Acumulación de microplásticos en bosques de manglar con diferentes grados de impacto antrópico en el pacífico colombiano

dc.contributor.advisorDuque Nivia, Guillermo
dc.contributor.advisorMolina Sandoval, Andrés Esteban
dc.contributor.authorVásquez Molano, Daniela
dc.contributor.orcidorcid.org/0000-0002-2468-529Xspa
dc.contributor.orcidorcid.org/0000-0003-1954-4393spa
dc.contributor.orcidorcid.org/0000-0001-5306-5906spa
dc.contributor.researchgroupGrupo de investigación Ecología y Contaminación Acuática – ECONACUAspa
dc.coverage.regionPacífico Colombiano
dc.date.accessioned2024-02-01T19:04:26Z
dc.date.available2024-02-01T19:04:26Z
dc.date.issued2023-12-19
dc.descriptionIlustraciones, gráficas, fotografías, tablasspa
dc.description.abstractEl ecosistema de manglar posee características morfológicas y un sistema de raíces especializado que altera la distribución y segregación de partículas, por lo que han sido identificados como importantes sumideros de residuos plásticos, incluidos los microplásticos (MP). El objetivo de esta investigación fue determinar la densidad de microplásticos en sedimentos de los bosques de manglar según su grado de intervención antrópica, la dinámica ambiental, espacial y temporal y su relación con la estructura del manglar en las bahías de Buenaventura y Tumaco, Pacífico colombiano. Para esto, se establecieron parcelas de muestreo que representaran diferentes niveles de desarrollo del bosque de manglar, en sitios con diferentes niveles de intervención antropogénica en cada bahía. En cada parcela se colectaron muestras de sedimento y agua superficial. Los MP fueron extraídos mediante separación por densidad y cada partícula fue contada y clasificada según su morfología. Se determinó la textura del suelo y el contenido de materia orgánica y se midieron los sólidos suspendidos (PPT), salinidad (UPS) y temperatura superficial (°C) del agua superficial. En cada sitio se identificó la especie del árbol, cantidad de individuos, diámetro de altura al pecho (DAP) y altura del árbol. Se utilizaron permanovas para evaluar las variaciones espaciotemporales. Adicionalmente, se determinó la influencia de la textura del suelo, parámetros fisicoquímicos y la estructura del manglar sobre la acumulación de MP en sedimentos mediante Modelos Aditivos Generalizados (GAM). Se encontró que la bahía de Buenaventura presentó 67% mayor cantidad de MP en comparación con la bahía de Tumaco, y que los bosques con mayor nivel de intervención antrópica acumularon hasta 22% más MP que los bosques menos intervenidos, debido a la cercanía de centros poblados, descargas de ríos, canales y zonas turísticas. No se presentaron patrones estacionales en la acumulación de MP en sedimentos en las bahías para las épocas evaluadas. La mayor acumulación de MP en sedimentos relacionada con mayores porcentajes de lodos y contenido de materia orgánica se atribuye al menor movimiento del agua que favorece la precipitación y acumulación de MP. Así mismo, en la bahía de Buenaventura se encontró que la mayor cantidad de fibras estuvo influenciada por bajas salinidades debido al aporte de agua dulce por escorrentía y aumento de caudal de los ríos, que favorecen el ingreso de residuos al ecosistema de manglar. En la bahía de Tumaco el aumento en la cantidad de MP fue influenciado por mayores salinidades y puede ser atribuido a la mayor concentración y baja dispersión de contaminantes en la época seca. Por otro lado, se identificó que la relación negativa entre la cantidad de MP y el DAP se puede atribuir a que los bosques jóvenes tienen una mayor tasa de atenuación de olas que favorece la sedimentación y retención de contaminantes. Finalmente, se evidenció que los bosques de manglares con mayor densidad de árboles acumularon hasta un 104% más MP en sedimentos en comparación con los bosques con menor densidad, debido a la capacidad de reducción de la energía del agua que promueve la retención de sedimentos y contaminantes asociados. La cantidad de microplásticos encontrados en la presente investigación se acerca a lo encontrado en bosques de Irán e Indonesia, y es menor a lo reportado en bosques de manglares en China y Brasil. (Texto tomado de la fuente)spa
dc.description.abstractThe mangrove ecosystem has morphological characteristics and a specialized root system that alter the distribution and segregation of particles, so they have been identified as important sinks for plastic waste, including microplastics (MP). The objective of this research was to determine the density of microplastics in mangrove forest sediments according to the degree of anthropogenic intervention, the environmental, spatial and temporal dynamics and their relationship with the mangrove structure in the bays of Buenaventura and Tumaco, Colombian Pacific. For this purpose, sampling plots representing different levels of mangrove forest development were established at sites with different levels of anthropogenic intervention in each bay. Sediment and surface water samples were collected from each plot. MPs were extracted by density separation and each particle was counted and classified according to its morphology. Soil texture and organic matter content were determined, and suspended matter (PPT), salinity (UPS) and surface water temperature (°C) were measured. Tree species, number of individuals, diameter at breast height (DBH) and tree height were determined at each site. Permanovas were used to assess spatio-temporal variations. In addition, the influence of soil texture, physicochemical parameters and mangrove structure on PM accumulation in sediments was determined using Generalized Additive Modelling (GAM). It was found that Buenaventura Bay had 67% more PM than Tumaco Bay, and that forests with higher levels of anthropogenic disturbance accumulated up to 22% more PM than less disturbed forests due to their proximity to population centers, river discharges, canals and tourist areas. There were no seasonal patterns in sediment PM accumulation in the bays for the periods studied. The higher accumulation of PM in sediments associated with higher percentages of silt and organic matter is attributed to the lower water movement, which favors the precipitation and accumulation of PM. Similarly, in Buenaventura Bay, the higher amount of fibers was found to be influenced by low salinities due to the contribution of fresh water from runoff and increased river flow, which favors the entry of waste into the mangrove ecosystem. In Tumaco Bay, the increase in the amount of PM was influenced by higher salinities and can be attributed to the higher concentration and lower dispersion of pollutants in the dry season. On the other hand, the negative relationship between the amount of PM and DBH was found to be due to the fact that young forests have a higher wave attenuation rate, which favors sedimentation and retention of pollutants. Finally, it was found that mangrove forests with higher tree densities accumulated up to 104% more PM in sediments compared to forests with lower densities, due to their ability to reduce water energy, which favors the retention of sediments and associated pollutants. The amount of microplastics found in the present investigation is close to that found in forests in Iran and Indonesia, and is lower than that reported in mangrove forests in China and Brazil.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.methodsPara el desarrollo del trabajo de grado se establecieron parcelas de muestreo que representaran diferentes niveles de desarrollo del bosque de manglar en las bahías de Buenaventura y Tumaco en el Pacífico colombiano, en sitios con diferentes niveles de intervención antropogénica en cada bahía. En cada parcela se colectaron muestras de sedimento y agua superficial. Los MP fueron extraídos mediante separación por densidad y cada partícula fue contada y clasificada según su morfología. Se determinó la textura del suelo y el contenido de materia orgánica y se midieron los sólidos suspendidos (PPT), salinidad (UPS) y temperatura superficial (°C) del agua superficial. En cada sitio se identificó la especie del árbol, cantidad de individuos, diámetro de altura al pecho (DAP) y altura del árbol. Se utilizaron permanovas para evaluar las variaciones espaciotemporales. Adicionalmente, se determinó la influencia de la textura del suelo, parámetros fisicoquímicos y la estructura del manglar sobre la acumulación de MP en sedimentos mediante Modelos Aditivos Generalizados (GAM).spa
dc.description.notesContiene mapas y tablas.spa
dc.description.researchareaContaminación e impactos ambientales en ecosistemasspa
dc.description.sponsorshipSistema General de Regalías, financiador del proyecto “Investigación de los servicios ecosistémicos derivados de bosques de manglar en el Pacífico colombiano, Valle del Cauca, Nariño, Cauca, Chocó” BPIN2020000100054, del cual hace parte este trabajo de investigación.spa
dc.format.extentxvi, 68 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85596
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAuta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environmentA review of the sources, fate, effects, and potential solutions. Environment International, 110, 165–176. https://doi.org/10.1016/j.envint.2017.02.013spa
dc.relation.referencesAllen, A. S., Seymour, A. C., & Rittschof, D. (2017). Chemoreception drives plastic consumption in a hard coral. Marine Pollution Bulletin, 124(1), 198–205. https://doi.org/10.1016/j.marpolbul.2017.07.030spa
dc.relation.referencesCartraud, A. E., Le Corre, M., Turquet, J., & Tourmetz, J. (2019). Plastic ingestion in seabirds of the western Indian Ocean. Marine Pollution Bulletin, 140(January), 308–314. https://doi.org/10.1016/j.marpolbul.2019.01.065spa
dc.relation.referencesCordova, M. R., Ulumuddin, Y. I., Purbonegoro, T., & Shiomoto, A. (2021). Characterization of microplastics in mangrove sediment of Muara Angke Wildlife Reserve, Indonesia. Marine Pollution Bulletin, 163(October 2020), 112012. https://doi.org/10.1016/j.marpolbul.2021.112012spa
dc.relation.referencesda Silva Paes, E., Vincent Gloaguen, T., Silva, H. dos A. da C., Duarte, T. S., de Almeida, M. da C., Costa, O. D. A. V., Bomfim, M. R., & Santos, J. A. G. (2022). Widespread microplastic pollution in mangrove soils of Todos os Santos Bay, northern Brazil. Environmental Research, 210(November 2021). https://doi.org/10.1016/j.envres.2022.112952spa
dc.relation.referencesDeng, H., He, J., Feng, D., Zhao, Y., Sun, W., Yu, H., & Ge, C. (2021). Microplastics pollution in mangrove ecosystems: A critical review of current knowledge and future directions. Science of the Total Environment, 753, 142041. https://doi.org/10.1016/j.scitotenv.2020.142041spa
dc.relation.referencesDuan, J., Han, J., Cheung, S. G., Chong, R. K. Y., Lo, C. M., Lee, F. W. F., Xu, S. J. L., Yang, Y., Tam, N. F. yee, & Zhou, H. C. (2021). How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China. Science of the Total Environment, 767, 144695. https://doi.org/10.1016/j.scitotenv.2020.144695spa
dc.relation.referencesDuke, N. C. (2011). Mangroves. In Encyclopedia of Modern Coral Reefs. Structure, Form and Process (Issue January 2011). https://doi.org/10.1007/978-90-481-2639-2spa
dc.relation.referencesFAO. (2003). Status and trends in mangrove area extent worldwide. In M. Wilkie & S. Fortuna (Eds.), Forest Resources Assessment Working Paper (p. 63).spa
dc.relation.referencesFerreira, G., Barletta, M., & Lima, A. R. A. (2019). Use of estuarine resources by top predator fishes. How do ecological patterns affect rates of contamination by microplastics? Science of the Total Environment, 655, 292–304. https://doi.org/10.1016/j.scitotenv.2018.11.229spa
dc.relation.referencesGarcés-Ordóñez, O., Castillo-Olaya, V. A., Granados-Briceño, A. F., Blandón García, L. M., & Espinosa Díaz, L. F. (2019). Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Marine Pollution Bulletin, 145(2), 455–462.spa
dc.relation.referencesGarcés-Ordóñez, O., Castillo-Olaya, V., Espinosa-Díaz, L. F., & Canals, M. (2023). Seasonal variation in plastic litter pollution in mangroves from two remote tropical estuaries of the Colombian Pacific. Marine Pollution Bulletin, 193(March), 115210. https://doi.org/10.1016/j.marpolbul.2023.115210spa
dc.relation.referencesGarcés-Ordóñez, O., Mejía-Esquivia, K. A., Sierra-Labastidas, T., Patiño, A., Blandón, L. M., & Espinosa Díaz, L. F. (2020). Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean. Marine Pollution Bulletin, 154(2), 111085. https://doi.org/10.1016/j.marpolbul.2020.111085spa
dc.relation.referencesGarcés, O., Castillo, V. A., Granados, A. F., Blandón, L. M., & Espinosa, L. F. (2019). Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta , Colombian Caribbean. Marine Pollution Bulletin, 145(2), 455–462. https://doi.org/10.1016/j.marpolbul.2019.06.058spa
dc.relation.referencesHorton, A. A., Jürgens, M. D., Lahive, E., van Bodegom, P. M., & Vijver, M. G. (2018). The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River Thames, UK. Environmental Pollution, 236, 188–194. https://doi.org/10.1016/j.envpol.2018.01.044spa
dc.relation.referencesINVEMAR, I. de I. M. y C. “José B. V. D. A.-. (2005). Informe del estado de los ambientes marinos y costeros en Colombia. 192. http://www.invemar.org.co/redcostera1/invemar/docs/IERMAC_2013.pdfspa
dc.relation.referencesKim, S. W., Chae, Y., Kim, D., & An, Y. J. (2019). Zebrafish can recognize microplastics as inedible materials: Quantitative evidence of ingestion behavior. Science of the Total Environment, 649, 156–162. https://doi.org/10.1016/j.scitotenv.2018.08.310spa
dc.relation.referencesLuo, Y. Y., Not, C., & Cannicci, S. (2021). Mangroves as unique but understudied traps for anthropogenic marine debris: A review of present information and the way forward. Environmental Pollution, 271, 116291. https://doi.org/10.1016/j.envpol.2020.116291spa
dc.relation.referencesMartin, C., Almahasheer, H., & Duarte, C. M. (2019). Mangrove forests as traps for marine litter. Environmental Pollution, 247, 499–508. https://doi.org/10.1016/j.envpol.2019.01.067spa
dc.relation.referencesMaza, M., Lara, J. L., & Losada, I. J. (2021). Predicting the evolution of coastal protection service with mangrove forest age. Coastal Engineering, 168(October 2020). https://doi.org/10.1016/j.coastaleng.2021.103922spa
dc.relation.referencesNaciones Unidas. (2007). Mangroves of South America 1980-2005 : Les mangroves d ’ Amérique du Sud 1980-2005 : COUNTRY REPORTS RAPPORTS NATIONAUX. Forestry.spa
dc.relation.referencesNaji, A., Nuri, M., Amiri, P., & Niyogi, S. (2019). Small microplastic particles (S-MPPs) in sediments of mangrove ecosystem on the northern coast of the Persian Gulf. Marine Pollution Bulletin, 146(June), 305–311. https://doi.org/10.1016/j.marpolbul.2019.06.033spa
dc.relation.referencesOry, N. C., Sobral, P., Ferreira, J. L., & Thiel, M. (2017). Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Science of the Total Environment, 586, 430–437. https://doi.org/10.1016/j.scitotenv.2017.01.175spa
dc.relation.referencesPrata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC - Trends in Analytical Chemistry, 110, 150–159.spa
dc.relation.referencesRiascos, J. M., Valencia, N., Peña, E. J., & Cantera, J. R. (2019). Inhabiting the technosphere: The encroachment of anthropogenic marine litter in Neotropical mangrove forests and its use as habitat by macrobenthic biota. Marine Pollution Bulletin, 142(November 2018), 559–568. https://doi.org/10.1016/j.marpolbul.2019.04.010spa
dc.relation.referencesSoler, M., Colomer, J., Folkard, A., & Serra, T. (2020). Particle size segregation of turbidity current deposits in vegetated canopies. Science of the Total Environment, 703, 134784. https://doi.org/10.1016/j.scitotenv.2019.134784spa
dc.relation.referencesRomañach, S. S., DeAngelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Raja Barizan, R. S., & Zhai, L. (2018). Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean and Coastal Management, 154(January), 72–82. https://doi.org/10.1016/j.ocecoaman.2018.01.009spa
dc.relation.referencesYu, L., Li, R., Chai, M., & Li, B. (2023). Vertical distribution, accumulation, and characteristics of microplastics in mangrove sediment in China. Science of the Total Environment, 856(July 2022), 159256. https://doi.org/10.1016/j.scitotenv.2022.159256spa
dc.relation.referencesZhang, R., Chen, Y., Lei, J., Zhou, X., Yao, P., & Stive, M. J. F. (2023). Experimental investigation of wave attenuation by mangrove forests with submerged canopies. Coastal Engineering, 186(February), 104403. https://doi.org/10.1016/j.coastaleng.2023.104403spa
dc.relation.referencesAnderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online (pp. 1–15). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07841spa
dc.relation.referencesCadavid-rodríguez, L. S., Vargas-muñoz, M. A., & Plácido, J. (2019). Biomethane from fi sh waste as a source of renewable energy for artisanal fi shing communities. Sustainable Energy Technologies and Assessments, 34(January), 110–115. https://doi.org/10.1016/j.seta.2019.05.006spa
dc.relation.referencesCasanova Rosero, R. F., Zambrano Ortiz, M. M., Latandret Solana, S. S., Suárez Vargas, N. P., & Albán Illera, C. B. (2012). Variabilidad de parámetros fisicoquímicos en una estación oceánica frente a la Bahía de Tumaco. Boletín Científico CIOH, 30, 105–116. https://doi.org/10.26640/22159045.246spa
dc.relation.referencesChai, M., Li, R., Li, B., Wu, H., & Yu, L. (2023). Responses of mangrove (Kandelia obovata) growth, photosynthesis, and rhizosphere soil properties to microplastic pollution. Marine Pollution Bulletin, 189(March), 114827. https://doi.org/10.1016/j.marpolbul.2023.114827spa
dc.relation.referencesClarke, K. R., Gorley, R. N., Somerfield, P. J., & Warwick, R. M. (2014). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edition (3rd ed.). PRIMER-E: Plymouth.spa
dc.relation.referencesCole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025spa
dc.relation.referencesCordova, M. R., Ulumuddin, Y. I., Purbonegoro, T., & Shiomoto, A. (2021). Characterization of microplastics in mangrove sediment of Muara Angke Wildlife Reserve, Indonesia. Marine Pollution Bulletin, 163(October 2020), 112012. https://doi.org/10.1016/j.marpolbul.2021.112012spa
dc.relation.referencesCore, R. (2013). No Title. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org/spa
dc.relation.referencesCoyle, R., Hardiman, G., & Driscoll, K. O. (2020). Microplastics in the marine environment: A review of their sources, distribution processes and uptake into ecosystems. Case Studies in Chemical and Environmental Engineering, 100010. https://doi.org/10.1016/j.cscee.2020.100010spa
dc.relation.referencesDANE. (2018). Proyecciones y retroproyecciones de población municipal para el periodo 1985-2019 y 2020-2035 con base en el CNPV 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionspa
dc.relation.referencesDANE. (2019). Resultados Censo Nacional de Población y Vivienda 2018. Cali, Valle del cauca. DANE, Información Para Todos, 33.spa
dc.relation.referencesDanovaro, R. (2009). Methods for the study of deep-sea sediments, their functioning and biodiversity. https://doi.org/https://doi.org/10.1201/9781439811382spa
dc.relation.referencesDeng, H., He, J., Feng, D., Zhao, Y., Sun, W., Yu, H., & Ge, C. (2021). Microplastics pollution in mangrove ecosystems: A critical review of current knowledge and future directions. Science of the Total Environment, 753, 142041. https://doi.org/10.1016/j.scitotenv.2020.142041spa
dc.relation.referencesDepartamento Nacional de Planeación, Ministerio de Ambiente y Desarrollo Sostenible, & Ministerio de Vivienda Ciudad y Territorio. (2022). Guía NACIONAL para la adecuada separación de residuos sólidos Colombia 2022. 64.spa
dc.relation.referencesDing, C., Jiao, M., Wang, Y., Yao, Z., Li, T., Wang, W., Cao, S., Li, R., & Wang, Y. (2022). Distribution and retention of microplastics in plantation mangrove forest sediments. Chemosphere, 307(P4), 136137. https://doi.org/10.1016/j.chemosphere.2022.136137spa
dc.relation.referencesESGEMAR. (2014). CARACTERIZACIÓN DEL SUSTRATO MARINO MEDIANTE GEOFÍSICA MARINA Y MUESTRO CON VIBROSONDEO EN LA PLAYA DE LA RADA (ESTEPONA).spa
dc.relation.referencesGovender, J., Naidoo, T., Rajkaran, A., Cebekhulu, S., Bhugeloo, A., & Serchen. (2020). Towards Characterising Microplastic Abundance, Typology and Retention in Mangrove-Dominated Estuaries. Water, 1–24.spa
dc.relation.referencesIDEAM Instituto de Hidrología, M. y E. A. (2021). SEGUIMIENTO AL CICLO ENOS (Issue 161).spa
dc.relation.referencesINVEMAR, I. de I. M. y C. “José B. V. D. A.-. (2011). ATLAS DE LA PESCA MARINO-COSTERA DE COLOMBIA.spa
dc.relation.referencesMaghsodian, Z., Sanati, A. M., Ramavandi, B., Ghasemi, A., & Sorial, G. A. (2021). Microplastics accumulation in sediments and Periophthalmus waltoni fish, mangrove forests in southern Iran. Chemosphere, 264, 128543. https://doi.org/10.1016/j.chemosphere.2020.128543spa
dc.relation.referencesMaghsodian, Z., Sanati, A. M., Tahmasebi, S., Shahriari, M. H., & Ramavandi, B. (2022). Study of microplastics pollution in sediments and organisms in mangrove forests: A review. Environmental Research, 208(April 2021). https://doi.org/10.1016/j.envres.2022.112725spa
dc.relation.referencesMohamed Nor, N. H., & Obbard, J. P. (2014). Microplastics in Singapore’s coastal mangrove ecosystems. Marine Pollution Bulletin, 79(1–2), 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025spa
dc.relation.referencesMolina, A., Duque, G., & Cogua, P. (2020). Influences of environmental conditions in the fish assemblage structure of a tropical estuary. Marine Biodiversity, 50(1), 5. https://doi.org/10.1007/s12526-019-01023-0spa
dc.relation.referencesOsorio-Gómez, E., Vallejo Hincapie, D., Rincón-Martínez, D., Restrepo-Acevedo, S., Pardó-Trujillo, A., & Trejos-Tamayo, R. (2019). Caracterización de las asociaciones de cocolitóforos en las cuencas offshore del Pacífico colombiano. Bulletin of Marine and Coastal Research, 48(2), 95–117. https://doi.org/10.25268/bimc.invemar.2019.48.2.768.spa
dc.relation.referencesRibeiro Evangelista, I., Filippo Gonzáles, A., & Neves do Santos, L. (2019). Influence of salinity, temperature and photoperiod on eye asymmetry of Amphirion ocellaris larvae. Aquaculture, AQUA 73497. https://doi.org/10.1016/j.nedt.2019.104203spa
dc.relation.referencesRojas, Á. M., Ruíz, C., & Viteri, C. (2018). Evaluación rápida de las condiciones para la implementación de las Cuentas Ecosistémicas Experimentales de Manglar en Colombia. 31. http://par-manglares.net/images/docs/informes/Scoping_NCA_Mangroves_Colombia_Julio_2018.pdfspa
dc.relation.referencesSeeruttun, L. D., Raghbor, P., & Appadoo, C. (2023). Mangrove and microplastic pollution: A case study from a small island (Mauritius). Regional Studies in Marine Science, 62, 102906. https://doi.org/10.1016/j.rsma.2023.102906spa
dc.relation.referencesVan Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C. R. (2015). Microplastics in sediments: A review of techniques, occurrence and effects. Marine Environmental Research, 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007spa
dc.relation.referencesVeerasingam, S., Mugilarasan, M., Venkatachalapathy, R., & Vethamony, P. (2016). Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. Marine Pollution Bulletin, 109(1), 196–204. https://doi.org/10.1016/j.marpolbul.2016.05.082spa
dc.relation.referencesVega, L., Cantillo, V., & Arellana, J. (2019). Assessing the impact of major infrastructure projects on port choice decision: The Colombian case. Transportation Research Part A: Policy and Practice, 120(December 2018), 132–148. https://doi.org/10.1016/j.tra.2018.12.021spa
dc.relation.referencesVibhatabandhu, P., & Srithongouthai, S. (2022). Influence of seasonal variations on the distribution characteristics of microplastics in the surface water of the Inner Gulf of Thailand. Marine Pollution Bulletin, 180(May), 113747. https://doi.org/10.1016/j.marpolbul.2022.113747spa
dc.relation.referencesWalters, K., & Coen, L. D. (2006). A comparison of statistical approaches to analyzing community convergence between natural and constructed oyster reefs. Journal of Experimental Marine Biology and Ecology, 330(1), 81–95. https://doi.org/10.1016/j.jembe.2005.12.018spa
dc.relation.referencesWu, J., Ye, Q., Sun, L., Liu, J., Huang, M., Wang, T., Wu, P., & Zhu, N. (2023). Impact of persistent rain on microplastics distribution and plastisphere community: A field study in the Pearl River, China. Science of the Total Environment, 879(February), 163066. https://doi.org/10.1016/j.scitotenv.2023.163066spa
dc.relation.referencesWu, Y., Chen, X., Wen, L., Li, Z., Peng, M., Wu, H., & Xie, L. (2022). Linking human activity to spatial accumulation of microplastics along mangrove coasts. Science of the Total Environment, 825, 154014. https://doi.org/10.1016/j.scitotenv.2022.154014spa
dc.relation.referencesYu, L., Li, R., Zhang, Z., Wu, H., Chai, M., Zhu, X., & Guo, W. (2022). Distribution, characteristics, and human exposure to microplastics in mangroves within the Guangdong-Hong Kong-Macao Greater Bay Area. Marine Pollution Bulletin, 175(October 2021), 113395. https://doi.org/10.1016/j.marpolbul.2022.113395spa
dc.relation.referencesZamprogno, G. C., Caniçali, F. B., dos Reis Cozer, C., Otegui, M. B. P., Graceli, J. B., & da Costa, M. B. (2021). Spatial distribution of microplastics in the superficial sediment of a mangrove in Southeast Brazil: A comparison between fringe and basin. Science of The Total Environment, 784, 146963. https://doi.org/10.1016/j.scitotenv.2021.146963spa
dc.relation.referencesZhou, Q., Tu, C., Fu, C., Li, Y., Zhang, H., Xiong, K., Zhao, X., Li, L., Waniek, J. J., & Luo, Y. (2020). Characteristics and distribution of microplastics in the coastal mangrove sediments of China. Science of the Total Environment, 703, 134807. https://doi.org/10.1016/j.scitotenv.2019.134807spa
dc.relation.referencesAlimi, O. S., Budarz, J. F., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science and Technology, 52(4), 1704–1724. https://doi.org/https://doi.org/10.1021/acs.est.7b05559spa
dc.relation.referencesAlongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1–13. https://doi.org/10.1016/j.ecss.2007.08.024spa
dc.relation.referencesCatarino, A. I., Kramm, J., Völker, C., Henry, T. B., & Everaert, G. (2021). Risk posed by microplastics: Scientific evidence and public perception. Current Opinion in Green and Sustainable Chemistry, 29, 100467. https://doi.org/10.1016/j.cogsc.2021.100467spa
dc.relation.referencesEspinosa-Álzate, J. A., & Ríos-Osorio, L. A. (2016). Caracterización de sistemas agroecológicos para el establecimiento de cacao (Theobroma cacao L.), en comunidades afrodescendientes del Pacífico Colombiano (Tumaco- Nariño, Colombia). Acta Agronomica, 65(3), 211–217. https://doi.org/10.15446/acag.v65n3.50714spa
dc.relation.referencesVan Hespen, R., Hu, Z., Borsje, B., De Dominicis, M., Friess, D. A., Jevrejeva, S., Kleinhans, M. G., Maza, M., van Bijsterveldt, C. E. J., Van der Stocken, T., van Wesenbeeck, B., Xie, D., & Bouma, T. J. (2023). Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering, 16(1), 1–13. https://doi.org/10.1016/j.wse.2022.10.004spa
dc.relation.referencesHuang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X., & Zhang, Y. (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405(July 2020), 124187. https://doi.org/10.1016/j.jhazmat.2020.124187spa
dc.relation.referencesINVEMAR. (2020). Informe del estado de los ambientes y recursos marinos y costeros en Colombia, 2020. Serie de Publicaciones Periódicas No. 3.spa
dc.relation.referencesKathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40(June 2020), 81–251. https://doi.org/10.1016/S0065-2881(01)40003-4spa
dc.relation.referencesLi, T., Wang, Y., Jiao, M., Zhao, Z., Li, R., & Qin, C. (2023). Distinct microplastics abundance variation in root-associated sediments revealed the underestimation of mangrove microplastics pollution. Science of the Total Environment, 899(July), 165611. https://doi.org/10.1016/j.scitotenv.2023.165611spa
dc.relation.referencesLi, J., Zhang, H., Zhang, K., Yang, R., Li, R., & Li, Y. (2018). Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Marine Pollution Bulletin, 136(September), 401–406. https://doi.org/10.1016/j.marpolbul.2018.09.025spa
dc.relation.referencesLiu, X., Liu, H., Chen, L., & Wang, X. (2022). Ecological interception effect of mangroves on microplastics. Journal of Hazardous Materials, 423(PB), 127231. https://doi.org/10.1016/j.jhazmat.2021.127231spa
dc.relation.referencesMohamed Nor, N. H., & Obbard, J. P. (2014). Microplastics in Singapore’s coastal mangrove ecosystems. Marine Pollution Bulletin, 79(1–2), 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025spa
dc.relation.referencesNorris, B. K., Mullarney, J. C., Bryan, K. R., & Henderson, S. M. (2017). The effect of pneumatophore density on turbulence: A field study in a Sonneratia-dominated mangrove forest, Vietnam. Continental Shelf Research, 147(May), 114–127. https://doi.org/10.1016/j.csr.2017.06.002spa
dc.relation.referencesPalacios, M., Cantera, J., & Peña, E. (2019). Carbon stocks in mangrove forests of the Colombian Paci fi c. Estuarine, Coastal and Shelf Science, 227(April 2018), 106299. https://doi.org/10.1016/j.ecss.2019.106299spa
dc.relation.referencesvan Bijsterveldt, C. E. J., van Wesenbeeck, B. K., Ramadhani, S., Raven, O. V., van Gool, F. E., Pribadi, R., & Bouma, T. J. (2021). Does plastic waste kill mangroves? A field experiment to assess the impact of macro plastics on mangrove growth, stress response and survival. Science of the Total Environment, 756, 143826. https://doi.org/10.1016/j.scitotenv.2020.143826spa
dc.relation.referencesXu, N., Zhu, Z., Gao, W., Shao, D., Li, S., Zhu, Q., Fan, Z., Cai, Y., & Yang, Z. (2023). Effects of waves, burial depth and material density on microplastic retention in coastal sediments. Science of the Total Environment, 864(December 2022), 161093. https://doi.org/10.1016/j.scitotenv.2022.161093spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocContaminación microplástica
dc.subject.agrovocMicroplastic pollution
dc.subject.agrovocConservación de manglares
dc.subject.agrovocMangles
dc.subject.agrovocMangroves
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalMicroplásticosspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalManglaresspa
dc.subject.proposalContaminación de sedimentos
dc.subject.proposalMicroplasticseng
dc.subject.proposalCoastal pollutioneng
dc.subject.proposalMangroveseng
dc.subject.proposalSediment pollutioneng
dc.titleAcumulación de microplásticos en bosques de manglar con diferentes grados de impacto antrópico en el pacífico colombianospa
dc.title.translatedMicroplastic accumulation in mangrove forests with different levels of anthropogenic impact in the colombian pacific oceaneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleACUMULACIÓN DE MICROPLÁSTICOS EN BOSQUES DE MANGLAR CON DIFERENTES GRADOS DE IMPACTO ANTRÓPICO EN EL PACÍFICO COLOMBIANOspa
oaire.fundernameSistema General de Regalíasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1151961743.2023.pdf
Tamaño:
2.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: