarmann, G. J.; Kawasaki, B. T.; Duhagon Serrat, M. A.; Farrar, W. L. Activation of Signal Transducer and Activator of Transcription 3 through a Phosphomimetic Serine 727 Promotes Prostate Tumorigenesis Independent of Tyrosine 705 Phosphorylation. Cancer Res 2008, 68 (19), 7736–7741. https://doi.org/10.1158/0008-5472.CAN-08-1125. | |
dc.relation.references | Karachaliou, C.-E.; Vassilakopoulou, V.; Livaniou, E. IgY Technology: Methods for Developing and Evaluating Avian Immunoglobulins for the in Vitro Detection of Biomolecules. World J Methodol 2021, 11 (5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243. | |
dc.relation.references | Yamamura, J. ichi; Adachi, T.; Aoki, N.; Nakajima, H.; Nakamura, R.; Matsuda, T. Precursor-Product Relationship between Chicken Vitellogenin and the Yolk Proteins: The 40 KDa Yolk Plasma Glycoprotein Is Derived from the C-Terminal Cysteine-Rich Domain of Vitellogenin II. Biochimica et Biophysica Acta (BBA) - General Subjects 1995, 1244 (2–3), 384–394. https://doi.org/10.1016/0304-4165(95)00033-8. | |
dc.relation.references | Szépfalusi, Z.; Ebner, C.; Pandjaitan, R.; Orlicek, F.; Scheiner, O.; Boltz-Nitulescu, G.; Kraft, D.; Ebner, H. Egg Yolk Alpha-Livetin (Chicken Serum Albumin) Is a Cross-Reactive Allergen in the Bird-Egg Syndrome. J Allergy Clin Immunol 1994, 93 (5), 932–942. https://doi.org/10.1016/0091-6749(94)90388-3. | |
dc.relation.references | Pacheco, B. L. B.; Nogueira, C. P.; Venancio, E. J. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals 2023, Vol. 13, Page 3130 2023, 13 (19), 3130. https://doi.org/10.3390/ANI13193130. | |
dc.relation.references | Schlesinger, M.; Vilchez Larrea, S. C.; Haikarainen, T.; Narwal, M.; Venkannagari, H.; Flawiá, M. M.; Lehtiö, L.; Fernández Villamil, S. H. Disrupted ADP-Ribose Metabolism with Nuclear Poly (ADP-Ribose) Accumulation Leads to Different Cell Death Pathways in Presence of Hydrogen Peroxide in Procyclic Trypanosoma Brucei. Parasit Vectors 2016, 9 (1), 1–15. https://doi.org/10.1186/S13071-016-1461-1/FIGURES/6. | |
dc.relation.references | Fernández Villamil, S. H.; Vilchez Larrea, S. C. Poly(ADP-Ribose) Metabolism in Human Parasitic Protozoa. Acta Trop 2020, 208, 105499. https://doi.org/10.1016/J.ACTATROPICA.2020.105499. | |
dc.relation.references | Lee, J. H.; Hussain, M.; Kim, E. W.; Cheng, S. J.; Leung, A. K. L.; Fakouri, N. B.; Croteau, D. L.; Bohr, V. A. Mitochondrial PARP1 Regulates NAD+-Dependent Poly ADP-Ribosylation of Mitochondrial Nucleoids. Experimental & Molecular Medicine 2022 54:12 2022, 54 (12), 2135–2147. https://doi.org/10.1038/s12276-022-00894-x. | |
dc.relation.references | Genois, M. M.; Mukherjee, A.; Ubeda, J. M.; Buisson, R.; Paquet, E.; Roy, G.; Plourde, M.; Coulombe, Y.; Ouellette, M.; Masson, J. Y. Interactions between BRCA2 and RAD51 for Promoting Homologous Recombination in Leishmania Infantum. Nucleic Acids Res 2012, 40 (14), 6570–6584. https://doi.org/10.1093/NAR/GKS306. | |
dc.relation.references | Das, A.; Dasgupta, A.; Sharma, S.; Ghosh, M.; Sengupta, T.; Bandopadhyay, S.; Majumder, H. K. Characterisation of the Gene Encoding Type II DNA Topoisomerase from Leishmania Donovani: A Key Molecular Target in Antileishmanial Therapy. Nucleic Acids Res 2001, 29 (9), 1844–1851. https://doi.org/10.1093/NAR/29.9.1844. | |
dc.relation.references | Steinegger, M.; Söding, J. MMseqs2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nature Biotechnology 2017 35:11 2017, 35 (11), 1026–1028. https://doi.org/10.1038/nbt.3988. | |
dc.relation.references | Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021 596:7873 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2. | |
dc.relation.references | Suskiewicz, M. J.; Munnur, D.; Strømland, Ø.; Yang, J. C.; Easton, L. E.; Chatrin, C.; Zhu, K.; Baretić, D.; Goffinont, S.; Schuller, M.; Wu, W. F.; Elkins, J. M.; Ahel, D.; Sanyal, S.; Neuhaus, D.; Ahel, I. Updated Protein Domain Annotation of the PARP Protein Family Sheds New Light on Biological Function. Nucleic Acids Res 2023, 51 (15), 8217–8236. https://doi.org/10.1093/NAR/GKAD514. | |
dc.relation.references | Rack, J. G. M.; Perina, D.; Ahel, I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu Rev Biochem 2016, 85, 431–454. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014935. | |
dc.relation.references | Rack, J. G. M.; Palazzo, L.; Ahel, I. (ADP-Ribosyl)Hydrolases: Structure, Function, and Biology. Genes Dev 2020, 34 (5–6), 263–284. https://doi.org/10.1101/GAD.334631.119. | |
dc.relation.references | Larrea, E.; Fernández-Rubio, C.; Peña-Guerrero, J.; Guruceaga, E.; Nguewa, P. A. The BRCT Domain from the Homologue of the Oncogene PES1 in Leishmania Major (LmjPES) Promotes Malignancy and Drug Resistance in Mammalian Cells. Int J Mol Sci 2022, 23 (21). https://doi.org/10.3390/IJMS232113203. | |
dc.relation.references | Manco, G.; Lacerra, G.; Porzio, E.; Catara, G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022, 12 (3), 443. https://doi.org/10.3390/BIOM12030443/S1. | |
dc.relation.references | Kauppinen, T. M.; Chan, W. Y.; Suh, S. W.; Wiggins, A. K.; Huang, E. J.; Swanson, R. A. Direct Phosphorylation and Regulation of Poly(ADP-Ribose) Polymerase-1 by Extracellular Signal-Regulated 1/2. Proc Natl Acad Sci U S A 2006, 103 (18), 7136–7141. https://doi.org/10.1073/PNAS.0508606103/SUPPL_FILE/08606FIG7.PDF. | |
dc.relation.references | Piao, L.; Fujioka, K.; Nakakido, M.; Hamamoto, R. Regulation of Poly(ADP-Ribose) Polymerase 1 Functions by Post-Translational Modifications. Frontiers in Bioscience - Landmark 2018, 23 (1), 13–26. https://doi.org/10.2741/4578/PDF. | |
dc.relation.references | Bea, A.; Kröber-Boncardo, C.; Sandhu, M.; Brinker, C.; Clos, J. The Leishmania Donovani SENP Protease Is Required for SUMO Processing but Not for Viability. Genes 2020, Vol. 11, Page 1198 2020, 11 (10), 1198. https://doi.org/10.3390/GENES11101198. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | |
dc.subject.ddc | 570 - Biología::571 - Fisiología y temas relacionados | |
dc.subject.decs | NAD -- Síntesis química | spa |
dc.subject.decs | NAD -- Chemical synthesis | eng |
dc.subject.decs | Poli(ADP-Ribosa) Polimerasas -- Química | spa |
dc.subject.decs | Poly(ADP-ribose) Polymerases -- Chemistry | eng |
dc.subject.decs | Poli ADP Ribosilación -- Inmunología | spa |
dc.subject.decs | Poly ADP Ribosylation -- Immunology | eng |
dc.subject.decs | Leishmania braziliensis -- Genética | spa |
dc.subject.decs | Leishmania braziliensis -- Genetics | eng |
dc.subject.decs | Poli(ADP-Ribosa) Polimerasas -- Metabolismo | spa |
dc.subject.decs | Poly(ADP-ribose) Polymerases -- Metabolism | eng |
dc.subject.decs | Poli(ADP-Ribosa) Polimerasas -- Fisiología | spa |
dc.subject.decs | Poly(ADP-ribose) Polymerases -- Physiology | eng |
dc.subject.proposal | Dinucleótido de adenina y nicotinamida (NAD+) | spa |
dc.subject.proposal | Leishmania braziliensis | |
dc.subject.proposal | Poli ADP-ribosa polimerasa (PARP) | spa |
dc.subject.proposal | Nicotinamide adenine dinucleotide (NAD+) | eng |
dc.subject.proposal | Poly ADP-ribose polymerase (PARP) | eng |
dc.title | Aproximación al estudio de la poli ADP ribosilación en protozoarios de interés en salud : identificación y caracterización de un candidato a poli (ADP-ribosa) polimerasa de Leishmania braziliensis | spa |
dc.title.translated | Approach to the study of poly ADP ribosylation in protozoa of health interest : identification and characterization of a candidate poly (ADP-ribose) polymerase from Leishmania braziliensis | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis.pdf
- Tamaño:
- 3.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: