Análisis de la distribución espacial de un colector de residuos acuícolas particulados para jaulas flotantes usando herramientas de modelamiento computacional
| dc.contributor.advisor | Duque Nivia, Guillermo | |
| dc.contributor.advisor | Lobatón García, Hugo Fabián | |
| dc.contributor.author | Quintana Vargas, David | |
| dc.contributor.researchgroup | Ecología y Contaminación Acuática Econacua | spa |
| dc.date.accessioned | 2025-06-27T19:21:19Z | |
| dc.date.available | 2025-06-27T19:21:19Z | |
| dc.date.issued | 2025 | |
| dc.description | Ilustraciones, fotografías, mapas, tablas, etc. | spa |
| dc.description.abstract | La gestión adecuada de residuos sedimentables es un desafío que enfrenta a diario la acuicultura en jaulas flotantes, particularmente en aguas someras con limitado flujo, producto de las constantes descargas de desechos orgánicos asociados a los procesos de alimentación, que viajan a través de la columna de agua y se acumulan en los sedimentos cercanos. Este estudio establece un modelo multifase en estado estacionario, que permite analizar la influencia de la fase líquida en la dispersión de distintas partículas sólidas liberadas desde una jaula flotante en un medio acuático de comportamiento estable, donde no se presentan cambios fluidodinámicos significativos en el tiempo. Consiste en un conjunto de métodos de dinámica de fluidos computacional (CFD) y modelos de fases discretas (DPM), acoplados con el modelo de turbulencia k-ε realizable y el método de salto poroso, con el propósito de evaluar numéricamente el desempeño de un colector de residuos acuícolas al variar su distribución espacial, en condiciones de flujo estándar (0.006m.s-1 y 0.138m.s-1 ). Los resultados obtenidos indican que disponer el colector bajo la jaula emisora a una profundidad de 2.5m presenta el mejor rendimiento en condiciones de flujo léntico, mientras que ubicarlo a más de 10m aguas abajo conlleva a la pérdida total de su capacidad de recolección, según la diversidad y abundancia de los contaminantes capturados. Finalmente, se confirma que la interacción entre la velocidad de flujo, el tamaño de partícula y la distancia de instalación del colector causa el mayor efecto significativo sobre las tasas de recolección, sedimentación y escape. (Texto tomado de la fuente). | spa |
| dc.description.abstract | The proper management of settleable waste is a challenge that aquaculture in floating cages faces daily, particularly in shallow waters with limited flow, as a result of the constant discharges of organic waste associated with the feeding processes, which travel through the water column and accumulate in nearby sediments. This study establishes a multiphase steady-state model, which allows analyzing the influence of the liquid phase on the dispersion of different solid particles released from a floating cage in an aquatic environment with stable behavior, where no significant fluid dynamic changes occur over time. It consists of a set of computational fluid dynamics methods (CFD) and discrete phase models (DPM), coupled with the realizable k-ε turbulence model and the porous jump method, for the purpose of numerically evaluating the performance of an aquaculture waste collector by varying its spatial distribution, under standard flow conditions (0.006m.s-1 and 0.138m.s -1 ). The results obtained indicate that placing the collector under the emitter cage at a depth of 2.5m presents the best performance, while locating it more than 10m downstream leads to the total loss of its collection capacity, according to the diversity and abundance of the contaminants captured. Finally, it is confirmed that the interaction between flow velocity, particle size and collector installation distance causes the highest significant effect on collection, sedimentation and escape rates. | eng |
| dc.description.curriculararea | Ingeniería.Sede Palmira | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
| dc.description.methods | Este estudio establece un modelo multifase en estado estacionario, que permite analizar la influencia de la fase líquida en la dispersión de distintas partículas sólidas liberadas desde una jaula flotante en un medio acuático de comportamiento estable, donde no se presentan cambios fluidodinámicos significativos en el tiempo. Consiste en un conjunto de métodos de dinámica de fluidos computacional (CFD) y modelos de fases discretas (DPM), acoplados con el modelo de turbulencia k-ε realizable y el método de salto poroso, con el propósito de evaluar numéricamente el desempeño de un colector de residuos acuícolas al variar su distribución espacial, en condiciones de flujo estándar (0.006m.s-1 y 0.138m.s-1). | spa |
| dc.description.researcharea | Monitoreo, modelación y gestión de recursos naturales | spa |
| dc.format.extent | xii, 92 páginas + anexos | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88254 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
| dc.publisher.faculty | Facultad de Ingeniería y Administración | spa |
| dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
| dc.publisher.program | Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental | spa |
| dc.relation.references | Ahlgren, M. O. (1998). Consumption and assimilation of salmon net pen fouling debris by the Red Sea cucumber Parastichopus californicus: Implications for polyculture . Journal of the World Aquaculture Society, 133–139. | spa |
| dc.relation.references | Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x | spa |
| dc.relation.references | Arboleda, D. A. (2006). Limnologia aplicada a la acuicultura. Revista Electrónica de Veterinaria REDVET, 7, 1–24. | spa |
| dc.relation.references | AUNAP. (2013). Zonificación de la Acuicultura Nacional- Plan Nacional de Desarrollo de la Acuicultura Sostenible. In PlanDAS. http://aunap.gov.co/wp-content/uploads/2016/05/Zonificación-de-la-Acuicultura-en-Colombia.pdf | spa |
| dc.relation.references | Bannister, R. J., Johnsen, I. A., Hansen, P. K., Kutti, T., & Asplin, L. (2016). Near and far-field dispersal modelling of organic waste from Atlantic salmon aquaculture in fjord systems. ICES Journal of Marine Science, 73(9), 2408–2419. | spa |
| dc.relation.references | Berger, W. H., & Parker, F. L. (1970). Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science, 168(3937), 1345–1347. https://doi.org/10.1126/science.168.3937.1345 | spa |
| dc.relation.references | Bi, C. W., Zhao, Y. P., Dong, G. H., Cui, Y., & Gui, F. K. (2015). Experimental and numerical investigation on the damping effect of net cages in waves. Journal of Fluids and Structures, 55, 122–138. https://doi.org/10.1016/j.jfluidstructs.2015.02.010 | spa |
| dc.relation.references | Borja, Á. (2002). Los impactos ambientales de la acuicultura y la sostenibilidad de esta actividad. Boletín Instituto Español de Oceanografía, 18(1–4), 41–49. | spa |
| dc.relation.references | Buschmann, A. (2001). Impacto ambiental de la acuicultura – el estado de la investigación en Chile y el mundo. Terram Publicaciones. , 67. | spa |
| dc.relation.references | Camargo, J. A., & Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Revista Ecosistemas, 16(2), 98–110. https://doi.org/10.7818/457 | spa |
| dc.relation.references | Cardia, F., & Lovatelli, A. (2015). Aquaculture operations in floating HDPE cages: a field handbook. In FAO Fisheries and Aquaculture Technical Paper (Issue 593). http://www.fao.org/docrep/field/003/ab825f/AB825F00.htm#TOC | spa |
| dc.relation.references | Caríssimo, M. S., Del Cero, P., Fonalleras, M. del C., Silva, P. M., & Giordano, M. I. (2013). ECOSISTEMAS ACUÁTICOS. | spa |
| dc.relation.references | Curran, K. J., Hill, P. S., Milligan, T. G., Mikkelsen, O. A., Law, B. A., Durrieu de Madron, X., & Bourrin, F. (2007). Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France. Continental Shelf Research, 27(10–11), 1408–1421. https://doi.org/10.1016/j.csr.2007.01.014 | spa |
| dc.relation.references | Davies, R. M., & Davies, O. A. (2017). Some Engineering Properties of Fish Feed Pellets. International Journal of Research in Agriculture and Forestry, 4(10), 38–43. | spa |
| dc.relation.references | DeCew, J., Fredriksson, D. W., Lader, P. F., Chambers, M., Howell, W. H., Osienki, M., Celikkol, B., Frank, K., & Høy, E. (2013). Field measurements of cage deformation using acoustic sensors. Aquacultural Engineering, 57, 114–125. https://doi.org/10.1016/j.aquaeng.2013.09.006 | spa |
| dc.relation.references | Domínguez, L. M., & Vergara, J. M. (2005). Impacto ambiental de jaulas flotantes : estado actual de conocimientos y conclusiones prácticas. 21, 75–81. | spa |
| dc.relation.references | FAO. (1999). Desarrollo de la Acuicultura. FAO Orientaciones Técnicas Para La Pesca Responsable. | spa |
| dc.relation.references | FAO. (2008). Acuicultura en jaulas. Estudios regionales y panorama mundial. Documento Técnico de Pesca 498. | spa |
| dc.relation.references | FAO. (2022). The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en | spa |
| dc.relation.references | Fredriksson, D. W., Tsukrov, I., & Hudson, P. (2008). Engineering investigation of design procedures for closed containment marine aquaculture systems. Aquacultural Engineering, 39(2–3), 91–102. https://doi.org/10.1016/j.aquaeng.2008.08.002 | spa |
| dc.relation.references | González, E. A. (2017). IMPACTO AMBIENTAL DE LA ACUICULTURA INTENSIVA EN LOS COMPONENTES AGUA Y SEDIMENTO EN EL LAGO GUAMUEZ, NARIÑO [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/59203/2017%201085262058.pdf?sequence=1&isAllowed=y | spa |
| dc.relation.references | González, E. A., Burbano, E., Aparicio, R., Duque, G., & Imués, M. A. (2018). Impactos de la acuicultura en los nutrientes del agua y macroinvertebrados bentónicos del Lago Guamuez. Revista MVZ Córdoba, 23(S), 7035–7047. https://doi.org/10.21897/rmvz.1429 | spa |
| dc.relation.references | González, E. A., Duque, G., & Ángel, D. I. (2023). Cambios ambientales en agua y sedimentos por acuicultura en jaulas flotantes en el Lago Guamuez, Nariño, Colombia. Acta Agronómica, 71(1), 22–28. https://doi.org/10.15446/acag.v71n1.98924 | spa |
| dc.relation.references | González, J. A. (2015). Caracterización de sedimentos producidos en una explotación intensiva de trucha arco iris Oncorhynchus mykiss Walbaum, 1792, como un medio para definir estrategias de uso y manejo sostenible de lagunas de oxidación en piscicultura. Universidad de La Salle. | spa |
| dc.relation.references | Gutiérrez, F. de P. (Gutiérrez B., Lasso, C. A. (Carlos A., Baptiste, M. P., Sánchez-Duarte, P., Díaz, A. M., & Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (2012). Catálogo de la biodiversidad acuática exótica y trasplantada en Colombia : moluscos, crustáceos, peces, anfibios, reptiles y aves. | spa |
| dc.relation.references | Hall, P., Anderson, L., Holby, O., Kollberg, S., & Samuelsson, M.-O. (1990). Chemical fluxes and mass balances in a marine fish cage farm. I Carbon. Marine Ecology Progress Series, 61, 61–73. https://doi.org/10.3354/meps061061 | spa |
| dc.relation.references | Hartigan, J. A., & Wong, M. A. (1979). A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28, 100–108. https://www.stat.cmu.edu/~rnugent/PCMI2016/papers/HartiganKMeans.pdf | spa |
| dc.relation.references | Holmer, M., Wildish, D., & Hargrave, B. (2005). Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. In Environmental Effects of Marine Finfish Aquaculture (pp. 181–206). Springer-Verlag. https://doi.org/10.1007/b136010 | spa |
| dc.relation.references | Imués Figueroa, M. A., Gonzalez Legarda, E. A., Duque Nivia, G., Burbano Gallardo, E., & Guerrero Romero, C. L. (2018). EFECTO DE LA PRODUCCIÓN ACUÍCOLA SOBRE LAS VARIABLES DE CALIDAD DEL AGUA DEL LAGO GUAMUEZ. Revista Investigación Pecuaria, 5(1), 33–43. https://doi.org/10.22267/revip.1851.4 | spa |
| dc.relation.references | INCAGRO. (2008). MANUAL PARA LA PRODUCCIÓN DE TRUCHAS EN JAULAS FLOTANTES. https://es.scribd.com/doc/51422821/Manual-de-Produccion-de-Truchas-Incagro | spa |
| dc.relation.references | INCODER. (2006). Guía práctica de piscicultura en Colombia. | spa |
| dc.relation.references | Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31, 264–323. http://users.eecs.northwestern.edu/~yingliu/datamining_papers/survey.pdf | spa |
| dc.relation.references | Johansson, D., Juell, J.-E., Oppedal, F., Stiansen, J.-E., & Ruohonen, K. (2007). The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture, 265(1–4), 271–287. https://doi.org/10.1016/j.aquaculture.2006.12.047 | spa |
| dc.relation.references | Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202 | spa |
| dc.relation.references | Karakassis, I., Tsapakis, M., Smith, C., & Rumohr, H. (2002). Fish farming impacts in the Mediterranean studied through sediment profiling imagery. Marine Ecology Progress Series, 227, 125–133. https://doi.org/10.3354/meps227125 | spa |
| dc.relation.references | Khater, E. (2014). Physical and Mechanical Properties of Fish Feed Pellets. Journal of Food Processing & Technology, 5(10). https://doi.org/10.4172/2157-7110.1000378 | spa |
| dc.relation.references | Kim, T., Lee, J., Fredriksson, D. W., Decew, J., Drach, A., & Yim, S. C. (2018). Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant. | spa |
| dc.relation.references | Klebert, P., Lader, P., Gansel, L., & Oppedal, F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: A review. Ocean Engineering, 58, 260–274. https://doi.org/10.1016/j.oceaneng.2012.11.006 | spa |
| dc.relation.references | Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583. https://doi.org/10.2307/2280779 | spa |
| dc.relation.references | Ladino, G. (2011). Dinámica del carbono en estanques de peces. Orinoquia, 15(1), 48–61. | spa |
| dc.relation.references | Law, B., Hill, P., Maier, I., Milligan, T., & Page, F. (2014). Size, settling velocity and density of small suspended particles at an active salmon aquaculture site. Aquaculture Environment Interactions, 6(1), 29–42. https://doi.org/10.3354/aei00116 | spa |
| dc.relation.references | Liu, H.-F., Bi, C.-W., Xu, Z., & Zhao, Y.-P. (2021). Hydrodynamic assessment of a semi-submersible aquaculture platform in uniform fluid environment. Ocean Engineering, 237, 109656. https://doi.org/10.1016/j.oceaneng.2021.109656 | spa |
| dc.relation.references | Liu, H.-F., Bi, C.-W., Xu, Z., & Zhao, Y.-P. (2022). Numerical study on the flow environment for a novel design of net cage with a shielding device. Ocean Engineering, 243, 110345. https://doi.org/10.1016/j.oceaneng.2021.110345 | spa |
| dc.relation.references | Liu, Y., Liu, B., Lei, J., Guan, C., & Huang, B. (2017). Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems. Chinese Journal of Oceanology and Limnology, 35(4), 912–920. https://doi.org/10.1007/s00343-017-6051-3 | spa |
| dc.relation.references | Lopez, J., & Ruíz, W. (2016). Manual de construcción y manejo de jaulas flotantes para la maricultura del Ecuador Manual de construcción y manejo de jaulas flotantes para la maricultura del Ecuador (Issue August). https://doi.org/10.13140/RG.2.1.2664.2647 | spa |
| dc.relation.references | Ma, C., Bi, C.-W., Xu, Z., & Zhao, Y.-P. (2022). Dynamic behaviors of a hinged multi-body floating aquaculture platform under regular waves. Ocean Engineering, 243, 110278. https://doi.org/10.1016/j.oceaneng.2021.110278 | spa |
| dc.relation.references | MacLeod, M. J., Hasan, M. R., Robb, D. H. F., & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. Scientific Reports, 10(1), 11679. https://doi.org/10.1038/s41598-020-68231-8 | spa |
| dc.relation.references | Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Springer Netherlands. https://doi.org/10.1007/978-94-015-7358-0 | spa |
| dc.relation.references | Margalef, R. (1958). Information Theory in Ecology. General Systems: Yearbook of the Society for General Systems Research, 3, 36–71. | spa |
| dc.relation.references | Milthon, B., Lujan, M., & Mejía, C. (2011). Optimización de la dietas acuícolas para disminuir el impacto ambiental de la acuicultura. | spa |
| dc.relation.references | Ministerio de agricultura. (2023). Bullets de Acuicultura 3er Trimestre 2023. | spa |
| dc.relation.references | Moccia, R., Bevan, D., & Reid, G. (2007). Composition of Feed and Fecal Waste from Commercial Trout Farms in Ontario: Physical Characterization and Relationship to Dispersion and Depositional Modelling. | spa |
| dc.relation.references | Navier, C. L. (1822). Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Des Sciences de l’Institut de France. https://perso.crans.org/epalle/M2/EC/Histoire/Navier1822MemoireSurLesLoisDuMouvementDesFluides.pdf | spa |
| dc.relation.references | OCDE. (2016). Pesca y acuicultura en Colombia. https://www.studocu.com/co/document/instituto-tecnico-colombiano/derecho-ciencias/fisheries-colombia-spa-rev/18074474 | spa |
| dc.relation.references | Olsen, L., Holmer, M., & Olsen, Y. (2008). Perspectives of nutrient emission from fish aquaculture in coastal waters: Literature review with evaluated state of knowledge. | spa |
| dc.relation.references | Ottinger, M., Clauss, K., & Kuenzer, C. (2016). Aquaculture: Relevance, distribution, impacts and spatial assessments - A review. Ocean and Coastal Management, 119, 244–266. https://doi.org/10.1016/j.ocecoaman.2015.10.015 | spa |
| dc.relation.references | Papáček, Š., Petera, K., Císař, P., Stejskal, V., & Saberioon, M. (2020). Experimental & Computational Fluid Dynamics Study of the Suitability of Different Solid Feed Pellets for Aquaculture Systems. Applied Sciences, 10(19), 6954. https://doi.org/10.3390/app10196954 | spa |
| dc.relation.references | Papageorgiou, N., Kalantzi, I., & Karakassis, I. (2010). Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean Sea. Marine Environmental Research, 69(5), 326–336. https://doi.org/10.1016/j.marenvres.2009.12.007 | spa |
| dc.relation.references | Patursson, Ø., Swift, M. R., Tsukrov, I., Simonsen, K., Baldwin, K., Fredriksson, D. W., & Celikkol, B. (2010). Development of a porous media model with application to flow through and around a net panel. Ocean Engineering, 37(2–3), 314–324. https://doi.org/10.1016/j.oceaneng.2009.10.001 | spa |
| dc.relation.references | Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 | spa |
| dc.relation.references | Sandoval, M., Celis, J., Stolpe, N., & Capulín, J. (2010). Effect of sewage sludge and salmon wastes amendments on the structure of an Entisol and Alfisol in Chile. Agrociencia, 44(5), 503–515. | spa |
| dc.relation.references | Sarà, G., Scilipoti, D., Mazzola, A., & Modica, A. (2004). Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (δ13C and δ15N). Aquaculture, 234(1–4), 199–213. https://doi.org/10.1016/j.aquaculture.2003.11.020 | spa |
| dc.relation.references | Selim, T., Hesham, M., & Elkiki, M. (2022). Effect of sediment transport on flow characteristics in non-prismatic compound channels. Ain Shams Engineering Journal, 13(6), 101771. https://doi.org/10.1016/j.asej.2022.101771 | spa |
| dc.relation.references | Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | spa |
| dc.relation.references | Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709 | spa |
| dc.relation.references | Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. https://doi.org/10.2307/1412159 | spa |
| dc.relation.references | Srithongouthai, S., & Tada, K. (2017). Impacts of organic waste from a yellowtail cage farm on surface sediment and bottom water in Shido Bay (the Seto Inland Sea, Japan). Aquaculture, 471, 140–145. https://doi.org/10.1016/j.aquaculture.2017.01.021 | spa |
| dc.relation.references | Stokes, G. G. (1850). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society. https://mural.uv.es/daroig/documentos/stokes1850.pdf | spa |
| dc.relation.references | Tabraue, R. J. H., Martín, J., & Henriquez, M. N. (2001). Evaluación de impacto ambiental de acuicultura en jaulas en Canarias (Issue February 2016). | spa |
| dc.relation.references | Tang, M.-F., Xu, T.-J., Dong, G.-H., Zhao, Y.-P., & Guo, W.-J. (2017). Numerical simulation of the effects of fish behavior on flow dynamics around net cage. Applied Ocean Research, 64, 258–280. https://doi.org/10.1016/j.apor.2017.03.006 | spa |
| dc.relation.references | Tarpagkou, R., & Pantokratoras, A. (2013). CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations. Applied Mathematical Modelling, 37(5), 3478–3494. https://doi.org/10.1016/j.apm.2012.08.011 | spa |
| dc.relation.references | United Nations. (2022). World Population Prospects 2022: Summary of Results. | spa |
| dc.relation.references | Wang, L., Cardenas, M. B., Wang, T., Zhou, J.-Q., Zheng, L., Chen, Y.-F., & Chen, X. (2022). The effect of permeability on Darcy-to-Forchheimer flow transition. Journal of Hydrology, 610, 127836. https://doi.org/10.1016/j.jhydrol.2022.127836 | spa |
| dc.relation.references | Wang, X., Cui, K., Li, H., Jiang, Y., He, J., & Zhang, J. (2019). Numerical simulation of flow field characteristics for aquaculture raceway and analysis of solid phase distribution in waste settling zone. Ransactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 35(20), 220-227. | spa |
| dc.relation.references | Weaver, W. (1948). Science and complexity. American Scientist, 36, 536–544. | spa |
| dc.relation.references | Xu, Z., Chen, X., Liu, J., Zhang, Y., Chau, S., Bhattarai, N., Wang, Y., Li, Y., Connor, T., & Li, Y. (2020). Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nature Communications, 11(1), 5837. https://doi.org/10.1038/s41467-020-19520-3 | spa |
| dc.relation.references | Xu, Z., & Qin, H. (2020). Fluid-structure interactions of cage based aquaculture: From structures to organisms. Ocean Engineering, 217, 107961. https://doi.org/10.1016/j.oceaneng.2020.107961 | spa |
| dc.relation.references | Yang, H., Xu, Z., Bi, C., & Zhao, Y.-P. (2022). Numerical modeling of interaction between steady flow and pile-net structures using a one-way coupling model. Ocean Engineering, 254, 111362. https://doi.org/10.1016/j.oceaneng.2022.111362 | spa |
| dc.relation.references | Yuan, X., Wang, C., Miao, Q., & Zou, C. (2024). Investigation on quantitative evaluation method for feed diffusion effect in deep-sea aquaculture cages. Ocean Engineering, 295, 116759. https://doi.org/10.1016/j.oceaneng.2024.116759 | spa |
| dc.relation.references | Zhao, Y.-P., Bi, C.-W., Dong, G.-H., Gui, F.-K., Cui, Y., & Xu, T.-J. (2013). Numerical simulation of the flow field inside and around gravity cages. Aquacultural Engineering, 52, 1–13. https://doi.org/10.1016/j.aquaeng.2012.06.001 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
| dc.subject.agrovoc | Residuo orgánico | |
| dc.subject.agrovoc | Organic residues | |
| dc.subject.agrovoc | Transporte de sedimentos | |
| dc.subject.agrovoc | Sediment transport | |
| dc.subject.agrovoc | Ecosistema acuático | |
| dc.subject.agrovoc | Aquatic ecosystems | |
| dc.subject.agrovoc | Ecosistema costero | |
| dc.subject.agrovoc | Coastal ecosystems | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | Acuicultura | spa |
| dc.subject.proposal | Sedimentación | spa |
| dc.subject.proposal | Campo de flujo | spa |
| dc.subject.proposal | Transporte de contaminante | spa |
| dc.subject.proposal | Ansys fluent | eng |
| dc.subject.proposal | PERMANOVA | spa |
| dc.subject.proposal | Índices ecológicos | spa |
| dc.subject.proposal | Aquaculture | eng |
| dc.subject.proposal | Flow field | eng |
| dc.subject.proposal | Sedimentation | eng |
| dc.subject.proposal | Contaminant transport | eng |
| dc.subject.proposal | Ecological indices | eng |
| dc.title | Análisis de la distribución espacial de un colector de residuos acuícolas particulados para jaulas flotantes usando herramientas de modelamiento computacional | spa |
| dc.title.translated | Spatial distribution analysis of a particulate aquaculture waste collector for floating cages using computational modeling tools | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Consejeros | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Análisis de la distribución espacial de un colector de residuos acuícolas particulados para jaulas flotantes usando herramientas de modelamiento computacional.pdf
- Tamaño:
- 3.96 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Ambiental: modelación numérica CFD sobre el transporte de residuos acuícolas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

