Comparison of the metabolic profile in defined medium of the wild type strain Vibrio Natriegens and a strain with rationally fused chromosomes

dc.contributor.advisorChaib De Mares, Maryam
dc.contributor.advisorSchindler, Daniel
dc.contributor.authorMillán Aldana, Nohora Angélica
dc.contributor.cvlacMillán Aldana, Nohora Angélica [rh=0001522416]
dc.contributor.orcidMillán Aldana, Nohora Angélica [0009000685519689]
dc.contributor.researchgroupBiología Molecular Teórica y Evolutiva
dc.date.accessioned2025-10-03T16:12:03Z
dc.date.available2025-10-03T16:12:03Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractVibrio natriegens is a fast-growing, halophilic bacterium that has emerged as a promising chassis for biotechnology, particularly for sustainable applications that leverage its ability to grow in seawater-based media. Despite its advantages, a deeper understanding of its regulatory and metabolic networks is required to optimize its use in industrial settings. This thesis aimed to characterize the metabolic and growth dynamics differences between two strains of V. natriegens: the wild-type (WT) and a synthetic strain with a single fused chromosome (synSC1.0), including an assessment of the growth effects of deleting hfq, a key global post-transcriptional regulator. Metabolomic profiling was performed under defined media across different growth phases using bioreactor cultivation and LC-MS-based analysis. Results showed that both WT and synSC1.0 strains shared highly similar metabolite usage patterns, particularly in central carbon metabolism, with no major shifts in growth rate or biomass production under standard conditions. However, synSC1.0 exhibited slightly altered responses in stress-associated metabolites, suggesting nuanced regulatory differences that could be attributable to its modified genome architecture. To probe post-transcriptional control, hfq was deleted in both strains using CRISPR-based genome engineering. Deletion of hfq only marginally affected growth but resulted in increased final cell densities in both strains. This phenotype likely reflects altered quorum sensing following Hfq loss. The findings provide insights for future engineering of V. natriegens as a sustainable microbial chassis.eng
dc.description.abstractVibrio natriegens es una bacteria halófila de crecimiento rápido que ha emergido como un prometedor chasis para la biotecnología, sobre todo para aplicaciones sostenibles que aprovechan su capacidad de crecer en medios basados en el agua salada. A pesar de sus ventajas, se requiere un conocimiento más profundo de sus redes reguladoras y metabólicas para optimizar su uso en entornos industriales. El objetivo de esta tesis fue caracterizar las diferencias metabólicas y la dinámica de crecimiento entre dos cepas de V. natriegens: la cepa de tipo silvestre (WT) y una cepa sintética con un único cromosoma fusionado (synSC1.0), incluyendo una evaluación de los efectos sobre el crecimiento de la supresión de hfq, un regulador post-transcripcional global. Se realizaron perfiles metabolómicos en medios definidos a lo largo de diferentes fases de crecimiento mediante cultivos en biorreactores y análisis basados en LC-MS. Los resultados mostraron que las cepas WT y synSC1.0 compartían patrones de uso de metabolitos muy similares, sobre todo en el metabolismo central del carbono, sin cambios importantes en la tasa de crecimiento o la producción de biomasa en condiciones estándar. Sin embargo, synSC1.0 mostró respuestas ligeramente alteradas en metabolitos asociados al estrés, lo que sugiere diferencias reguladoras matizadas que podrían atribuirse a su arquitectura genómica modificada. Para evaluar las diferencias en el control post-transcripcional, se eliminó hfq en ambas cepas mediante ingeniería genómica basada en NT-CRISPR. La supresión de hfq sólo afectó marginalmente al crecimiento, pero dio lugar a un aumento de la biomasa celular final en ambas cepas. Este fenotipo refleja probablemente una alteración en el mecanismo de detección del quórum tras la deleción de hfq. Este trabajo proporciona información para continuar desarrollando la ingeniería de V. natriegens como chasis microbiano sostenible (Texto tomado de la fuente).spa
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.methodsThe bacterial strains investigated in the present research were wild-type WT (Vibrio natriegens ATCC14048 dns) and synSC1.0 (Vibrio natriegens synthetic single chromosome v1.0), those were provided by Daniel Schindler, MaxGENESYS biofoundry group leader at the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany in 2024. To enhance the efficiency of transformation in V. natriegens, researchers from Schindler’s group generated the dns mutant strain by deleting the extracellular nuclease gene dns, which encodes a DNase responsible for degrading extracellular DNA. This genetic modification facilitates the uptake of extrachromosomal genetic material, such as plasmids, by preventing degradation of transforming DNA in the extracellular environment (Glasgo et al., 2024). Additionally, Ramming et al. (2024) conducted experiments using the V. natriegens dns strain to produce the synthetic single chromosome v1.0 strain (synSC1.0), by deleting the ori2 and dif1 regions. This genome editing was achieved using the NTCRISPR system, combining natural transformation with CRISPR-Cas9 to promote homologous recombination and enable chromosomal fusion. The resulting singlechromosome strain was shown to be stable and suitable for downstream applications in biotechnology and synthetic biology.
dc.description.researchareaBiología sintética
dc.description.sponsorshipMax-Planck-Institut für terrestrische Mikrobiologie in the group of Dr. Daniel Schindler.
dc.format.extent117 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89012
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.relation.referencesAlarcon-Barrera, J. C., Kostidis, S., Ondo-Mendez, A., & Giera, M. (2022). Recent advances in metabolomics analysis for early drug development. Drug discovery today, 27(6), 1763-1773.
dc.relation.referencesAlreshidi, M. M. (2020). Selected metabolites profiling of Staphylococcus aureus following exposure to low temperature and elevated sodium chloride. Frontiers in microbiology, 11, 834.
dc.relation.referencesAlreshidi, M., Dunstan, H., MacDonald, M., Saeed, M., Elkahoui, S., & Roberts, T. (2023). Significant changes in cytoplasmic amino acid composition occur in the transition between mid-exponential and stationary phases of growth of Staphylococcus aureus: An example of adaptive homeostasis in response to nutrient limitations. Microorganisms, 11(1), 147.
dc.relation.referencesAmer, B., & Baidoo, E. E. (2021). Omics-driven biotechnology for industrial applications. Frontiers in Bioengineering and Biotechnology, 9, 613307.
dc.relation.referencesArluison, V., Mutyam, S. K., Mura, C., Marco, S., & Sukhodolets, M. V. (2007). Sm‐like protein Hfq: Location of the ATP‐binding site and the effect of ATP on Hfq–RNA complexes. Protein Science, 16(9), 1830-1841.
dc.relation.referencesAsghar, A., Tan, Y. C., Shahid, M., Yow, Y. Y., & Lahiri, C. (2021). Metabolite profiling of malaysian Gracilaria edulis reveals eplerenone as novel antibacterial compound for drug repurposing against MDR bacteria. Frontiers in microbiology, 12, 653562.
dc.relation.referencesAusländer, S., Ausländer, D., & Fussenegger, M. (2017). Synthetic biology—the synthesis of biology. Angewandte Chemie International Edition, 56(23), 6396-6419.
dc.relation.referencesBall, P. (2023). What distinguishes the elephant from E. coli: Causal spreading and the biological principles of metazoan complexity. Journal of Biosciences, 48(2), 14.
dc.relation.referencesBarák, I. (2021). Special Issue “Bacillus subtilis as a Model Organism to Study Basic Cell Processes”. Microorganisms, 9(12), 2459.
dc.relation.referencesBiener, R., Horn, T., Komitakis, A., Schendel, I., König, L., Hauenstein, A., ... & Braun, A. (2023). High-cell-density cultivation of Vibrio natriegens in a low-chloride chemically defined medium. Applied microbiology and biotechnology, 107(23), 7043-7054.
dc.relation.referencesBertini, I., Hu, X., & Luchinat, C. (2014). Global metabolomics characterization of bacteria: pre-analytical treatments and profiling. Metabolomics, 10, 241-249.
dc.relation.referencesBecker, W., Wimberger, F., & Zangger, K. (2019). Vibrio natriegens: an alternative expression system for the high-yield production of isotopically labeled proteins. Biochemistry, 58(25), 2799-2803.
dc.relation.referencesBlount, Z. D. (2015). The unexhausted potential of E. coli. elife, 4, e05826. Bren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., & Alon, U. (2016).
dc.relation.referencesBren, A., Park, J. O., Towbin, B. D., Dekel, E., Rabinowitz, J. D., & Alon, U. (2016). Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Scientific reports, 6(1), 24834.
dc.relation.referencesBrück, M., Köbel, T. S., Dittmar, S., Rojas, A. A. R., Georg, J., Berghoff, B. A., & Schindler, D. (2024). A library-based approach allows systematic and rapid evaluation of seed region length and reveals design rules for synthetic bacterial small RNAs. Iscience, 27(9).
dc.relation.referencesCech, G. M., Szalewska-Pałasz, A., Kubiak, K., Malabirade, A., Grange, W., Arluison, V., & Węgrzyn, G. (2016). The Escherichia coli Hfq protein: an unattended DNA-transactions regulator. Frontiers in molecular biosciences, 3, 36.
dc.relation.referencesCeh, J., Kilburn, M. R., Cliff, J. B., Raina, J. B., van Keulen, M., & Bourne, D. G. (2013). Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecology and Evolution, 3(8), 2393-2400.
dc.relation.referencesChao, Y., & Vogel, J. (2010). The role of Hfq in bacterial pathogens. Current opinion in microbiology, 13(1), 24-33.
dc.relation.referencesChen, B. S., & Wu, C. C. (2013). Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2(4), 635-688.
dc.relation.referencesChen, M., Wu, B., Huang, Y., Wang, W., Zheng, Y., Shabbir, S., ... & He, M. (2024). Transcription factor shapes chromosomal conformation and regulates gene expression in bacterial adaptation. Nucleic Acids Research, 52(10), 5643-5657.
dc.relation.referencesChiang, M. K., Lu, M. C., Liu, L. C., Lin, C. T., & Lai, Y. C. (2011). Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PLoS One, 6(7), e22248.
dc.relation.referencesChi, H., Wang, X., Shao, Y., Qin, Y., Deng, Z., Wang, L., & Chen, S. (2019). Engineering and modification of microbial chassis for systems and synthetic biology. Synthetic and Systems Biotechnology, 4(1), 25-33.
dc.relation.referencesChimalapati, S., de Souza Santos, M., Servage, K., De Nisco, N. J., Dalia, A. B., & Orth, K. (2018). Natural transformation in Vibrio parahaemolyticus: a rapid method to create genetic deletions. Journal of bacteriology, 200(15), 10-1128.
dc.relation.referencesChong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current protocols in bioinformatics, 68(1), e86.
dc.relation.referencesClark, D. P., & Pazdernik, N. J. (2015). Biotechnology (2nd ed). Academic Cell. St. Louis, Missouri, USA.
dc.relation.referencesClough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The plant journal, 16(6), 735-743.
dc.relation.referencesCoppens, L., Tschirhart, T., Leary, D. H., Colston, S. M., Compton, J. R., Hervey IV, W. J., ... & Ledesma‐Amaro, R. (2023). Vibrio natriegens genome‐scale modeling reveals insights into halophilic adaptations and resource allocation. Molecular systems biology, 19(4), e10523.
dc.relation.referencesDalia, T. N., Hayes, C. A., Stolyar, S., Marx, C. J., McKinlay, J. B., & Dalia, A. B. (2017). Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS synthetic biology, 6(9), 1650-1655.
dc.relation.referencesDarshanee Ruwandeepika, H. A., Sanjeewa Prasad Jayaweera, T., Paban Bhowmick, P., Karunasagar, I., Bossier, P., & Defoirdt, T. (2012). Pathogenesis, virulence factors and virulence regulation of vibrios belonging to the Harveyi clade. Reviews in Aquaculture, 4(2), 59-74.
dc.relation.referencesDe Mares, M. C. (2018). The sponge as a hypothesis pump: A multi-omics overview of a sponge-microbe symbiosis.
dc.relation.referencesDelbarre-Ladrat, C., Sinquin, C., Marchand, L., Bonnetot, S., Zykwinska, A., Verrez- Bagnis, V., & Colliec-Jouault, S. (2022). Influence of the carbon and nitrogen sources on diabolican production by the marine Vibrio diabolicus Strain CNCM I-1629. Polymers, 14(10), 1994.
dc.relation.referencesDeng, Y., Chen, C., Zhao, Z., Zhao, J., Jacq, A., Huang, X., & Yang, Y. (2016). The RNA chaperone Hfq is involved in colony morphology, nutrient utilization and oxidative and envelope stress response in Vibrio alginolyticus. PLoS One, 11(9), e0163689.
dc.relation.referencesDeng, Y., Zang, S., Lin, Z., Xu, L., Cheng, C., & Feng, J. (2023). The pleiotropic phenotypes caused by an hfq null mutation in Vibrio harveyi. Microorganisms, 11(11), 2741.
dc.relation.referencesDiederichs, S., Korona, A., Staaden, A., Kroutil, W., Honda, K., Ohtake, H., & Büchs, J. (2014). Phenotyping the quality of complex medium components by simple online- monitored shake flask experiments. Microbial cell factories, 13, 1-14.
dc.relation.referencesDing, Y., Davis, B. M., & Waldor, M. K. (2004). Hfq is essential for Vibrio cholerae virulence and downregulates σE expression. Molecular microbiology, 53(1), 345-354.
dc.relation.referencesEdwards, J. S., & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences, 97(10), 5528-5533.
dc.relation.referencesEllis, G. A., Tschirhart, T., Spangler, J., Walper, S. A., Medintz, I. L., & Vora, G. J. (2019). Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Marine Drugs, 17(12), 679. Eronen, M. I., & Brooks, D. S. (2018). Levels of organization in biology.
dc.relation.referencesFailmezger, J., Scholz, S., Blombach, B., & Siemann-Herzberg, M. (2018). Cell-free protein synthesis from fast-growing Vibrio natriegens. Frontiers in microbiology, 9, 1146.
dc.relation.referencesFiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. TrAC Trends in Analytical Chemistry, 27(3), 261-269.
dc.relation.referencesFondi, M., & Liò, P. (2015). Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiological research, 171, 52-64.
dc.relation.referencesForsten, E., Gerdes, S., Petri, R., Büchs, J., & Magnus, J. (2024). Unraveling the impact of pH, sodium concentration, and medium osmolality on Vibrio natriegens in batch processes. BMC biotechnology, 24(1), 63.
dc.relation.referencesGay, M., Renault, T., Pons, A. M., & Le Roux, F. (2004). Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Diseases of aquatic organisms, 62(1-2), 65-74.
dc.relation.referencesGao, W., Wu, Z., Zuo, K., Xiang, Q., Zhang, L., Chen, X., ... & Liu, H. (2024). From biosafety to national security: The evolution and challenges of biosafety laboratories. Laboratories, 1(3), 158-173.
dc.relation.referencesGlasgo, L. D., Lukasiak, K. L., & Zinser, E. R. (2024). Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species, Vibrio natriegens. Microbiology Spectrum, 12(6), e03964-23.
dc.relation.referencesGrenga, L., Chandra, G., Saalbach, G., Galmozzi, C. V., Kramer, G., & Malone, J. G. (2017). Analyzing the complex regulatory landscape of Hfq–an integrative, multi-omics approach. Frontiers in microbiology, 8, 1784.
dc.relation.referencesHam, R. G., & McKeehan, W. L. (1979). [5] Media and growth requirements. Methods in enzymology, 58, 44-93.
dc.relation.referencesHe, X., Zhang, Y., Wang, X., Zhu, X., Chen, L., Liu, W., ... & Zhang, X. H. (2022). Characterization of multiple alginate lyases in a highly efficient alginate-degrading Vibrio strain and its degradation strategy. Applied and Environmental Microbiology, 88(23), e01389-22.
dc.relation.referencesHoffart, E., Grenz, S., Lange, J., Nitschel, R., Müller, F., Schwentner, A., ... & Blombach, B. (2017). High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and environmental microbiology, 83(22), e01614-17.
dc.relation.referencesHuang, L., Ni, J., Zhong, C., Xu, P., Dai, J., & Tang, H. (2022). Establishment of a salt- induced bioremediation platform from marine Vibrio natriegens. Communications Biology, 5(1), 1352.
dc.relation.referencesHoff, J., Daniel, B., Stukenberg, D., Thuronyi, B. W., Waldminghaus, T., & Fritz, G. (2020). Vibrio natriegens: an ultrafast‐growing marine bacterium as emerging synthetic biology chassis. Environmental microbiology, 22(10), 4394-4408.
dc.relation.referencesHuber, M. (2021). Identification and functional characterization of bacterial small RNAs associating with the RNA chaperone Hfq (Doctoral dissertation, lmu).
dc.relation.referencesKanda, T., Otter, M., & Wahl, G. M. (2001). Coupling of mitotic chromosome tethering and replication competence in Epstein-Barr virus-based plasmids. Molecular and cellular biology, 21(10), 3576-3588.
dc.relation.referencesJagadevan, S., Banerjee, A., Banerjee, C., Guria, C., Tiwari, R., Baweja, M., & Shukla, P. (2018). Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for biofuels, 11, 1-21.
dc.relation.referencesJiang, Y., Wang, Y., Zhang, Z., Liao, M., Li, B., Rong, X., & Chen, G. (2019). Responses of microbial community structure in turbot (Scophthalmus maximus) larval intestine to the regulation of probiotic introduced through live feed. PLoS One, 14(5), e0216590.
dc.relation.referencesKayser, A., Weber, J., Hecht, V., & Rinas, U. (2005). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology, 151(3), 693-706.
dc.relation.referencesKanjilal, S., Citorik, R., LaRocque, R. C., Ramoni, M. F., & Calderwood, S. B. (2010). A systems biology approach to modeling Vibrio cholerae gene expression under virulence- inducing conditions. Journal of bacteriology, 192(17), 4300-4310.
dc.relation.referencesKöbel, T. S., Melo Palhares, R., Fromm, C., Szymanski, W., Angelidou, G., Glatter, T., ... & Schindler, D. (2022). An easy-to-use plasmid toolset for efficient generation and benchmarking of synthetic small RNAs in bacteria. ACS synthetic biology, 11(9), 2989- 3003.
dc.relation.referencesLeal, I. F. C. (2022). Molecular identification and environmental screening for members of the Vibrionaceae family (Doctoral dissertation). Learoyd, T. P., & Gaut, R. M. (2018). Cholera: under diagnosis and differentiation from other diarrhoeal diseases. Journal of travel medicine, 25(Suppl_1), S46-S51.
dc.relation.referencesLee, S. J., Lee, S. J., & Lee, D. W. (2013). Design and development of synthetic microbial platform cells for bioenergy. Frontiers in microbiology, 4, 92.
dc.relation.referencesLee, H. H., Ostrov, N., Gold, M. A., & Church, G. M. (2017). Recombineering in Vibrio natriegens. BioRxiv, 130088.
dc.relation.referencesLee, H. H., Ostrov, N., Wong, B. G., Gold, M. A., Khalil, A. S., & Church, G. M. (2019). Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature microbiology, 4(7), 1105-1113.
dc.relation.referencesLee, H. W., Park, J. H., Kim, W. K., Lee, J. G., Lee, J. S., Ahn, J. O., ... & Lee, H. W. (2020). Engineered Escherichia coli strains as platforms for biological production of isoprene. FEBS Open bio, 10(5), 780-788.
dc.relation.referencesLee, J. K., Patel, S. K. S., Sung, B. H., & Kalia, V. C. (2020). Biomolecules from municipal and food industry wastes: an overview. Bioresource technology, 298, 122346.
dc.relation.referencesLenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., & Bassler, B. L. (2004). The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell, 118(1), 69-82.
dc.relation.referencesLi, T., Menegatti, S., & Crook, N. (2023). Breakdown of polyethylene therepthalate microplastics under saltwater conditions using engineered Vibrio natriegens. AIChE Journal, 69(12), e18228.
dc.relation.referencesLindeboom, T. A., Sanchez Olmos, M. D. C., Schulz, K., Brinkmann, C. K., Ramírez Rojas, A. A., Hochrein, L., & Schindler, D. (2024). An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts. ACS Synthetic Biology, 13(4), 1116-1127.
dc.relation.referencesLittle, R. H., Grenga, L., Saalbach, G., Howat, A. M., Pfeilmeier, S., Trampari, E., & Malone, J. G. (2016). Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation. PLoS genetics, 12(2), e1005837.
dc.relation.referencesLiu, D. (2024). Vibrio parahaemolyticus and Vibrio vulnificus. In Molecular Medical Microbiology (pp. 1053-1064). Academic Press.
dc.relation.referencesLiu, B., Gao, Q., Zhang, X., Chen, H., Zhang, Y., Sun, Y., ... & Chen, C. (2021). CsrA regulates swarming motility and carbohydrate and amino acid metabolism in Vibrio alginolyticus. Microorganisms, 9(11), 2383.
dc.relation.referencesLondoño-Hernández, L., García-Gómez, M. D. J., Huerta-Ochoa, S., Polanía-Rivera, A. M., Aguilar, C. N., & Prado-Barragán, L. A. (2024). Effect of Glucose Concentration on the Production of Proteolytic Extract by Different Strains of Aspergillus under Solid-State Fermentation. Fermentation, 10(2), 97.
dc.relation.referencesLong, C. P., Gonzalez, J. E., Cipolla, R. M., & Antoniewicz, M. R. (2017). Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metabolic engineering, 44, 191-197.
dc.relation.referencesLong, C. P., Gonzalez, J. E., Feist, A. M., Palsson, B. O., & Antoniewicz, M. R. (2018). Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proceedings of the National Academy of Sciences, 115(1), 222-227.
dc.relation.referencesLydick, V. N., Mass, S., Pepin, R., Podicheti, R., Klempic, E., Rusch, D. B., ... & van Kessel, J. C. (2025). Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Applied and Environmental Microbiology, e01143-24.
dc.relation.referencesMajumder, E. L. W., Billings, E. M., Benton, H. P., Martin, R. L., Palermo, A., Guijas, C., ... & Siuzdak, G. (2021). Cognitive analysis of metabolomics data for systems biology. Nature protocols, 16(3), 1376-1418.
dc.relation.referencesMartínez-García, E., & de Lorenzo, V. (2024). Pseudomonas putida as a synthetic biology chassis and a metabolic engineering platform. Current opinion in biotechnology, 85, 103025.
dc.relation.referencesMeng, W., Zhang, Y., Ma, L., Lü, C., Xu, P., Ma, C., & Gao, C. (2022). Non-sterilized fermentation of 2, 3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens. Frontiers in bioengineering and biotechnology, 10, 955097.
dc.relation.referencesMohd Kamal, K., Mahamad Maifiah, M. H., Abdul Rahim, N., Hashim, Y. Z. H. Y., Abdullah Sani, M. S., & Azizan, K. A. (2022). Bacterial metabolomics: sample preparation methods. Biochemistry research international, 2022(1), 9186536.
dc.relation.referencesMojica, N., Kersten, F., Montserrat-Canals, M., Huhn III, G. R., Tislevoll, A. M., Cordara, G., ... & Krengel, U. (2024). Using Vibrio natriegens for high-yield production of challenging expression targets and for protein perdeuteration. Biochemistry, 63(5), 587- 598.
dc.relation.referencesMori, J. F., & Kanaly, R. A. (2022). Natural chromosome-chromid fusion across rRNA operons in a Burkholderiaceae bacterium. Microbiology spectrum, 10(1), e02225-21.
dc.relation.referencesMozzi, F., Ortiz, M. E., Bleckwedel, J., De Vuyst, L., & Pescuma, M. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International, 54(1), 1152-1161.
dc.relation.referencesMizoguchi, H., Mori, H., & Fujio, T. (2007). Escherichia coli minimum genome factory. Biotechnology and Applied Biochemistry, 46(3), 157-167.
dc.relation.referencesMüller, B., & Grossniklaus, U. (2010). Model organisms—a historical perspective. Journal of proteomics, 73(11), 2054-2063.
dc.relation.referencesNaveed, M., Ishfaq, H., Rehman, S. U., Javed, A., Waseem, M., Makhdoom, S. I., ... & Alasmari, A. F. (2023). GC–MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Frontiers in Chemistry, 11, 1287599.
dc.relation.referencesNambisan, P. (2017). Laboratory biosafety and good laboratory practices. An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology, 253.
dc.relation.referencesNakano, M., Takahashi, A., Su, Z., Harada, N., Mawatari, K., & Nakaya, Y. (2008). Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus. BMC microbiology, 8, 1-9.
dc.relation.referencesNguyen, A. Q., Shimohata, T., Hatayama, S., Tentaku, A., Kido, J., Bui, T. M. H., ... & Takahashi, A. (2020). Type III secretion effector VopQ of Vibrio parahaemolyticus modulates central carbon metabolism in epithelial cells. Msphere, 5(2), 10-1128.
dc.relation.referencesOberacker, P., Stepper, P., Bond, D. M., Höhn, S., Focken, J., Meyer, V., Schelle, L., Sugrue, V. J., Jeunen, G. J., Moser, T., Hore, S. R., von Meyenn, F., Hipp, K., Hore, T. A., & Jurkowski, T. P. (2019). Bio-On-Magnetic-Beads (BOMB): Open platform for high- throughput nucleic acid extraction and manipulation. PLoS biology, 17(1), e3000107. https://doi.org/10.1371/journal.pbio.3000107
dc.relation.referencesÖrencik, C., Müller, S., Kirner, T., & Amann, E. (2019). An analysis and optimization of growth condition requirements of the fast-growing bacterium Vibrio natriegens. bioRxiv, 775437.
dc.relation.referencesOren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28(1), 56-63.
dc.relation.referencesOtjacques, E., Jatico, B., Marques, T. A., Xavier, J. C., Ruby, E., McFall-Ngai, M., & Rosa, R. (2025). Climate-driven warming disrupts the symbiosis of bobtail squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. bioRxiv, 2025-02.
dc.relation.referencesOuyang, Y., Chen, S., Zhao, L., Song, Y., Lei, A., He, J., & Wang, J. (2021). Global metabolomics reveals that Vibrio natriegens enhances the growth and paramylon synthesis of Euglena gracilis. Frontiers in Bioengineering and Biotechnology, 9, 652021.
dc.relation.referencesPaczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W., & Noack, S. (2012). Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial cell factories, 11, 1-14.
dc.relation.referencesPark, S., Prévost, K., Heideman, E. M., Carrier, M. C., Azam, M. S., Reyer, M. A., ... & Fei, J. (2021). Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. Elife, 10, e64207.
dc.relation.referencesPayne, W. J., Eagon, R. G., & Williams, A. K. (1961). Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek, 27(1), 121- 128.
dc.relation.referencesPayne, S. M., Mey, A. R., & Wyckoff, E. E. (2016). Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiology and Molecular Biology Reviews, 80(1), 69-90.
dc.relation.referencesPedersen, B. H., Gurdo, N., Johansen, H. K., Molin, S., Nikel, P. I., & La Rosa, R. (2021). High‐throughput dilution‐based growth method enables time‐resolved exo‐metabolomics of Pseudomonas putida and Pseudomonas aeruginosa. Microbial Biotechnology, 14(5), 2214-2226.
dc.relation.referencesPusic, P., Sonnleitner, E., Krennmayr, B., Heitzinger, D. A., Wolfinger, M. T., Resch, A., & Bläsi, U. (2018). Harnessing metabolic regulation to increase Hfq-dependent antibiotic susceptibility in Pseudomonas aeruginosa. Frontiers in microbiology, 9, 2709.
dc.relation.referencesQiu, S., Yang, A., & Zeng, H. (2023). Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook. PLoS Computational Biology, 19(8), e1011391.
dc.relation.referencesQiu, Y., Wu, M., Bao, H., Liu, W., & Shen, Y. (2023). Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: current state and perspectives. Engineering Microbiology, 3(3), 100084.
dc.relation.referencesRamírez Rojas, A. A., Brinkmann, C. K., Köbel, T. S., & Schindler, D. (2024). DuBA. flow─ A Low-Cost, Long-Read Amplicon Sequencing Workflow for the Validation of Synthetic DNA Constructs. ACS Synthetic Biology, 13(2), 457-465.
dc.relation.referencesRamming, L., Stukenberg, D., Sánchez Olmos, M. D. C., Glatter, T., Becker, A., & Schindler, D. (2024). Rationally designed chromosome fusion does not prevent rapid growth of Vibrio natriegens. Communications Biology, 7(1), 519.
dc.relation.referencesReynolds, D. J., & Penn, C. W. (1994). Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology, 140(10), 2649-2656.
dc.relation.referencesRichmond, J. Y., & McKinney, R. W. (2009). Biosafety in microbiological and biomedical laboratories. US Government Printing Office. (Es un libro no pude descargar) Roessner, U., & Bowne, J. (2009). What is metabolomics all about?. Biotechniques, 46(5), 363-365.
dc.relation.referencesRamamurthy, T., Nandy, R. K., Mukhopadhyay, A. K., Dutta, S., Mutreja, A., Okamoto, K., ... & Ghosh, A. (2020). Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Frontiers in Cellular and Infection Microbiology, 10, 572096.
dc.relation.referencesRuiz, N., & Silhavy, T. J. (2022). How Escherichia coli became the flagship bacterium of molecular biology. Journal of bacteriology, 204(9), e00230-22.
dc.relation.referencesSánchez-Clemente, R., Guijo, M. I., Nogales, J., & Blasco, R. (2020). Carbon source influence on extracellular pH changes along bacterial cell-growth. Genes, 11(11), 1292.
dc.relation.referencesSchulze, C., Hädrich, M., Borger, J., Rühmann, B., Döring, M., Sieber, V., ... & Blombach, B. (2024). Investigation of exopolysaccharide formation and its impact on anaerobic succinate production with Vibrio natriegens. Microbial Biotechnology, 17(1), e14277.
dc.relation.referencesShi, X. C., Wang, K., Xue, M., Mao, W., Xu, K., Tremblay, P. L., & Zhang, T. (2024). Ultrafast removal of toxic Cr (VI) by the marine bacterium Vibrio natriegens. Chemosphere, 350, 141177.
dc.relation.referencesSittka, A., Lucchini, S., Papenfort, K., Sharma, C. M., Rolle, K., Binnewies, T. T., ... & Vogel, J. (2008). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS genetics, 4(8), e1000163.
dc.relation.referencesSmith, A. D., Tschirhart, T., Compton, J., Hennessa, T. M., VanArsdale, E., & Wang, Z. (2023). Rapid, high-titer biosynthesis of melanin using the marine bacterium Vibrio natriegens. Frontiers in bioengineering and biotechnology, 11, 1239756.
dc.relation.referencesSonnleitner, E., Schuster, M., Sorger‐Domenigg, T., Greenberg, E. P., & Bläsi, U. (2006). Hfq‐dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Molecular microbiology, 59(5), 1542-1558.
dc.relation.referencesSozhamannan, S., & Waldminghaus, T. (2020). Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environmental Microbiology, 22(10), 4123-4132.
dc.relation.referencesSprenger, M., Siemers, M., Krautwurst, S., & Papenfort, K. (2024). Small RNAs direct attack and defense mechanisms in a quorum sensing phage and its host. Cell Host & Microbe, 32(5), 727-738.
dc.relation.referencesSpecht, D. A., Sheppard, T. J., Kennedy, F., Li, S., Gadikota, G., & Barstow, B. (2024). Efficient natural plasmid transformation of Vibrio natriegens enables zero-capital molecular biology. PNAS nexus, 3(2), pgad444.
dc.relation.referencesStoffels, M., Amann, R., Ludwig, W., Hekmat, D., & Schleifer, K. H. (1998). Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds. Applied and environmental microbiology, 64(3), 930-939.
dc.relation.referencesStukenberg, D., Faber, A., & Becker, A. (2024). Graded-CRISPRi, a Tool for Tuning the Strengths of CRISPRi-Mediated Knockdowns in Vibrio natriegens Using gRNA Libraries. ACS Synthetic Biology, 13(7), 2091-2104.
dc.relation.referencesStukenberg, D., Hensel, T., Hoff, J., Daniel, B., Inckemann, R., Tedeschi, J. N., ... & Fritz, G. (2021). The Marburg Collection: A Golden Gate DNA assembly framework for synthetic biology applications in Vibrio natriegens. ACS synthetic biology, 10(8), 1904- 1919.
dc.relation.referencesStukenberg, D., Hoff, J., Faber, A., & Becker, A. (2022). NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Communications Biology, 5(1), 265.
dc.relation.referencesSu, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microbial cell factories, 19, 1-12.
dc.relation.referencesSU, Q., SCHUPPLI, D., TSUI, H. C. T., WINKLER, M. E., & WEBER, H. (1997). Strongly Reduced Phage Qβ Replication, but Normal Phage MS2 Replication in an Escherichia coli K12 Mutant with Inactivated Qβ Host Factor (hfq) Gene. Virology, 227(1), 211-214.
dc.relation.referencesSun, X., Shang, Y., Zhang, B., Guo, P., Luo, Y., & Wu, H. (2024). Engineering of fast- growing Vibrio natriegens for biosynthesis of poly (3-hydroxybutyrate-co- lactate). Bioresources and bioprocessing, 11(1), 86.
dc.relation.referencesTakada, K., Yoshioka, Y., Morikawa, K., Ariyoshi, W., & Yamasaki, R. (2025). Glucose Supplementation Enhances the Bactericidal Effect of Penicillin and Gentamicin on Streptococcus sanguinis Persisters. Antibiotics, 14(1), 36.
dc.relation.referencesTian, J., Deng, W., Zhang, Z., Xu, J., Yang, G., Zhao, G., ... & Gu, Y. (2023). Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nature Communications, 14(1), 7758.
dc.relation.referencesTheodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012). Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Analytica chimica acta, 711, 7-16.
dc.relation.referencesThiele, I., Gutschmann, B., Aulich, L., Girard, M., Neubauer, P., & Riedel, S. L. (2021). High-cell-density fed-batch cultivations of Vibrio natriegens. Biotechnology letters, 43(9), 1723-1733.
dc.relation.referencesThoma, F., & Blombach, B. (2021). Metabolic engineering of Vibrio natriegens. Essays in Biochemistry, 65(2), 381-392.
dc.relation.referencesToulouse, C., Metesch, K., Pfannstiel, J., & Steuber, J. (2018). Metabolic reprogramming of Vibrio cholerae impaired in respiratory NADH oxidation is accompanied by increased copper sensitivity. Journal of Bacteriology, 200(15), 10-1128.
dc.relation.referencesTorres-Quesada, O., Oruezabal, R. I., Peregrina, A., Jofré, E., Lloret, J., Rivilla, R., ... & Jiménez-Zurdo, J. I. (2010). The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC microbiology, 10, 1-20.
dc.relation.referencesTremaroli, V., Workentine, M. L., Weljie, A. M., Vogel, H. J., Ceri, H., Viti, C., ... & Zannoni, D. (2009). Metabolomic investigation of the bacterial response to a metal challenge. Applied and environmental microbiology, 75(3), 719-728.
dc.relation.referencesTschirhart, T., Shukla, V., Kelly, E. E., Schultzhaus, Z., NewRingeisen, E., Erickson, J. S., ... & Vora, G. J. (2019). Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS synthetic biology, 8(9), 2069-2079.
dc.relation.referencesVal, M. E., Skovgaard, O., Ducos-Galand, M., Bland, M. J., & Mazel, D. (2012). Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS genetics, 8(1), e1002472.
dc.relation.referencesVeenstra, T. D. (2021). Omics in systems biology: current progress and future outlook. Proteomics, 21(3-4), 2000235.
dc.relation.referencesVo, P. N., Lee, H. M., Ren, J., & Na, D. (2021). Optimized expression of Hfq protein increases Escherichia coli growth. Journal of Biological Engineering, 15, 1-9.
dc.relation.referencesWang, Z., Tschirhart, T., Schultzhaus, Z., Kelly, E. E., Chen, A., Oh, E., ... & Vora, G. J. (2020). Melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis: characterization and application. Applied and environmental microbiology, 86(5), e02749-19.
dc.relation.referencesWang, H., & de Carvalho, L. P. S. (2023). Metabolomic profiling reveals bacterial metabolic adaptation strategies and new metabolites. Current Opinion in Chemical Biology, 74, 102287.
dc.relation.referencesWanga, S. J., & Zhonga, J. J. (2007). Bioreactor Engineering. OH 44325, USA, 131.
dc.relation.referencesWeinstock, M. T., Hesek, E. D., Wilson, C. M., & Gibson, D. G. (2016). Vibrio natriegens as a fast-growing host for molecular biology. Nature methods, 13(10), 849-851.
dc.relation.referencesWiegand, D. J., Lee, H. H., Ostrov, N., & Church, G. M. (2018). Establishing a cell-free Vibrio natriegens expression system. ACS synthetic biology, 7(10), 2475-2479. Williams, J. M. (2018). Historical Perspectives on the Bacterium Vibrio natriegens and its Potential to Revolutionize Bioengineering. McGill Science Undergraduate Research Journal, 13(1), 50-53.
dc.relation.referencesWilliams, J. M. (2018). Historical Perspectives on the Bacterium Vibrio natriegens and its Potential to Revolutionize Bioengineering. McGill Science Undergraduate Research Journal, 13(1), 50-53.
dc.relation.referencesXia, F., Hu, S., Zheng, X., Wang, M. W., Zhang, C. C., Wu, Z. N., & Sun, Y. J. (2022). New insights into metabolomics profile generation in fermented tea: the relevance of bacteria and metabolites in Fuzhuan brick tea. Journal of the Science of Food and Agriculture, 102(1), 350-359.
dc.relation.referencesXu, J., Sun, Y., Wu, J., Yang, S., & Yang, L. (2024). Chromosome recombination and modification by LoxP‐mediated evolution in Vibrio natriegens using CRISPR‐associated transposases. Biotechnology and Bioengineering, 121(3), 1163-1172.
dc.relation.referencesYadav, D., Tanveer, A., Malviya, N., & Yadav, S. (2018). Overview and principles of bioengineering: the drivers of omics technologies. In Omics technologies and bio- engineering (pp. 3-23). Academic Press.
dc.relation.referencesYao, R., Liu, D., Jia, X., Zheng, Y., Liu, W., & Xiao, Y. (2018). CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and systems biotechnology, 3(3), 135- 149.
dc.relation.referencesYe, J. W., & Chen, G. Q. (2021). Halomonas as a chassis. Essays in Biochemistry, 65(2), 393-403.
dc.relation.referencesYin, M., Ye, B., Jin, Y., Liu, L., Zhang, Y., Li, P., ... & Zhao, Z. (2020). Changes in Vibrio natriegens growth under simulated microgravity. Frontiers in microbiology, 11, 2040. Yin, Y., Yin, Y., Yang, H., Chen, Z., Zheng, J., & Peng, B. (2022). Vibrio alginolyticus survives from ofloxacin stress by metabolic adjustment. Frontiers in microbiology, 13, 818923.
dc.relation.referencesYoshida, M. A., Tanabe, T., Akiyoshi, H., & Kawamukai, M. (2022). Gut microbiota analysis of Blenniidae fishes including an algae-eating fish and clear boundary formation among isolated Vibrio strains. Scientific reports, 12(1), 4642.
dc.relation.referencesYu, R., & Nielsen, J. (2020). Yeast systems biology in understanding principles of physiology underlying complex human diseases. Current Opinion in Biotechnology, 63, 63-69.
dc.relation.referencesZhang, W., & Li, C. (2021). Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data. Reviews in Aquaculture, 13(4), 2004-2026.
dc.relation.referencesZhang, X. J., Qin, G. M., Bing, X. W., Yan, B. L., & Liang, L. G. (2011). Molecular and phenotypic characterization of Vibrio aestuarianus, a pathogen of the cultured tongue sole, Cynoglossus semilaevis Günther. Journal of fish diseases, 34(1), 57-64.
dc.relation.referencesZheng, S., Zhao, C., Chen, Y., Zhang, Z., He, Y., Wang, J., ... & Chen, G. Q. (2025). Engineered Vibrio natriegens with a Toxin–Antitoxin System for High-Productivity Biotransformation of l-Lysine to Cadaverine. Journal of Agricultural and Food Chemistry.
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidas
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algas
dc.subject.lembBACTERIAS MARINASspa
dc.subject.lembMarine bacteriaeng
dc.subject.lembMICROBIOLOGIA MARINAspa
dc.subject.lembMarine microbiologyeng
dc.subject.lembBIOTECNOLOGIA MICROBIANAspa
dc.subject.lembMicrobial biotechnologyeng
dc.subject.lembMETABOLITOS MICROBIANOSspa
dc.subject.lembMicrobial metaboliteseng
dc.subject.proposalVibrio natriegenseng
dc.subject.proposalMicrobial cell factoryeng
dc.subject.proposalGenetic engineeringeng
dc.subject.proposalHFQeng
dc.subject.proposalGene knockouteng
dc.subject.proposalBiotechnologyeng
dc.subject.proposalMetabolomicseng
dc.subject.proposalFábrica celular microbianaspa
dc.subject.proposalIngeniería genéticaspa
dc.subject.proposalBiotecnologíaspa
dc.subject.proposalMetabolómicaspa
dc.titleComparison of the metabolic profile in defined medium of the wild type strain Vibrio Natriegens and a strain with rationally fused chromosomeseng
dc.title.translatedComparación del perfil metabólico en medio definido de la cepa de tipo silvestre Vibrio Natriegens y una cepa con cromosomas fusionados de forma racionalspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentMedios de comunicación
oaire.accessrightshttp://purl.org/coar/access_right/c_16ec
oaire.awardtitleEstablishing and characterizing synthetic chromosomes in Vibrio natriegens.
oaire.fundernameThe International Pre-doctoral Internship Program of the Microcosm Earth Center Marburg.

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ThesisAngelicaMillanAldana250922.pdf
Tamaño:
3.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Microbiología

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Spanish.U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
288.87 KB
Formato:
Adobe Portable Document Format
Descripción: