Modelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plástico

dc.contributor.advisorOsorio Gallego, José Gildardo
dc.contributor.advisorAlzate Espinosa, Guillermo Arturo
dc.contributor.authorAraujo Guerrero, Edson Felipe
dc.contributor.orcidAraujo Guerrero, Edson Felipe [0000-0002-8382-4878]spa
dc.contributor.researchgroupGrupo de Investigación en Geomecánica Aplicadaspa
dc.date.accessioned2024-07-26T13:12:57Z
dc.date.available2024-07-26T13:12:57Z
dc.date.issued2022
dc.descriptionIlustraciones, fotografías, gráficos, tablasspa
dc.description.abstractDebido a la débil relación encontrada en los modelos disponibles entre la producción de arena y el comportamiento geomecánico, en este trabajo se presenta un modelo numérico para cuantificar la producción de arena el cual parte de un criterio de arenamiento enfocado en las deformaciones plásticas por cizalla como causa base del fenómeno de producción de arena. El modelo se desarrolla bajo la hipótesis de que la producción de arena depende del nivel de deformaciones plásticas por cizalla y que el arenamiento tiene efectos geomecánicos tanto en las deformaciones como en los esfuerzos. Usando núcleos obtenidos con la tecnología de impresión 3D, se desarrolla un programa de pruebas de laboratorio para caracterizar tanto el comportamiento mecánico como la producción de arena de los mismos, resultados que se aplicaron en simulaciones numéricas a escala de laboratorio con el fin de validar el modelo. Los resultados muestran que un criterio de producción de arena basado en la deformación plástica por cizalla permite predecir correctamente el nivel de producción de arena, aunque presuntamente, a niveles altos de confinamiento efectivo, el límite de colapso de poro también tendría un aporte al nivel de arenamiento. Los resultados obtenidos se extienden a escala yacimiento, en un caso genérico, con el fin de explicar el efecto que tienen la cohesión, el estado de esfuerzos y el depletamiento en el nivel de producción de arena predicho, con lo que se concluye que, entre las variables analizadas, la cohesión es el parámetro con mayor efecto sobre el arenamiento seguido por el estado de esfuerzos en el yacimiento. (Tomado de la fuente)spa
dc.description.abstractDue to the weak relationship found in the available models between sand production and geomechanical behavior, this paper presents a numerical model to quantify sand production, which starts from a sanding criterion focused on plastic shear deformations as root cause of the phenomenon of sand production. The model is developed under the hypothesis that sand production depends on the level of plastic shear strains and that sanding has geomechanical effects on both strains and stresses. Using cores obtained with 3D printing technology, a laboratory test program is developed to characterize both their mechanical and sand production behavior, results that were applied in numerical simulations on a laboratory scale in order to validate the model. The results show that a sand production criterion based on plastic shear deformation correctly predicts the level of sand production, although presumably, at high levels of effective confinement, the limit of pore collapse would also have a contribution to the level of sanding. The results obtained are extended to the reservoir scale, in a generic case, in order to explain the effect of cohesion, stress state and depletion on the predicted level of sand production, with which it is concluded that, among the analyzed variables, cohesion is the parameter with the greatest effect on sanding followed by the state of stress in the reservoir.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Sistemas Energéticosspa
dc.description.methodsEsta trabajo está enfocado a mejorar los pronósticos de producción de arena utilizando el modelamiento numérico a través de la definición de un nuevo criterio de producción de arena, basado en la física del problema. Para lograrlo, se presenta una revisión de los principales modelos de producción de arena y sus componentes. Esto se realiza para abordar las bases teóricas del problema que sustentan. Los componentes más importantes de los modelos de producción de arena presentados son: el criterio de producción de arena, el acoplamiento actual utilizado del flujo de fluido y el comportamiento mecánico, el comportamiento elastoplástico de los materiales, el criterio de falla utilizado y el comportamiento de Endurecimiento/Ablandamiento. Se construye un criterio de producción de arena con base en el nivel de deformación plástica. Se realiza una serie de pruebas de laboratorio enfocadas en la caracterización y determinación de parámetros para la evaluación del comportamiento de la producción de arena. Posteriormente se construye un modelo numérico en el cual se integra el criterio de producción de arena y el comportamiento acoplado de flujo de fluidos con geomecánica. Las pruebas experimentales realizadas se usan para validar el comportamiento del modelo propuesto a través del modelamiento de las pruebas experimentales. Finalmente se realizan varios análisis de sensibilidad para verificar la respuesta del modelo de producción de arena propuesto en condiciones de campo construidos a partir de datos de prueba de laboratorio.spa
dc.description.researchareaGeomecánica de Pozos y Yacimientosspa
dc.format.extent323 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86629
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia, Facultad de Minasspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Dusseault y F. Santarelli, “A conceptual model for massive solids production in poorly-consolidated sandstones,” en ISRM International Symposium, Pau, France, pp. 789–797, International Society for Rock Mechanics, 1989.spa
dc.relation.referencesF. Gharagheizi, A. Mohammadi, M. Arabloo y A. Shokrollahi, “Prediction of sand production onset in petroleum reservoirs using a reliable classifcation approach,” Petroleum, vol. 3, no. 2, pp. 280–285, 2017.spa
dc.relation.referencesJ. Bellarby, Well completion design, vol. 56. Elspa
dc.relation.referencesK. Han, G. Shepstone, I. Harmawan, ... J. Diessl, “A comprehensive study of sanding rate from a gas feld: From reservoir to completion, production, and surface facilities,” SPE Journal, vol. 16, no. 2, pp. 463–481, 2011.spa
dc.relation.referencesE. Papamichos, J. Tronvoll, A. Skjærstein y T. Unander, “Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion,” Journal of Petroleum Science and Engineering, vol. 72, no. 1-2, pp. 78–92, 2010.spa
dc.relation.referencesJ. Tronvoll, N. Kessler, N. Morita, E. Fjær y F. Santarelli, “The effect of anisotropic stress state on the stability of perforation cavities,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 30, no. 7, pp. 1085–1089, 1993.spa
dc.relation.referencesH. Chen, L. Teufel y R. Lee, “Coupled fluid flow and geomechanics in reservoir study - i. theory and governing equations,” en SPE Annual Technical Conference and Exhibition, 22-25 Octubre, Dallas, Texas, pp. 507–519, Society of Petroleum Engineers, 1995.spa
dc.relation.referencesH. Chen y L. Teufel, “Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs - model description and comparison,” en SPE International Petroleum Conference and Exhibition in Mexico, no. 1, 1-3 Febrero, Villahermosa, Mexico, pp. 1–10, Society of Petroleum Engineers, 2000.spa
dc.relation.referencesF. Da¨ım, R. Eymard, D. Hilhorst, M. Mainguy y R. Masson, “A preconditioned conjugate gradient based algorithm for coupling geomechanical-reservoir simulations,” Oil & Gas Science and Technology – Rev. IFP, vol. 57, no. 5, pp. 515–523, 2002.spa
dc.relation.referencesL. Pereira, F. Falc˜ao, L. Guimar˜aes y B. Jacob, “Sensitivity study of geomechanical effects on reservoir simulation,” International Journal of Modeling and Simulation for the Petroleum Industry, vol. 3, no. 1, pp. 57–63, 2009.spa
dc.relation.referencesQ. Tao y A. Ghassemi, “Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength,” Geothermics, vol. 39, no. 3, pp. 250–259, 2010.spa
dc.relation.referencesI. Vardoulakis, M. Stavropoulou y P. Papanastasiou, “Hydro-mechanical aspects of the sand production problem,” Transport in Porous Media, vol. 22, pp. 225–244, Febrero 1996.spa
dc.relation.referencesI. Vardoulakis, P. Papanastasiou y M. Stavropoulou, “Sand erosion in axial flow conditions,” Transport in Porous Media, vol. 45, no. 2, pp. 267–280, 2001.spa
dc.relation.referencesC. Detournay, “Numerical modeling of the slit mode of cavity evolution associated with sand production,” SPE Journal, vol. 14, no. 4, pp. 797–804, 2009.spa
dc.relation.referencesA. Nouri, E. Kuru y H. Vaziri, “Elastoplastic modelling of sand production using fracture energy regularization method,” Journal of Canadian Petroleum Technology, vol. 48, no. 4, pp. 64–71, 2009.spa
dc.relation.referencesH. Wang, P. Cardiff y M. Sharma, “A 3-D poro-elasto-plastic model for sand production around open-hole and cased & perforated wellbores,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, vol. 2, 26-29 Junio, Houston, Texas, pp. 879–888, American Rock Mechanics Association, 2016.spa
dc.relation.referencesA. Kim, M. Sharma y H. Fitzpatrick, “A predictive model for sand production in poorly consolidated sands,” en International Petroleum Technology Conference, IPTC, 7-9 Febrero, Bangkok, Thailand, pp. 2668–2678, IPTC, 2012.spa
dc.relation.referencesZ. Zhou, A. Yu y S. Choi, “Numerical simulation of the liquid-induced erosion in a weakly bonded sand assembly,” Powder Technology, vol. 211, pp. 237–249, Agosto 2011.spa
dc.relation.referencesY. Wang, “Fundamental behaviors and borehole deformation on wellbore stability and sand production in conventional and hydrates-bearing gas reservoirs,” en SPE Middle East Oil and Gas Show and Conference, 18-21 Marzo, Manama, Bahrain, Society of Petroleum Engineers, 2019.spa
dc.relation.referencesC. Veeken, D. Davies, C. Kenter y A. Kooijman, “Sand production prediction review: developing an integrated approach,” en SPE Annual Technical Conference and Exhibition, 6-9 Octubre, Dallas, Texas, Society of Petroleum Engineers, 1991.spa
dc.relation.referencesA. Gupta, N. Borhan, D.B. Kamat, ... B.B. Madon, “Holistic sand management methodology: A multi-disciplinary team approach to cater sub-surface & surface aspects of sand production and optimization,” en Offshore Technology Conference Asia, 22-25 Marzo, Kuala Lumpur, Malaysia, OTCA, 2016.spa
dc.relation.referencesF. Moreno, P. Guizada, A. Aziz y R. Khanferi, “Application of critical drawdown pressure prediction in completion design to minimize sanding in a clastic gas reservoir in Saudi Arabia,” en SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 24-27 Abril, Dammam, Saudi Arabia, Society of Petroleum Engineers, 2017.spa
dc.relation.referencesH. Vaziri y L. Lemoine, “Strong support for signifcant productivity boost through sand production,” en 4th North American Rock Mechanics Symposium, 31 Julio - 3 Agosto, Seattle, Washington, USA, pp. 295–302, Pacifc Rocks 2000, 2000.spa
dc.relation.referencesI. Palmer, J. McLennan y H. Vaziri, “Cavity-like completions in weak sands,” en International Symposium on Formation Damage Control, 23-24 Febrero, Lafayette, Louisiana, Society of Petroleum Engineers, 2000.spa
dc.relation.referencesM. Nassir, D. Walters, D. Yale, R. Chivvis y J. Turak, “3D modeling of sand production in waterflooding by coupled flow/geomechanical numerical solutions,” en 49th US Rock Mechanics / Geomechanics Symposium 2015, 28 Junio - 1 Julio, San Francisco, California, USA, American Rock Mechanics Association, 2015.spa
dc.relation.referencesF. Baghdadi, A. Gupta, A. Hamid y B. Madon, “An innovative approach in sand onset prediction at different water cuts and estimating sand production for future feld life,” en International Petroleum Technology Conference, 26 - 28 Marzo, Beijing, China, IPTC, 2019.spa
dc.relation.referencesP. Cerasi, A. Berntsen, L. Walle y E. Papamichos, “Sand production delay in gas flow experiments,” en 49th U.S. Rock Mechanics/Geomechanics Symposium, 28 Junio-1 Julio, San Francisco, California, pp. 1–6, American Rock Mechanics Association, 2015.spa
dc.relation.referencesC. David, J. Dautriat, J. Sarout, ... D. Bertauld, “Water weakening triggers mechanical instability in laboratory fluid substitution experiments on a weakly-consolidated sandstone,” en 50th US Rock Mechanics / Geomechanics Symposium 2016, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.spa
dc.relation.referencesL. Qiao, Z. Wang y A. Huang, “Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects,” Rock Mechanics and Rock Engineering, vol. 50, no. 2, pp. 255–267, 2017.spa
dc.relation.referencesR. Zhang, X. Shi, R. Zhu, ... J. Feng, “Critical drawdown pressure of sanding onset for offshore depleted and water cut gas reservoirs: Modeling and application,” Journal of Natural Gas Science and Engineering, vol. 34, pp. 159–169, 2016.spa
dc.relation.referencesR. Nepop, N. Smirnov, R. Molodtsov, ... G. Nemirovich, “Thick-walled cylinder core tests with flushing by various fluids: Results and practical applications,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.spa
dc.relation.referencesJ. Sulem, I. Vardoulakis, E. Papamichos, A. Oulahna y J. Tronvoll, “Elasto-plastic modelling of Red Wildmoor sandstone,” Mechanics of Cohesive Frictional Materials, vol. 4, pp. 215–245, 1999.spa
dc.relation.referencesE. Papamichos, I. Vardoulakis, J. Tronvoll y A. Skjærstein, “Volumetric sand production model and experiment,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 25, pp. 789–808, Julio 2001.spa
dc.relation.referencesJ. Tronvoll, A. Skjærstein y E. Papamichos, “Sand production: Mechanical failure or hydrodynamic erosion?,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 291.e1–291.e17, Abril 1997.spa
dc.relation.referencesA. Younessi, V. Rasouli y B. Wu, “Sand production simulation under true-triaxial stress conditions,” International Journal of Rock Mechanics and Mining Sciences, vol. 61, pp. 130–140, 2013.spa
dc.relation.referencesA. Younessi, F. Gui, S. Asadi y A. Khaksar, “Calibration of sand production prediction models at early feld life in the absence of feld sanding data,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 23-25 Octubre, Brisbane, Australia, Society of Petroleum Engineers, 2018.spa
dc.relation.referencesF. Gui, A. Khaksar, W. Van Der Zee y P. Cadogan, “Improving the sanding evaluation accuracy by integrating core tests, feld observations and numerical simulation,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016spa
dc.relation.referencesC. Santana y F. Likrama, “Workflow on incorporating thick-walled cylinder test results in fnite element models of near wellbore for sanding prediction studies,” en 50th US Rock Mechanics / Geomechanics Symposium, vol. 3, 26-29 Junio, Houston, Texas, USA, p. 9, ARMA, 2016.spa
dc.relation.referencesA. Younessi y A. Khaksar, “A novel approach to evaluate the risk of sanding for optimum well completion design: A deep-water case study from Southeast Asia,” en SPE Asia Pacifc Oil & Gas Conference and Exhibition, 25-27 Octubre, Perth, Australia, Society of Petroleum Engineers, 2016.spa
dc.relation.referencesF. Ferreira, E. Santos, D. Rossi y A. Borba, “Sanding onset prediction on a ultradeepwater well using a probabilistic approach: From lab to feld,” en OTC Brasil 2015: The Atlantic: From East to West - An Ocean of Innovation, pp. 1156–1166, 2015.spa
dc.relation.referencesS. Hashemi, N. Melkoumian y A. Taheri, “A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 7, no. 5, pp. 519–531, 2015.spa
dc.relation.referencesS. Tehrani, A. Sinaki, M. Sarmadivaleh y V. Golmohammadi, “The effect of inner borehole and outer boundary dimensions in thick-walled cylinder test,” en SPE Eastern Regional Meeting, 13-15 Septiembre, Canton, Ohio, USA, Society of Petroleum Engineers, 2016.spa
dc.relation.referencesE. Papamichos, “Sand production and well productivity in conventional reservoirs,” Rock Mech. for Industry, pp. 209–216, 1999.spa
dc.relation.referencesP. Hoek, G. Hertogh, A. Kooijman, P. Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drilling & Completion, vol. 15, no. 4, pp. 261–273, 2000.spa
dc.relation.referencesS. Hashemi y N. Melkoumian, “Effect of different stress path regimes on borehole instability in poorly cemented granular formations,” Journal of Petroleum Science and Engineering, vol. 146, pp. 30–49, 2016.spa
dc.relation.referencesE. Papamichos, L. Walle, A. Berntsen y J. Stenebr˚aten, “Sand mass production in true triaxial borehole tests,” 53rd U.S. Rock Mechanics/Geomechanics Symposium, 2019.spa
dc.relation.referencesA. Younessi y A. Khaksar, “A comprehensive geomechanical study for deep-water feld development planning: A case study from Southeast Asia,” en International Petroleum Technology Conference, 14-16 November, Bangkok, Thailand, pp. 1–10, IPTC, 2016.spa
dc.relation.referencesA. Younessi, V. Rasouli y B. Wu, “The effect of stress anisotropy on sanding: An experimental study,” en 46th US Rock Mechanics / Geomechanics Symposium, 24-27 Junio, Chicago, Illinois, USA, American Rock Mechanics Association, 2012.spa
dc.relation.referencesA. Younessi y V. Rasouli, “Numerical simulations of sanding under different stress regimes,” en 46th US Rock Mechanics / Geomechanics Symposium 2012, Chicago, p. 8, American Rock Mechanics Association, 2012.spa
dc.relation.referencesA. Kooijman, P. Halleck, P. de Bree, C. Veeken y C. Kenter, “Large-scale laboratory sand production test,” en 67th Annual Technical Conference and Exhibition, 4-7 Octubre, Washington D.C., USA, pp. 325–338, Society of Petroleum Engineers, 1992.spa
dc.relation.referencesT. Unander, E. Papamichos, J. Tronvoll y A. Skjærstein, “Flow geometry effects on sand production from an oil producing perforation cavity,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, pp. 293.e1–293.e15, Abril 1997.spa
dc.relation.referencesH. Rahmati, M. Jafarpour, S. Azadbakht, ... Y. Xiao, “Review of sand production prediction models,” Journal of Petroleum Engineering, vol. 2013, pp. 1–16, 2013.spa
dc.relation.referencesP. Ranjith, M. Perera, W. Perera, S. Choi y E. Yasar, “Sand production during the extrusion of hydrocarbons from geological formations: A review,” Journal of Petroleum Science and Engineering, vol. 124, pp. 72–82, 2014.spa
dc.relation.referencesE. Khamehchi y E. Reisi, “Sand production prediction using ratio of shear modulus to bulk compressibility (case study),” Egyptian Journal of Petroleum, vol. 24, no. 2, pp. 113–118, 2015.spa
dc.relation.referencesM. Kanj y Y. Abousleiman, “Realistic sanding predictions: a neural approach,” en SPE Annual Technical Conference and Exhibition, 3-6 Octubre, Houston, Texas, Society of Petroleum Engineers, 1999.spa
dc.relation.referencesE. Khamehchi, I. Kivi y M. Akbari, “A novel approach to sand production prediction using artifcial intelligence,” Journal of Petroleum Science and Engineering, vol. 123, pp. 147–154, 2014.spa
dc.relation.referencesI. Bradford y J. Cook, “A semi-analytic elastoplastic model for wellbore stability with applications to sanding,” en Rock Mechanics in Petroleum Engineering, 29-31 Agosto, Delft, The Netherlands, pp. 347–354, Society of Petroleum Engineers, 1994.spa
dc.relation.referencesA. Nouri, H. Vaziri y E. Kuru, “Physical and analytical studies of sand production from a supported wellbore in unconsolidated sand media with single-and two-phase flow,” Journal of Canadian Petroleum Technology, vol. 46, no. 06, pp. 41–48, 2007.spa
dc.relation.referencesG. Oluyemi y M. Oyeneyin, “Analytical critical drawdown (CDD) failure model for real time sanding potential prediction based on Hoek and Brown failure criterion,” Journal of Petroleum and Gas Engineering, vol. 1, no. 2, pp. 16–25, 2010.spa
dc.relation.referencesE. Papamichos y K. Furui, “Analytical models for sand onset under feld conditions,” Journal of Petroleum Science and Engineering, vol. 172, no. Septiembre 2018, pp. 171– 189, 2019spa
dc.relation.referencesB. Wu y C. Tan, “Sand production prediction of gas feld - methodology and feld application,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irvin, Texas, USA, pp. 596–605, Society of Petroleum Engineers, 2002.spa
dc.relation.referencesB. Zhang, Y. Wang y Y. Zeng, “Thermal effects on sand prediction,” en 50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2016.spa
dc.relation.referencesK. Lezhnev, A. Roshchektaev y V. Pashkin, “Coupled reservoir - well model of sand production processes,” en SPE Russian Petroleum Technology Conference, 22-24 Octubre, Moscow, Russia, Society of Petroleum Engineers, 2019.spa
dc.relation.referencesJ. Tronvoll, E. Papamichos, A. Skjærstein y F. Sanflippo, “Sand production in ultraweak sandstones: Is sand control absolutely necessary?,” en Fifth Latin American and Caribbean Petroleum Engineering Conference and Exhibition, 30 Agosto - 3 Septiembre, Rio de Janeiro, Brasil, 1997.spa
dc.relation.referencesE. Araujo, G. Alzate, A. Arbelaez, S. Pe˜na, A. Cardona y A. Naranjo, “Analytical prediction model of sand production integrating geomechanics for open hole and cased – perforated wells,” en SPE Heavy and Extra Heavy Oil Conference: Latin America, 24-26 Septiembre, Medell´ın, Colombia, Society of Petroleum Engineers, 2014.spa
dc.relation.referencesS. Pe˜na, E. Araujo, A. Arbelaez, A. Naranjo y G. Alzate, “An analytic geomechanical model to defne the optimal well direction and perforated orientation in order to reduce sand production potential,” en XVI Congreso Colombiano Petroleo y gasetroleo y Gas, Agosto 26-28, Bogota, Colombia, Asociaci´on Colombiana de Ingenieros de Petr´oleos, 2015.spa
dc.relation.referencesE. Fjær, R. Holt, A. Raaen y P. Horsrud, Petroleum related rock mechanics, vol. 53. Amsterdam: Elsevier Science, 2nd ed., 2008.spa
dc.relation.referencesK. Rahman, A. Khaksar y T. Kayes, “An integrated geomechanical and passive sandcontrol approach to minimizing sanding risk from openhole and cased-and-perforated wells,” SPE Drilling and Completion, vol. 25, no. 2, pp. 155–167, 2010.spa
dc.relation.referencesR. Risnes, R. Bratlik y P. Horsrud, “Sand stresses around a wellbore,” Society of Petroleum Engineers Journal, vol. 22, no. 06, pp. 883 – 898, 1982.spa
dc.relation.referencesN. Morita, D. Whitfll, I. Massie y T. Knudsen, “Realistic sand-production prediction: numerical approach,” SPE Production Engineering, vol. 4, no. 1, pp. 15–24, 1989.spa
dc.relation.referencesP. Van Den Hoek, G. Hertogh, A. Kooijman, P. de Bree, C. Kenter y E. Papamichos, “A new concept of sand production prediction: Theory and laboratory experiments,” SPE Drill. & Completion, vol. 15, no. 4, pp. 261–273, 2000.spa
dc.relation.referencesY. Wang y M. Dusseault, “Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata part ii. permeable media,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, no. 4, pp. 247–260, 1991.spa
dc.relation.referencesQ. Zhang, B. Jiang, S. Wang, X. Ge y H. Zhang, “Elasto-plastic analysis of a circular opening in strain-softening rock mass,” International Journal of Rock Mechanics and Mining Sciences, vol. 50, no. 2012, pp. 38–46, 2012.spa
dc.relation.referencesR. Jensen y D. Preece, “Modeling sand production with darcy-flow coupled with discrete elements,” reporte t´ecnico, Sandia National Laboratories, Albuquerque, NM USA, 2000.spa
dc.relation.referencesM. Zeghal y U. El Shamy, “A continuum-discrete hydromechanical analysis of granular deposit liquefaction,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 28, pp. 1361–1383, Diciembre 2004.spa
dc.relation.referencesY. Cui, A. Nouri, D. Chan y E. Rahmati, “A new approach to DEM simulation of sand production,” Journal of Petroleum Science and Engineering, vol. 147, pp. 56–67, 2016.spa
dc.relation.referencesN. Climent, M. Arroyo, C. Osullivan y A. Gens, “Sand production simulation coupling DEM with CFD,” European Journal of Environmental and Civil Engineering, vol. 18, no. 9, pp. 983–1008, 2014.spa
dc.relation.referencesN. Climent, A coupled CFD-DEM model for sand production in oil wells. Tesis Ph.D., Univeritat Politecnica de Catalunya, 2016spa
dc.relation.referencesA. Rakhimzhanova, C. Thornton, Y. Amanbek y Y. Zhao, “Numerical simulations of sand production in oil wells using the CFD-DEM-IBM approach,” Journal of Petroleum Science and Engineering, vol. 208, no. C, pp. 1–24,spa
dc.relation.referencesD. Potyondy y P. Cundall, “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 8, pp. 1329–1364, 2004.spa
dc.relation.referencesA. Skjærstein, M. Stavropoulou, I. Vardoulakis y J. Tronvoll, “Hydrodynamic erosion; a potential mechanism of sand production in weak sandstones,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, Abril 1997.spa
dc.relation.referencesM. Stavropoulou, P. Papanastasiou y I. Vardoulakis, “Coupled wellbore erosion and stability analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 22, pp. 749–769, 1998.spa
dc.relation.referencesE. Papamichos y I. Vardoulakis, “Sand erosion with a porosity diffusion law,” Computers and Geotechnics, vol. 32, pp. 47–58, Enero 2005.spa
dc.relation.referencesJ. Wang, R. Wan, A. Settari y D. Walters, “Prediction of volumetric sand production and wellbore stability analysis of a well at different completion schemes,” en American Rock Mechanics Association - 40th US Rock Mechanics Symposium, ALASKA ROCKS 2005: Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, no. USRMS 05-842, 25-29 Junio, Anchorage, Alaska, American Rock Mechanics Association, 2005.spa
dc.relation.referencesJ. Wang, R. Wan, A. Settari, D. Walters y Y. Liu, “Sand production and instability analysis in a wellbore using a fully coupled reservoir-geomechanics model,” en Gulf Rocks 2004, The 6th North America Rock Mechanics Symposium (NARMS): Rock Mechanics Across Borders and Disciplines, 5-9 Junio, Houston, Texas, USA, American Rock Mechanics Association, 2004.spa
dc.relation.referencesJ. Shao y P. Marzoina, “A damage mechanics approach for the modelling of sand production in heavy oil reservoirs,” en SPE/ISRM Rock Mechanics Conference, 20-23 Octubre, Irving, Texas, Society of Petroleum Engineers, 2002.spa
dc.relation.referencesG. Servant, P. Marzoina y J. Nauroy, “Near-wellbore modeling: Sand production issues,” en SPE Annual Technical Conference and Exhibition, 11-14 November, Anaheim, California, USA, Society of Petroleum Engineers, 2007.spa
dc.relation.referencesG. Servant, P. Marzoina, Y. Peysson, E. Bemer y J. Nauroy, “Sand erosion in weakly consolidated reservoirs : Experiments and numerical modeling,” en SPE/DOE Symposium on Improved Oil Recovery, 22-26 Abril, Tulsa, Oklahoma, pp. 1–8, Society of Petroleum Engineers, 2006.spa
dc.relation.referencesH. Vaziri, Y. Xiao, R. Islam y A. Nouri, “Numerical modeling of seepage-induced sand production in oil and gas reservoirs,” Journal of Petroleum Science and Engineering, vol. 36, pp. 71–86, Octubre 2002.spa
dc.relation.referencesA. Nouri, H. Vaziri, H. Belhaj y R. Islam, “A comprehensive approach to modeling sanding during oil production,” en SPE Latin American and Caribbean Petroleum Engineering Conference, 27-30 Abril, Port-of-Spain, Trinidad and Tobago, Society of Petroleum Engineers, 2003spa
dc.relation.referencesA. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Comprehensive transient modeling of sand production in horizontal wellbores,” en SPE Annual Technical Conference and Exhibition, 5-8 Octubre, Denver, Colorado, Society of Petroleum Engineers, 2003spa
dc.relation.referencesA. Nouri, H. Vaziri, H. Belhaj y R. Islam, “Effect of volumetric failure on sand production in oil-wellbores,” en SPE Asia Pacifc Oil and Gas Conference and Exhibition, 15-17 Abril, Jakarta, Indonesia, Society of Petroleum Engineers, 2003.spa
dc.relation.referencesA. Nouri, E. Kuru y H. Vaziri, “Enhanced modelling of sand production through improved deformation and stress analysis,” en 8th Canadian International Petroleum Conference, 12-14 Junio, Calgary, Alberta, Canada, Petroelum Society, 2007.spa
dc.relation.referencesA. Nouri, H. Vaziri, E. Kuru y R. Islam, “A comparison of two sanding criteria in physical and numerical modeling of sand production,” Journal of Petroleum Science and Engineering, vol. 50, no. 1, pp. 55–70, 2006.spa
dc.relation.referencesH. Rahmati, A. Nouri, H. Vaziri y D. Chan, “Validation of predicted cumulative sand and sand rate against physical-model test,” Journal of Canadian Petroleum Technology, vol. 51, no. 5, pp. 403–410, 2012.spa
dc.relation.referencesS. Alquwizani y M. Sharma, “Three-dimensional modeling of wellbore and perforation stability in weak sands,” en SPE International Symposium and Exhibition on Formation Damage Control, 26-28 Febrero, Lafayette, Louisiana, USA, Society of Petroleum Engineers, 2014.spa
dc.relation.referencesM. Nassir y D. Walters, “3D geomechanical modeling of cavity growth in loosely consolidated sandstone,” en ISRM Regional Symposium - EUROCK, 27-29 Mayo, Vigo, Spain, ISRM, 2014.spa
dc.relation.referencesE. Gravanis, E. Sarris y P. Papanastasiou, “Hydro-mechanical erosion models for sand production,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 39, no. 18, pp. 2017–2036, 2015.spa
dc.relation.referencesB. Wu, S.K. Choi, R. Denke, ... B.B. Madon, “A new and practical model for amount and rate of sand production estimation,” en Offshore Technology Conference Asia, 22-25 Mayo, Kuala Lumpur, Malaysia, pp. 2830–2847, 2016.spa
dc.relation.referencesH. Wang y M. Sharma, “A fully 3-D, multi-phase, poro-elasto-plastic model for sand production,” en SPE Annual Technical Conference and Exhibition, 26-28 Septiembre, Dubai, UAE, pp. 26–28, Society of Petroleum Engineers, 2016.spa
dc.relation.referencesH. Wang, D. Gala y M. Sharma, “Effect of fluid type and multiphase flow on sand production in oil and gas wells,” SPE Journal, vol. 24, no. 2, pp. 733–743, 2019.spa
dc.relation.referencesZ. Fan, D. Yang y X. Li, “Quantifcation of sand production using a pressure-gradientbased sand-failure criterion,” SPE Journal, vol. 24, no. 3, pp. 988–1001, 2019.spa
dc.relation.referencesA. Mohamad-Hussein y Q. Ni, “Numerical modeling of onset and rate of sand production in perforated wells,” Journal of Petroleum Exploration and Production Technology, vol. 8, no. 4, pp. 1255–1271, 2018.spa
dc.relation.referencesR. Zimmerman, W. Somerton y M. King, “Compressibility of porous rocks,” Journal of Geophysical Research, vol. 91, no. B12, pp. 12765–12777, 1986.spa
dc.relation.referencesO. Schenk y K. Gartner, “Solving unsymmetric sparse systems of linear equations with PARDISO,” Future Generation Computer Systems, vol. 20, no. 3, pp. 475–487, 2004.spa
dc.relation.referencesS. Sloan, “Substepping schemes for the numerical integration of elastoplastic stress–strain relations,” International Journal for Numerical Methods in Engineering, vol. 24, no. 5, pp. 893–911, 1987.spa
dc.relation.referencesE. Detournay y A. H. Cheng, “Poroelastodynamic response of a borehole in a nonhydrostatic stress feld,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 25, no. 3, pp. 171–182, 1988.spa
dc.relation.referencesA. Singh, K. Seshagiri Rao y R. Ayothiraman, “A Closed-Form Analytical Solution for Circular Opening in Rocks Using Drucker–Prager Criterion,” Indian Geotechnical Journal, vol. 49, no. 4, pp. 437–454, 2019.spa
dc.relation.referencesJ. Gomez, R. Chalaturnyk y G. Zambrano-Narvaez, “Experimental investigation of the mechanical behavior and permeability of 3D printed sandstone analogues under triaxial conditions,” Transport in Porous Media, vol. 129, no. 2, pp. 541–557, 2018.spa
dc.relation.referencesJ. Gomez, Mechanical properties characterization of printed reservoir sandstone analogues. Tesis M.Sc., University of Alberta, 2017.spa
dc.relation.referencesN. Ardila, Hydraulic properties characterization of 3D printed sandstone analogues. Tesis M.Sc., University of Alberta, 2018.spa
dc.relation.referencesB. Primkulov, J. Chalaturnyk, R. Chalaturnyk y G. Zambrano Narvaez, “3D printed sandstone strength: Curing of furfuryl alcohol resin-based sandstones,” 3D Printing and Additive Manufacturing, vol. 4, no. 3, pp. 149–155, 2017.spa
dc.relation.referencesASTM International, “ASTM D854 - 00 standard test methods for specifc gravity of soil solids by water pycnometer,” ASTM, 2000.spa
dc.relation.referencesASTM International, “ASTM D2166-06 standard test method for unconfned compressive strength of cohesive soil,” 2007.spa
dc.relation.referencesASTM International, “ASTM D7181-11 standard test method for consolidated drained triaxial compression test for soils,” 2011.spa
dc.relation.referencesP. Charlez, Rock mechanics: volume 1. Theoretical fundamentals. editions t ed., 1991spa
dc.relation.referencesS. Maksimov, Underwater arc welding of higher strength low-alloy steels, vol. 24. Springer, 2010.spa
dc.relation.referencesC. Tamagnini y M. Ciantia, “Plasticity with generalized hardening: Constitutive modeling and computational aspects,” Acta Geotechnica, vol. 11, no. 3, pp. 595–623, 2016.spa
dc.relation.referencesS. Ghabezloo, J. Sulem y J. Saint-Marc, “Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 761–768, 2009.spa
dc.relation.referencesJ. Reddy, An introduction to the fnite element method. New York: McGraw-Hill, 2nd ed., 1993spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembArena - Producción
dc.subject.lembArena - Producción - Modelos matemáticos
dc.subject.lembPlanificación de la producción - Modelos matemáticos
dc.subject.lembArenas petrolíferas - Producción - Modelos matemáticos
dc.subject.proposalModelamiento Numericospa
dc.subject.proposalArenamientospa
dc.subject.proposalCriterio de Arenamientospa
dc.subject.proposalTWCeng
dc.subject.proposalPruebas de arenamientoeng
dc.subject.proposalSandingeng
dc.subject.proposalAdditive Manufacturingeng
dc.subject.proposalSand Productioneng
dc.subject.proposalNumerical Modelingeng
dc.titleModelo acoplado para la cuantificación de la producción de arena usando un nuevo criterio basado en un factor de intensidad de daño plásticospa
dc.title.translatedCoupled model for the quantification of sand production using a new criterion based on a plastic damage intensity factoreng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto 015-2016 titulado ”Modelamiento geomecánico para el diagnóstico, evaluación y manejo de la producción de arena en pozos offshore”.spa
oaire.fundernameAgencia Nacional de Hidrocarburos ANHspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085289667.2022.pdf
Tamaño:
6.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: