Modelado y diseño de estrategia de estimación para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellín

dc.contributor.advisorRivadeneira Paz, Pablo Santiagospa
dc.contributor.advisorGómez Pérez, Cesar Augustospa
dc.contributor.authorInsuasty Jiménez, Sebastián Camilospa
dc.date.accessioned2020-10-05T13:48:43Zspa
dc.date.available2020-10-05T13:48:43Zspa
dc.date.issued2020-10-01spa
dc.description.abstractBatch distillation is an important process used in the chemical, pharmaceutical, biochemical and food industries to treat small quantities of materials with high added value. The main reason is its operational flexibility since a single column can separate all the components of a mixture of multiple components into several products within a single operation. To meet the product specifications, the batch column must be operated as accurately as possible. If instant compositions are known, a control scheme can be correctly implemented to drive the process to the desired operational strategy (Kaewpradit, Kittisupakorn, Thitiyasook, & Mujtaba, 2008). In this work, a mathematical model was developed for a batch distillation system of the Natural Products Laboratory of the National University of Colombia, Medellín campus, the model was validated by simulation contrasting with real data taken with temperature and level sensors located in the distiller. The Luenberger Observer and the Extended Kalman Filter were used to estimate product compositions from measurements of ethanol outlet temperature from the heat exchanger, water outlet temperature of the jacket and distillate level. The results showed that the model gives a very precise description of the process behavior. The estimation of states in the distiller demonstrated the potential of the method to develop virtual sensors or soft sensors for chemical processes. The linear and extended Luenberger observer as well as the extended kalman filter made it possible to reliably estimate concentrations to define equipment shutdown. With this, an operator can have confidence in when to stop the equipment and have control over the final product.spa
dc.description.abstractLa destilación por lotes es un proceso importante utilizado en las industrias química, farmacéutica, bioquímica y alimentaria para tratar pequeñas cantidades de materiales con alto valor agregado. La razón principal es su flexibilidad operativa ya que una sola columna puede separar todos los componentes de una mezcla de múltiples componentes en varios productos dentro de una sola operación. Para cumplir con las especificaciones del producto, la columna por lotes debe ser operada con la mayor precisión posible. Si se conocen composiciones instantáneas, se puede implementar correctamente un esquema de control para conducir el proceso a la estrategia operativa deseada (Kaewpradit, Kittisupakorn, Thitiyasook, & Mujtaba, 2008). En este trabajo se desarrolló un modelo matemático para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellín, se validó el modelo mediante simulación contrastando con datos reales tomados con sensores de temperatura y nivel ubicados en el destilador. Se utilizó el Observador de Luenberger y el Filtro de Kalman Extendido con el fin de estimar las composiciones del producto a partir de mediciones de temperatura de salida de etanol del intercambiador de calor, temperatura de salida de agua de la chaqueta y nivel de destilado. Los resultados mostraron que el modelo da una muy precisa descripción del comportamiento del proceso. La estimación de estados en el destilador demostró el potencial del método para desarrollar sensores virtuales o ‘soft sensors’ para procesos químicos. El observador de Luenberger lineal y extendido, así como el Filtro de Kalman Extendido permitieron estimar las concentraciones de forma confiable para definir la parada del equipo. Con esto, un operario puede tener confiabilidad de cuándo parar el equipo y tener control sobre el producto final.spa
dc.description.degreelevelMaestríaspa
dc.format.extent141spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78521
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAndersen, B. B., Nielsen, R. F., Udugama, I. A., Papadakis, E., Gernaey, K. V., Huusom, J. K., … Abildskov, J. (2018). Integrated Process Design and Control of Cyclic Distillation Columns. IFAC-PapersOnLine, 51(18), 542–547. https://doi.org/10.1016/J.IFACOL.2018.09.368spa
dc.relation.referencesAqar, D. Y., Rahmanian, N., & Mujtaba, I. M. (2017). Feasibility of integrated batch reactive distillation columns for the optimal synthesis of ethyl benzoate. Chemical Engineering and Processing: Process Intensification, 122, 10–20. https://doi.org/10.1016/J.CEP.2017.08.012spa
dc.relation.referencesBirk, J., & Zeitz, M. (1988). Extended luenberger observer for non-linear rnultivariable systems. International Journal of Control, 47(6), 1823–1836. https://doi.org/10.1080/00207178808906138spa
dc.relation.referencesCameron, I., & Hangos, K. (2001). Process modelling and model analysis.spa
dc.relation.referencesDiwekar, U. M., & Madhavan, K. P. (1991). Multicomponent batch distillation column design. Industrial & Engineering Chemistry Research, 30(4), 713–721. https://doi.org/10.1021/ie00052a014spa
dc.relation.referencesDoran, P. (1995). Bioprocess engineering principles.spa
dc.relation.referencesEl-Maghlany, W. M., Hanafy, A. A., Hassan, A. A., & El-Magid, M. A. (2016). Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Experimental Thermal and Fluid Science, 78, 100–111. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2016.05.015spa
dc.relation.referencesEscobar, R. F., Juárez, D., Siqueiros, J., Irles, C., & Hernández, J. A. (2008). On-line COP estimation for waste energy recovery heat transformer by water purification process. Desalination, 222(1–3), 666–672. https://doi.org/10.1016/j.desal.2007.01.192spa
dc.relation.referencesFelder, R. M., Rousseau, R. W., Bullard, L. G., & Eduardo Pizarro Borges, L. (2016). Princípios Elementares dos Processos Químicos 4 a edición.spa
dc.relation.referencesFernández Villaverde, A., & Rodríguez Banga, J. (n.d.). Análisis de observabilidad e identificabilidad estructural de modelos no lineales: aplicación a la vía de señalización JAK/STAT. Ruc.Udc.Es. https://doi.org/10.17979/spudc.9788497497169.631spa
dc.relation.referencesFully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor ACS712. (n.d.). Retrieved from www.allegromicro.comspa
dc.relation.referencesGreen, D., & Perry, R. (1997). Perry’s Chemical Engineers’ Handbook/edición Don W. Green y Robert H. Perry. Retrieved from http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=INDUSTRIAL.xis&method=post&formato=2&cantidad=1&expresion=mfn=002414spa
dc.relation.referencesGüémez, J., Fiolhais, C., & Fiolhais, M. (2002). Revisiting Black’s experiments on the latent heats of water. The Physics Teacher, 40(1), 26–31. https://doi.org/10.1119/1.1457825spa
dc.relation.referencesHulhoven, X., Wouwer, A., Science, P. B.-C. engineering, & 2006, U. (n.d.). Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation.spa
dc.relation.referencesKaewpradit, P., Kittisupakorn, P., Thitiyasook, P., & Mujtaba, I. M. (2008). Dynamic composition estimation for a ternary batch distillation. Chemical Engineering Science, 63, 3309–3318. https://doi.org/10.1016/j.ces.2008.03.033spa
dc.relation.referencesKamble, P., Khan, Z., Capper, S., Sharp, J., & Watson, I. (2017). Improving downdraft gasifier stability by robust instrumentation and control systems. In Energy Procedia (Vol. 142, pp. 2214–2217). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.12.591spa
dc.relation.referencesKitil, A. O., & Kumar, M. (2018). An IoT-BasedRain Alerting and Flood Prediction using Sensors and Arduino for Smart Environment. International Journal of Pure and Applied Mathematics, 118(24).spa
dc.relation.referencesKlingberg, A. (2000). Modelling and Opimisation of Batch Distillation.spa
dc.relation.referencesLatha Chopparapu, S., George, V. I., Thirunavukkarasu, I., & Bhat, V. S. (2017). Design and Simulation of Kalman Filter for the Estimation of Tray Temperatures in a Binary Distillation Column. International Journal of Pure and Applied Mathematics, 114(9), 11–20. Retrieved from http://acadpubl.eu/jsi/2017-114-7-ICPCIT-2017/articles/9/2.pdfspa
dc.relation.referencesLuenberger, D. G. (1964). Observing the state of a linear system. IEEE Transactions on Military Electronics, 8(2), 74–80.spa
dc.relation.referencesMadabhushi, P. B., & Adams, T. A. (2018). Side stream control in semicontinuous distillation. Computers & Chemical Engineering, 119, 450–464. https://doi.org/10.1016/j.compchemeng.2018.09.002spa
dc.relation.referencesMessaoudi, M., Sbita, L., & Abdelkrim, M. N. (2007). A robust nonlinear observer for states and parameters estimation and on-line adaptation of rotor time constant in sensorless induction motor drives. International Journal of Physical Sciences (Vol. 2).spa
dc.relation.referencesMorales, R., Colombian, H. A.-2017 I. 3rd, & 2017, undefined. (n.d.). Operation feasible region for flash distillation control and design. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/8276405/spa
dc.relation.referencesMoran, M., Shapiro, H., Boettner, D., & Bailey, M. (2010). Fundamentals of engineering thermodynamics.spa
dc.relation.referencesOgata, K., & Yang, Y. (2010). Modern control engineering.spa
dc.relation.referencesPerry, D., Porter, A., of, L. V.-P. of the conference on T. future, & 2000, undefined. (n.d.). Empirical studies of software engineering: a roadmap. Ufv.Br. Retrieved from ftp://ftp.ufv.br/dpi/mestrado/ExperimentalSWE/empiricalstudiesSWE-perry-ACMfutureofSWE-2000.pdfspa
dc.relation.referencesPhimister, J. R., & Seider, W. D. (2000). Semicontinuous, middle-vessel distillation of ternary mixtures. AIChE Journal, 46(8), 1508–1520. https://doi.org/10.1002/aic.690460804spa
dc.relation.referencesQuintero-Marmol, E., Luyben, W. L., & Georgakis, C. (1991). Application of an Extended Luenberger Observer to the Control of Multicomponent Batch Distillation. Industrial and Engineering Chemistry Research, 30(8), 1870–1880. https://doi.org/10.1021/ie00056a029spa
dc.relation.referencesRodriguez-Donis, I., Gerbaud, V., Lavoine, S., Meyer, M., Thiebaud-Roux, S., & Dupouyet, A. (2019). Modelling and experimental validation of dimethyl carbonate solvent recovery from an aroma mixture by batch distillation. Chemical Engineering Research and Design, 147, 1–17. https://doi.org/10.1016/j.cherd.2019.04.007spa
dc.relation.referencesSafdarnejad, S. M., Gallacher, J. R., & Hedengren, J. D. (2016). Dynamic parameter estimation and optimization for batch distillation. Computers & Chemical Engineering, 86, 18–32. https://doi.org/10.1016/J.COMPCHEMENG.2015.12.001spa
dc.relation.referencesSerway, R. (1992). Physics for Scientists and Engineers: With Modern Physics, Saunders Golden Sunburst Series.spa
dc.relation.referencesSimon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches.spa
dc.relation.referencesSukasem, N., Hareemao, T., & Sudawong, C. (2017). The mimic of fractional distillation technology for development of homegrown pot distillery for ethanol distillation. Energy Procedia, 138, 985–990. https://doi.org/10.1016/J.EGYPRO.2017.10.101spa
dc.relation.referencesTong, H., & Ng, M. (2018). Analysis of regularized least squares for functional linear regression model. Journal of Complexity, 49, 85–94. https://doi.org/10.1016/j.jco.2018.08.001spa
dc.relation.referencesTronci, S., Bezzo, F., Barolo, M., & Baratti, R. (2005). Geometric observer for a distillation column: Development and experimental testing. Industrial and Engineering Chemistry Research, 44(26), 9884–9893. https://doi.org/10.1021/ie048751nspa
dc.relation.referencesUlas, S., Diwekar, U. M., & Stadtherr, M. A. (2005). Uncertainties in parameter estimation and optimal control in batch distillation. Computers & Chemical Engineering, 29(8), 1805–1814. https://doi.org/10.1016/j.compchemeng.2005.03.002spa
dc.relation.referencesUniversidad Nacional de Colombia : Dirección de Laboratorios - DIRLAB - Laboratorio de Productos Naturales. (n.d.). Retrieved January 28, 2020, from http://direcciondelaboratorios.medellin.unal.edu.co/index.php/nuestros-laboratorios/facultad-de-ciencias/31spa
dc.relation.referencesWelch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. Retrieved from http://www.cs.unc.edu/~gbspa
dc.relation.referencesZhao, X. F., Ba, Q., Li, L., Gong, P., & Ou, J. P. (2012). A three-index estimator based on active thermometry and a novel monitoring system of scour under submarine pipelines. Sensors and Actuators, A: Physical, 183, 115–122. https://doi.org/10.1016/j.sna.2012.05.039spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalDestilación por lotesspa
dc.subject.proposalBatch distillationeng
dc.subject.proposalDiseño de modelospa
dc.subject.proposalModel designeng
dc.subject.proposalState estimationeng
dc.subject.proposalEstimación de estadosspa
dc.subject.proposalLaboratoryeng
dc.subject.proposalProductos Naturalesspa
dc.subject.proposalNatural Productseng
dc.subject.proposalLaboratoriosspa
dc.titleModelado y diseño de estrategia de estimación para un sistema de destilación por lotes del Laboratorio de Productos Naturales de la Universidad Nacional de Colombia sede Medellínspa
dc.title.alternativeModeling and design of estimation strategy for a batch distillation system of the Natural Products Laboratory of the National University of Colombia Medellín headquartersspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085321732.2020.pdf
Tamaño:
3.43 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: