Modelado y diseño de estrategia de estimación para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellín
| dc.contributor.advisor | Rivadeneira Paz, Pablo Santiago | spa |
| dc.contributor.advisor | Gómez Pérez, Cesar Augusto | spa |
| dc.contributor.author | Insuasty Jiménez, Sebastián Camilo | spa |
| dc.date.accessioned | 2020-10-05T13:48:43Z | spa |
| dc.date.available | 2020-10-05T13:48:43Z | spa |
| dc.date.issued | 2020-10-01 | spa |
| dc.description.abstract | Batch distillation is an important process used in the chemical, pharmaceutical, biochemical and food industries to treat small quantities of materials with high added value. The main reason is its operational flexibility since a single column can separate all the components of a mixture of multiple components into several products within a single operation. To meet the product specifications, the batch column must be operated as accurately as possible. If instant compositions are known, a control scheme can be correctly implemented to drive the process to the desired operational strategy (Kaewpradit, Kittisupakorn, Thitiyasook, & Mujtaba, 2008). In this work, a mathematical model was developed for a batch distillation system of the Natural Products Laboratory of the National University of Colombia, Medellín campus, the model was validated by simulation contrasting with real data taken with temperature and level sensors located in the distiller. The Luenberger Observer and the Extended Kalman Filter were used to estimate product compositions from measurements of ethanol outlet temperature from the heat exchanger, water outlet temperature of the jacket and distillate level. The results showed that the model gives a very precise description of the process behavior. The estimation of states in the distiller demonstrated the potential of the method to develop virtual sensors or soft sensors for chemical processes. The linear and extended Luenberger observer as well as the extended kalman filter made it possible to reliably estimate concentrations to define equipment shutdown. With this, an operator can have confidence in when to stop the equipment and have control over the final product. | spa |
| dc.description.abstract | La destilación por lotes es un proceso importante utilizado en las industrias química, farmacéutica, bioquímica y alimentaria para tratar pequeñas cantidades de materiales con alto valor agregado. La razón principal es su flexibilidad operativa ya que una sola columna puede separar todos los componentes de una mezcla de múltiples componentes en varios productos dentro de una sola operación. Para cumplir con las especificaciones del producto, la columna por lotes debe ser operada con la mayor precisión posible. Si se conocen composiciones instantáneas, se puede implementar correctamente un esquema de control para conducir el proceso a la estrategia operativa deseada (Kaewpradit, Kittisupakorn, Thitiyasook, & Mujtaba, 2008). En este trabajo se desarrolló un modelo matemático para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellín, se validó el modelo mediante simulación contrastando con datos reales tomados con sensores de temperatura y nivel ubicados en el destilador. Se utilizó el Observador de Luenberger y el Filtro de Kalman Extendido con el fin de estimar las composiciones del producto a partir de mediciones de temperatura de salida de etanol del intercambiador de calor, temperatura de salida de agua de la chaqueta y nivel de destilado. Los resultados mostraron que el modelo da una muy precisa descripción del comportamiento del proceso. La estimación de estados en el destilador demostró el potencial del método para desarrollar sensores virtuales o ‘soft sensors’ para procesos químicos. El observador de Luenberger lineal y extendido, así como el Filtro de Kalman Extendido permitieron estimar las concentraciones de forma confiable para definir la parada del equipo. Con esto, un operario puede tener confiabilidad de cuándo parar el equipo y tener control sobre el producto final. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 141 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78521 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Departamento de Ingeniería Eléctrica y Automática | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Automatización Industrial | spa |
| dc.relation.references | Andersen, B. B., Nielsen, R. F., Udugama, I. A., Papadakis, E., Gernaey, K. V., Huusom, J. K., … Abildskov, J. (2018). Integrated Process Design and Control of Cyclic Distillation Columns. IFAC-PapersOnLine, 51(18), 542–547. https://doi.org/10.1016/J.IFACOL.2018.09.368 | spa |
| dc.relation.references | Aqar, D. Y., Rahmanian, N., & Mujtaba, I. M. (2017). Feasibility of integrated batch reactive distillation columns for the optimal synthesis of ethyl benzoate. Chemical Engineering and Processing: Process Intensification, 122, 10–20. https://doi.org/10.1016/J.CEP.2017.08.012 | spa |
| dc.relation.references | Birk, J., & Zeitz, M. (1988). Extended luenberger observer for non-linear rnultivariable systems. International Journal of Control, 47(6), 1823–1836. https://doi.org/10.1080/00207178808906138 | spa |
| dc.relation.references | Cameron, I., & Hangos, K. (2001). Process modelling and model analysis. | spa |
| dc.relation.references | Diwekar, U. M., & Madhavan, K. P. (1991). Multicomponent batch distillation column design. Industrial & Engineering Chemistry Research, 30(4), 713–721. https://doi.org/10.1021/ie00052a014 | spa |
| dc.relation.references | Doran, P. (1995). Bioprocess engineering principles. | spa |
| dc.relation.references | El-Maghlany, W. M., Hanafy, A. A., Hassan, A. A., & El-Magid, M. A. (2016). Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Experimental Thermal and Fluid Science, 78, 100–111. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2016.05.015 | spa |
| dc.relation.references | Escobar, R. F., Juárez, D., Siqueiros, J., Irles, C., & Hernández, J. A. (2008). On-line COP estimation for waste energy recovery heat transformer by water purification process. Desalination, 222(1–3), 666–672. https://doi.org/10.1016/j.desal.2007.01.192 | spa |
| dc.relation.references | Felder, R. M., Rousseau, R. W., Bullard, L. G., & Eduardo Pizarro Borges, L. (2016). Princípios Elementares dos Processos Químicos 4 a edición. | spa |
| dc.relation.references | Fernández Villaverde, A., & Rodríguez Banga, J. (n.d.). Análisis de observabilidad e identificabilidad estructural de modelos no lineales: aplicación a la vía de señalización JAK/STAT. Ruc.Udc.Es. https://doi.org/10.17979/spudc.9788497497169.631 | spa |
| dc.relation.references | Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor ACS712. (n.d.). Retrieved from www.allegromicro.com | spa |
| dc.relation.references | Green, D., & Perry, R. (1997). Perry’s Chemical Engineers’ Handbook/edición Don W. Green y Robert H. Perry. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=INDUSTRIAL.xis&method=post&formato=2&cantidad=1&expresion=mfn=002414 | spa |
| dc.relation.references | Güémez, J., Fiolhais, C., & Fiolhais, M. (2002). Revisiting Black’s experiments on the latent heats of water. The Physics Teacher, 40(1), 26–31. https://doi.org/10.1119/1.1457825 | spa |
| dc.relation.references | Hulhoven, X., Wouwer, A., Science, P. B.-C. engineering, & 2006, U. (n.d.). Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation. | spa |
| dc.relation.references | Kaewpradit, P., Kittisupakorn, P., Thitiyasook, P., & Mujtaba, I. M. (2008). Dynamic composition estimation for a ternary batch distillation. Chemical Engineering Science, 63, 3309–3318. https://doi.org/10.1016/j.ces.2008.03.033 | spa |
| dc.relation.references | Kamble, P., Khan, Z., Capper, S., Sharp, J., & Watson, I. (2017). Improving downdraft gasifier stability by robust instrumentation and control systems. In Energy Procedia (Vol. 142, pp. 2214–2217). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.12.591 | spa |
| dc.relation.references | Kitil, A. O., & Kumar, M. (2018). An IoT-BasedRain Alerting and Flood Prediction using Sensors and Arduino for Smart Environment. International Journal of Pure and Applied Mathematics, 118(24). | spa |
| dc.relation.references | Klingberg, A. (2000). Modelling and Opimisation of Batch Distillation. | spa |
| dc.relation.references | Latha Chopparapu, S., George, V. I., Thirunavukkarasu, I., & Bhat, V. S. (2017). Design and Simulation of Kalman Filter for the Estimation of Tray Temperatures in a Binary Distillation Column. International Journal of Pure and Applied Mathematics, 114(9), 11–20. Retrieved from http://acadpubl.eu/jsi/2017-114-7-ICPCIT-2017/articles/9/2.pdf | spa |
| dc.relation.references | Luenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8(2), 74–80. | spa |
| dc.relation.references | Madabhushi, P. B., & Adams, T. A. (2018). Side stream control in semicontinuous distillation. Computers & Chemical Engineering, 119, 450–464. https://doi.org/10.1016/j.compchemeng.2018.09.002 | spa |
| dc.relation.references | Messaoudi, M., Sbita, L., & Abdelkrim, M. N. (2007). A robust nonlinear observer for states and parameters estimation and on-line adaptation of rotor time constant in sensorless induction motor drives. International Journal of Physical Sciences (Vol. 2). | spa |
| dc.relation.references | Morales, R., Colombian, H. A.-2017 I. 3rd, & 2017, undefined. (n.d.). Operation feasible region for flash distillation control and design. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/8276405/ | spa |
| dc.relation.references | Moran, M., Shapiro, H., Boettner, D., & Bailey, M. (2010). Fundamentals of engineering thermodynamics. | spa |
| dc.relation.references | Ogata, K., & Yang, Y. (2010). Modern control engineering. | spa |
| dc.relation.references | Perry, D., Porter, A., of, L. V.-P. of the conference on T. future, & 2000, undefined. (n.d.). Empirical studies of software engineering: a roadmap. Ufv.Br. Retrieved from ftp://ftp.ufv.br/dpi/mestrado/ExperimentalSWE/empiricalstudiesSWE-perry-ACMfutureofSWE-2000.pdf | spa |
| dc.relation.references | Phimister, J. R., & Seider, W. D. (2000). Semicontinuous, middle-vessel distillation of ternary mixtures. AIChE Journal, 46(8), 1508–1520. https://doi.org/10.1002/aic.690460804 | spa |
| dc.relation.references | Quintero-Marmol, E., Luyben, W. L., & Georgakis, C. (1991). Application of an Extended Luenberger Observer to the Control of Multicomponent Batch Distillation. Industrial and Engineering Chemistry Research, 30(8), 1870–1880. https://doi.org/10.1021/ie00056a029 | spa |
| dc.relation.references | Rodriguez-Donis, I., Gerbaud, V., Lavoine, S., Meyer, M., Thiebaud-Roux, S., & Dupouyet, A. (2019). Modelling and experimental validation of dimethyl carbonate solvent recovery from an aroma mixture by batch distillation. Chemical Engineering Research and Design, 147, 1–17. https://doi.org/10.1016/j.cherd.2019.04.007 | spa |
| dc.relation.references | Safdarnejad, S. M., Gallacher, J. R., & Hedengren, J. D. (2016). Dynamic parameter estimation and optimization for batch distillation. Computers & Chemical Engineering, 86, 18–32. https://doi.org/10.1016/J.COMPCHEMENG.2015.12.001 | spa |
| dc.relation.references | Serway, R. (1992). Physics for Scientists and Engineers: With Modern Physics, Saunders Golden Sunburst Series. | spa |
| dc.relation.references | Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. | spa |
| dc.relation.references | Sukasem, N., Hareemao, T., & Sudawong, C. (2017). The mimic of fractional distillation technology for development of homegrown pot distillery for ethanol distillation. Energy Procedia, 138, 985–990. https://doi.org/10.1016/J.EGYPRO.2017.10.101 | spa |
| dc.relation.references | Tong, H., & Ng, M. (2018). Analysis of regularized least squares for functional linear regression model. Journal of Complexity, 49, 85–94. https://doi.org/10.1016/j.jco.2018.08.001 | spa |
| dc.relation.references | Tronci, S., Bezzo, F., Barolo, M., & Baratti, R. (2005). Geometric observer for a distillation column: Development and experimental testing. Industrial and Engineering Chemistry Research, 44(26), 9884–9893. https://doi.org/10.1021/ie048751n | spa |
| dc.relation.references | Ulas, S., Diwekar, U. M., & Stadtherr, M. A. (2005). Uncertainties in parameter estimation and optimal control in batch distillation. Computers & Chemical Engineering, 29(8), 1805–1814. https://doi.org/10.1016/j.compchemeng.2005.03.002 | spa |
| dc.relation.references | Universidad Nacional de Colombia : Dirección de Laboratorios - DIRLAB - Laboratorio de Productos Naturales. (n.d.). Retrieved January 28, 2020, from http://direcciondelaboratorios.medellin.unal.edu.co/index.php/nuestros-laboratorios/facultad-de-ciencias/31 | spa |
| dc.relation.references | Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. Retrieved from http://www.cs.unc.edu/~gb | spa |
| dc.relation.references | Zhao, X. F., Ba, Q., Li, L., Gong, P., & Ou, J. P. (2012). A three-index estimator based on active thermometry and a novel monitoring system of scour under submarine pipelines. Sensors and Actuators, A: Physical, 183, 115–122. https://doi.org/10.1016/j.sna.2012.05.039 | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
| dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química | spa |
| dc.subject.proposal | Destilación por lotes | spa |
| dc.subject.proposal | Batch distillation | eng |
| dc.subject.proposal | Diseño de modelo | spa |
| dc.subject.proposal | Model design | eng |
| dc.subject.proposal | State estimation | eng |
| dc.subject.proposal | Estimación de estados | spa |
| dc.subject.proposal | Laboratory | eng |
| dc.subject.proposal | Productos Naturales | spa |
| dc.subject.proposal | Natural Products | eng |
| dc.subject.proposal | Laboratorios | spa |
| dc.title | Modelado y diseño de estrategia de estimación para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellín | spa |
| dc.title.alternative | Modeling and design of estimation strategy for a batch distillation system of the Natural Products Laboratory of the National University of Colombia Medellín headquarters | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1085321732.2020.pdf
- Tamaño:
- 3.43 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

