Principio de concentración-compacidad y aplicaciones

dc.contributor.advisorVélez López, Carlos Augusto
dc.contributor.advisorAgudelo Rico, Oscar Iván
dc.contributor.authorDurango Higinio, Juan Diego
dc.contributor.orcidAgudelo Rico, Óscar Iván [0000-0002-2588-9999]spa
dc.date.accessioned2023-02-07T18:32:17Z
dc.date.available2023-02-07T18:32:17Z
dc.date.issued2022-08-29
dc.descriptiondiagramasspa
dc.description.abstractEn el presente trabajo estudiamos el Principio de Concentración-Compacidad, desarrollado por el matemático francés Pierre-Louis Lions, y realizamos algunas aplicaciones en las áreas de las Ecuaciones Diferenciales Parciales y el Análisis No Lineal. (Texto tomado de la fuente)spa
dc.description.abstractIn this work we study the Concentration-Compactness Principle, developed by the french mathematician Pierre-Louis Lions, and we give some applications to Partial Differential Equations and Nonlinear Analysis.eng
dc.description.curricularareaÁrea Curricular en Matemáticasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaAnálisis No Linealspa
dc.format.extentxiii, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83362
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBillingsley, Patrick: Convergence of Probability Measures, 2nd Ed. John Wiley & Sons Inc., 1999. – ISBN 0–471–19745–9spa
dc.relation.referencesBrezis, Haim: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010. – ISBN 978–0–387–70913–0spa
dc.relation.referencesBrezis, Haim ; Lieb, Elliot: A relation between pointwise convergence of functions and convergence of functionals. (1983)spa
dc.relation.referencesBurrill, Claude W.: Measure, Integration, and Probability. McGraw Hill, 1972. – ISBN 978–0070092235spa
dc.relation.referencesChabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. (1994)spa
dc.relation.referencesChabrowski, Jan: Variational Methods for Potential Operator Equations With Applications to Nonlinear Elliptic Equations. Walter de Gruyter, 1997. – ISBN 3–11–015269–Xspa
dc.relation.referencesDrábek, Pavel ; Milota, Jaroslav: Methods of Nonlinear Analysis: Applications to Differential Equations. Birkhäuser, 2007. – ISBN 978–3–0348–0386– 1spa
dc.relation.referencesFolland, Gerald B.: Real Analysis: Modern Techniques and Their Applications. Wiley, 2007. – ISBN 978–0471317166spa
dc.relation.referencesJones, Frank: Lebesgue Integration on Euclidean Spaces. Jones Bartlett Learning, 2001. – ISBN 0–7637–1708–8spa
dc.relation.referencesKavian, Otared: Introduction à la théorie des points critiques. Springer, 1993. – ISBN 978–3–540–59619–6spa
dc.relation.referencesKreyszig, Erwin: Introdutory Functional Analysis with Applications. Wiley, 1989. – ISBN 978–0–471–50459–7spa
dc.relation.referencesLages Lima, Elon: Espacos métricos. Edgard Blücher, Ltda, 1977. – ISBN 978–8524401589spa
dc.relation.referencesLions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part I. (1984)spa
dc.relation.referencesLions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part II. (1984)spa
dc.relation.referencesLions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. (1984)spa
dc.relation.referencesLions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 2. (1984)spa
dc.relation.referencesLévy, Paul-Pierre: Théorie de l’addition des variables aléatoires. Gauthiers-Villars, Paris. (1954)spa
dc.relation.referencesMunkres, James: Topology, 2nd Ed. Pearson, 2014. – ISBN 978–1–292–02362–5spa
dc.relation.referencesNestruev, Jet: Smooth Manifolds and Observables. Springer, 2000. – ISBN 0–387–95543–7spa
dc.relation.referencesParini, Enea ; Salort, Ariel: Compactness and dichotomy in nonlocal shape optimization. (2018)spa
dc.relation.referencesRudin, Walter: Principles of Mathematical Analysis. McGraw Hill, 1976. – ISBN 0–07–085613–3spa
dc.relation.referencesRudin,Walter: Real and Complex Analysis. McGraw Hill, 1986. – ISBN 0–07–100276–6spa
dc.relation.referencesSchindler, I. ; Tintarev, K.: An abstract version of the concentration-compactness principle. (2002)spa
dc.relation.referencesStruwe, Michael: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, 2008. – ISBN 978–3–540–74012–4spa
dc.relation.referencesTalenti, Giorgio: Best Constant in Sobolev Inequality. (1976)spa
dc.relation.referencesWillem, Michel: Minimax Theorems. Birkhäuser, 1996. – ISBN 978–0–8176–3913–6spa
dc.relation.referencesWillem, Michel: Functional Analysis: Fundamentals and Applications. Birkhäuser, 2013. – ISBN 978–1–4614–7003–8spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembEcuaciones diferenciales no lineales
dc.subject.lembDifferential equations, nonlinear
dc.subject.otherEcuaciones Diferenciales Parciales
dc.subject.proposalPrincipio de concentración-compacidadspa
dc.subject.proposalMinimizaciónspa
dc.subject.proposalEcuaciones diferenciales parcialesspa
dc.subject.proposalProblema de la constante óptimaspa
dc.subject.proposalConcentration-compactness principleeng
dc.subject.proposalMinimizationeng
dc.subject.proposalPartial differential equationseng
dc.subject.proposalOptimal constant problemeng
dc.titlePrincipio de concentración-compacidad y aplicacionesspa
dc.title.translatedConcentration-compactness principle and applicationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProblemas en ecuaciones diferenciales de tipo elíptico o dispersivo, Hermes 53815spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1038411097.2022.pdf
Tamaño:
1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: