Caracterización genómica de los virus que infectan los cultivos de uchuva (Physalis peruviana) en Antioquia para el apoyo de los programas de certificación de semilla

dc.contributor.advisorMarín Montoya, Mauricio Alejandro
dc.contributor.authorCorrales Cabra, Erika Margarita
dc.contributor.researchgroupBiotecnologia Vegetalspa
dc.date.accessioned2022-08-29T21:38:18Z
dc.date.available2022-08-29T21:38:18Z
dc.date.issued2022
dc.description.abstractLa uchuva (Physalis peruviana L.) es un frutal solanáceo nativo de los Andes, con un gran potencial de exportación gracias a sus excelentes características organolépticas y nutricionales. En los últimos años en Colombia, este cultivo presenta diferentes problemas fitosanitarios, entre los que se destacan las enfermedades virales, que entre otros efectos causan la disminución de los rendimientos, reducción de la longevidad de las plantas y el deterioro de las características de los frutos, ocasionando la reducción de su valor comercial. A diferencia de otras enfermedades causadas por hongos, nemátodos y bacterias, las enfermedades virales son difíciles de controlar ya que la manifestación de los síntomas generalmente ocurre después de largos períodos de infección sistémica. Desafortunadamente, en la agroindustria de uchuva no existe un sistema de detección viral o pruebas de diagnóstico validadas que permitan identificar oportunamente la presencia de virus en plantas asintomáticas o en material de siembra. El manejo de las enfermedades virales se basa en la implementación de prácticas preventivas como la siembra de material certificado por su sanidad viral, lo que se puede lograr por medio de técnicas de limpieza in vitro de plantas y su propagación a gran escala bajo principios de exclusión fitosanitaria. En este trabajo, utilizando técnicas moleculares como RT-qPCR, RT-PCR convencional, secuenciación Sanger y secuenciación masiva de alto rendimiento (HTS), se identificaron y caracterizaron genómicamente los virus que afectan los cultivos de uchuva en el departamento de Antioquia en material de siembra y en plantas en producción. En la subregión del oriente se encontraron altos niveles de prevalencia para las infecciones por PVY, CGIV-1, PVS y PVX. Además, con el uso NGS, se reportó por primera vez la presencia de tres nuevas especies de virus denominadas tentativamente como: Physalis vein necrosis virus (PhyVNV, Nepovirus), Physalis torradovirus (PhyTV, Torradovirus), y Physalis virus X (PhyVX, Potexvirus). Para el caso de la subregión del suroeste, se detectaron los virus PVX, PVS, PVY, PhyVNV y CGIV-1. Adicionalmente, mediante el análisis de NGS se detectó la presencia de secuencias de los virus CMV, PhyVNV, PVS y TaLMV. Para TaLMV se confirmó su infección en uchuva mediante RT-qPCR y RT-PCR, siendo el primer reporte de este virus en un hospedero diferente al tamarillo (Solanum betaceum). Por último, en esta investigación se evaluaron metodologías derivadas de técnicas de cultivo in vitro para la generación de material de siembra de uchuva libre de virus y/o con baja carga viral, definiéndose como el mejor tratamiento la termoterapia 37ºC por 30 días con un fotoperiodo de 12 h de luz artificial, y un período de recuperación de 45 días a 21°C, al reducirse la incidencia de PVS y PVY, con respecto a los controles no tratados. Para el caso de quimioterapia, se encontró que el mejor tratamiento correspondió a la aplicación de 30 ppm de ribavirina al medio de crecimiento modificado de Montiel-Martínez et al. (2011) durante 45 días a 21°C, con un fotoperiodo de 12 horas luz, reduciéndose la incidencia de PVX, PVY y PMTV, con respecto a los controles no tratados. Se espera que los resultados de esta tesis estimulen al gremio fruticultor del departamento y del país a utilizar herramientas moleculares y técnicas in vitro para el establecimiento de programas de certificación de semilla de uchuva y de seguimiento epidemiológico de las enfermedades virales en este cultivo. (Texto tomado de la fuente)spa
dc.description.abstractCape gooseberry (Physalis peruviana L.) is an Andean solanaceous crop with great export potential due to its unique organoleptic and nutritional characteristics. Unfortunately, in recent years there has been an emergence of a wide spectrum of phytosanitary problems affecting the yields, plant longevity and fruit quality of cape gooseberry. In contrast to diseases caused by fungi, nematodes or bacteria, viral diseases can be difficult to control as symptoms may take a long time before they become conspicuous. This problem is exacerbated by the lack of reliable diagnostic tools that allow detection of viruses in asymptomatic plants and planting material. In agriculture, viral diseases are controlled in a preventive manner through seed certification programs that guarantee the elimination of viruses from stock plants using in vitro culture techniques, and propagation of planting material at large scale under controlled conditions. In this work, a wide variety of viruses infecting cape gooseberry in Antioquia were characterized using RT-qPCR, standard PCR, Sanger sequencing and High-throughput sequencing (HTS). Testing was performed on adult plants from commercial cape gooseberry fields, seeds, and plantlets. In eastern Antioquia, the viruses PVY, CGIV-1, PVS, and PVX were highly prevalent and the use of HTS revealed the presence of three new viruses tentatively named as Physalis vein necrosis virus (PhyVNV, Nepovirus), Physalis torradovirus (PhyTV, Torradovirus), and Physalis virus X (PhyVX, Potexvirus). In the southwestern region, the viruses PVX, PVS, PVY, PhyVNV, and CGIV-1 were detected and HTS revealed the presence of CMV, PhyVNV, PVS, and TaLMV. Infection by TaLMV was further confirmed by RT-qPCR making this the first report of natural infection of this virus in a host different to tamarillo (Solanum betaceum). Finally, different in vitro tissue culture methods for the elimination of viruses were tested. The best performance was achieved with thermotherapy at 37 ºC for 30 days, using a photoperiod of 12 h under artificial light, followed by a recovery stage of 45 days at 21°C. This protocol was effective in reducing the prevalence of PVS and PVY with respect to the untreated controls. Thermotherapy, on the other hand, worked best at a 30 ppm concentration of ribavirin using the Montiel-Martínez et al. (2011) growth medium for 45 days at 21°C, with a photoperiod of 12 h under artificial light. This method was effective in reducing the prevalence of PVX, PVY, and PMTV. Hopefully, these results will promote the implementation of molecular and in vitro culture methods in seed certification and virus surveillance programs of cape gooseberry by the fruit agroindustry of Antioquia and Colombia.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaVirología vegetal y cultivo in vitro de plantasspa
dc.format.extentxviii, 208 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82181
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAdams, M., Antoniw, J. y Beaudoin, F. (2005). Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol. 6(4), 471-478. https://doi.org/10.1111/j.1364-3703.2005.00296.xspa
dc.relation.referencesAgindotan, B. O., Shiel, P. J. y Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT PCR. J Virol Methods. 142(1-2), 1-9. https://doi.org/10.1016/j.jviromet.2006.12.012spa
dc.relation.referencesAguirre-Ráquira, W., Borda, D. y Hoyos-Carvajal, L. (2014). Potyvirus Affecting Uchuva (Physalis peruviana L.) in Centro Agropecuario Marengo, Colombia. Agric Sci. 5(10), 897-905. http://dx.doi.org/10.4236/as.2014.510097spa
dc.relation.referencesAgronet. (2018). Área Producción y Rendimiento Nacional por cultivo. Recuperado el 15 de noviembre de 2019 de http://www.agronet.gov.co/Paginas/estadisticas.aspxspa
dc.relation.referencesAlemu, K. (2015). Detection of diseases, identification and diversity of viruses: A Review. J Biol Agri Healthc. 5(1), 204-214.spa
dc.relation.referencesAlfonso, K. (2017). La uchuva duplica exportaciones a EE UU. Colombia: Agronegocios Recuperado en 18 abril de 2020 de https://www.agronegocios.co/agricultura/la-uchuva-duplica-exportaciones-a-eeuu-2622616spa
dc.relation.referencesAlmaarr, K., Massa, R. y Albiski, F. (2012). Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotech. 237-243. https://doi.org/10.5511/plantbiotechnology.12.0215aspa
dc.relation.referencesAnaldex. (2019). Informe de exportaciones de fruta enero – mayo 2019. Resuperado el 18 enero de 2020 de https://www.analdex.org/2019/07/31/informe-de-exportaciones-de-fruta-enero-mayo-2019/spa
dc.relation.referencesAnaldex. (2019). Exportaciones de uchuva. Recuperado el 30 de marzo de 2019 de https://www.analdex.org/2019/03/12/informe-de-exportaciones-de-uchuva-2018/spa
dc.relation.referencesAnaldex. (2019). Comportamiento de la uchuva Recuperado el 30 de abril de 2020 de https://www.analdex.org/2019/05/22/informe-de-exportaciones-de-uchuva-2018-2019/spa
dc.relation.referencesAnaldex. (2021). Informe de exportaciones de uchuva. Recuperado el 08 de septiembre de 2021 de https://www.analdex.org/2021/07/30/informe-exportaciones-de-uchuva-mayo-2021/spa
dc.relation.referencesAndrade, L. (2019). Identificación serológica y molecular del virus del mosaico rugoso PVX en cultivos de Physalis peruviana de la Sierra centro norte del Ecuador (Trabajo de Grado), (pp. 20-31) Quito: Pontificia Universidad Catolica del Ecuadorspa
dc.relation.referencesAli, M., Nasiruddin, K., Haque, M. y Faisal, S. (2014). Virus elimination in potato through meristem culture followed by thermotherapy. SAARC J Agrc. 11(1), 71-80. https://doi.org/10.3329/sja.v11i1.18376spa
dc.relation.referencesAlvaréz, D., Gutiérrez, P. y Marin, M. (2016). Caracterización Molecular del Potato virus V (PVV) Infectando Solanum phureja mediante secuenciación de nueva generación. Acta biol Colomb. 21(3), 521-531. https://doi.org/10.15446/abc.v21n3.54712spa
dc.relation.referencesAlvarez, N., Jaramillo, H., Gallo, Y., Gutiérre, P. A. y Marín, M. (2018). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) isolates naturally infecting cape gooseberry (Physalis peruviana) in Antioquia, Colombia. Agron Colomb. 36(1), 13-23. http://dx.doi.org/10.15446/agron.colomb.v36n1.65051spa
dc.relation.referencesBadoni, A. y Chauhan, J. S. (2009). Effect of growth regulators on meristem-tip development and in vitro multiplication of potato cultivar ‘Kufri Himalini’. Nature and Sci. 7(9), 31-34.spa
dc.relation.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Andrey, D. P., Pyshkin, A. V.,Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A. y Pevzner, P. A. (2012). Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5), 455-477. http://doi.org/10.1089/cmb.2012.0021spa
dc.relation.referencesBarba, M., Ilardi, V. y Pasquini, G. (2015). Control of pome and stone fruit virus diseases. Adv virus Res. 91, 47-83. https://doi.org/10.1016/bs.aivir.2014.11.001spa
dc.relation.referencesBarrero, R., Napier, K., Cunnington, J., Liefting, L., Keenan, S., Frampton, R., Szabo, T., Bulman, S., Hunter, A.,Ward, L., Whattan, M. y Bellgard, M. I.(2017). An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinformatics.18(26), 1-12. https://doi.org/10.1186/s12859-016-1428-4spa
dc.relation.referencesBhatia, S., Sharma, K. y Bera, T. (2015). Chapter 11: Micropagation. Bhatia, S., Sharma, K., Dahiya, R. y Bera, T. (Ed), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. (pp. 361-368). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00011-Xspa
dc.relation.referencesBio-Rad. (2020). Guide: An Introduction to ELISA. Recuperado el 29 de abril de 2020 de https://www.bio-rad-antibodies.com/elisa-types-direct-indirect-sandwich-competition-elisa-formats.html#Indirectspa
dc.relation.referencesBlanco-Urgoiti, B., Sanchez, F., Perez de San Roman, C., Dopazo, J. y Ponz, F. (1998). Potato Virus Y group C isolates are a homogeneous pathotype but two different genetic strains. J Genl Virol. 79(8), 2037-2042. https://doi.org/10.1099/0022-1317-79-8-2037spa
dc.relation.referencesBoratyn, G., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. y Madden, T. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 20 (1), 405. https://doi.org/10.1186/s12859-019-2996-xspa
dc.relation.referencesBoonham, N., Kreuze, J., Winter, S., Van der Vlugt, R., Bergervoet, J., Tomlinson, J. y Mumford, R. (2014). Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186, 20-31. https://doi.org/10.1016/j.virusres.2013.12.007spa
dc.relation.referencesBuermans, H. y Den Dunnen, J. (2014). Next generation sequencing technology: Advances and applications. Biochim Biophys Acta. 1842(10), 1932–1941. https://doi.org/10.1016/j.bbadis.2014.06.015spa
dc.relation.referencesBujarski, J., Gallitelli, D., Garcia-Arenal, F.,Pallás, V.,Palukaitis, P., Reddy, M. K. y Wang, A. (2019). ICTV virus profile: Bromoviridae. J Gen Virol. 100, 1206-1207.spa
dc.relation.referencesCalvert, E., Cooper, P. y McClure, J. (1980). An aphid transmitted strain of PVYc recorded in potatoes in Northern Ireland. Rec Agric Res. 28, 63-74.spa
dc.relation.referencesCassells, A. C. y Long, R. D. (1982). The elimination of potato viruses X, Y, S and M in meristem and explant cultures of potato in the presence of Viralzole. Potato Res. 25, 165-173. https://doi.org/10.1007/BF02359803spa
dc.relation.referencesCieślińska, M. (2002). Elimination of Apple chlorotic leafspot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hortic. 596(596), 481-484. https://doi.org/10.17660/ActaHortic.2002.596.80spa
dc.relation.referencesChomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 15(3), 532-537.spa
dc.relation.referencesChung, B. Y., Miller, W. A., Atkins, J. F. y Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA. 105(15), 5897–5902. https://doi.org/10.1073/pnas.0800468105spa
dc.relation.referencesClark, M. F. y Adams, A. N. (1977). Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses Free. J Gen Virol. 34(3), 475-483. https://doi.org/10.1099/0022-1317-34-3-475spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szczesmiak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X. y Motazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biol. 17(13). https://doi.org/10.1186/s13059-016-0881-8spa
dc.relation.referencesCotes, A., Díaz, A., García, A., Smith, A., Zapata, J. y Mesa, P. (2012). Avances en el manejo y control de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). (pp. 24) Bogota: Corpoica.spa
dc.relation.referencesCrotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R. y Cameron C. E. (2000). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 6(12), 1375-1379.spa
dc.relation.referencesCrotty, S., Cameron, C. E. y Andino, R. (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci. USA. 98(12), 6895-6900.spa
dc.relation.referencesDaza, P., Rodríguez, P. y Forero, M. (2011). Enfermedades de origen viral en cultivos de uchuva (Physalis peruviana L.) ubicados en el departamento de Cundinamarca. Fitopatología Colombiana. 35(1),128spa
dc.relation.referencesDawson, W. O. y Lozoya, S. H. (1984). Examination of the mode of action of ribavirin against tobacco mosaic virus. Intervirology. 22, 77-84.spa
dc.relation.referencesDerrick, K. (1973). Quantitative assay for plant viruses using serologically specific electron microscopy. Virology. 56(2),652-653. https://doi.org/10.1016/0042-6822(73)90068-8spa
dc.relation.referencesDellaporta, S., Wood, J. y Hicks, J. (1983). A plant DNA minipreparation: Version II. Plant Mol Biol Reporter. 1,19-21. https://doi.org/10.1007/BF02712670spa
dc.relation.referencesDoyle, J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1-15.spa
dc.relation.referencesEiras, M., Costa, I. F. D, Chaves, A. L. R., Colariccio, A., Harakava, R., Tanaka, F. A. O, Garcêz, R. M. y Silva, L. A. (2012). First report of a tospovirus in a commercial crop of Cape gooseberry in Brazil. New Diase Report. 25, 25. https://doi.org/10.5197/j.2044-0588.2012.025.025spa
dc.relation.referencesFang, Y. y Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors. 5(3), 537-561. https://doi.org/10.3390/bios5030537spa
dc.relation.referencesFAO. (2019). Food and Agriculture Organization of the United Nations. Recuperado el 30 de octubre del 2019 de http://www.fao.org/3/a-au173s.pdfspa
dc.relation.referencesFariña, A. E., Gorayeb, E. S., Camelo-García, V. M., Bonin, J., Nagata, T., Silva, J. M., Bogo, A., MARQUEZ, J. A., Nascimento da Silva, F. y Kitajima, E. W. (2019). Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana. Arch Virol. 164(11), 2805-2810. https://doi.org/10.1007/s00705-019-04374-yspa
dc.relation.referencesFASTX tooltkit. (2013). FASTX-Toolkit Recueperado el 13 de marzo del 2020 de http://hannonlab.cshl.edu/fastx_toolkit/index.htmlspa
dc.relation.referencesFASTQC. (2019). Braham Bioinformatics. Recuperado el 13 de marzo del 2020 de http://www.bioinformatics.babraham.ac.uk/projects/fastqcspa
dc.relation.referencesFischer, G. y Lüddew, P. (1998). Efecto de la termeratura de la rizosfera sobre la distribución de la materia seca en uchuva (Physalis peruviana L.). Agron Colomb. 15(2), 153-162spa
dc.relation.referencesFischer, G., Herrera, A. y Almanza-Merchan, P. (2011). Cape gooseberry (Physalis peruviana L.). Yahia, E. M, (Ed), Postharvest biology and technology of tropical and subtropical fruits (pp. 374-396). Oxford, U.K: Woodhead Publishingspa
dc.relation.referencesFischer, G. y Miranda, D. (2012). Uchuva (Physalis peruviana L.). Fisher, G. (Ed), Manual para el cultivo de frutales en el trópico (pp. 851-873). Bogotá: Produmedios.spa
dc.relation.referencesFisher, G., Almanza-Merchán, P. J. y Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev Bra Frutic. 36(1), 1-15. https://doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesFletcher, P. y Fletcher, J. (2001). In vitro virus elimination in three Andean root crops: Oca (Oxalis tuberosa), ulluco (Ullucus tuberosus), and arracacha (Arracacia xanthorrhiza). New Zeal J Crop Hort. 29(1), 23-27. https://doi.org/10.1080/01140671.2001.9514156spa
dc.relation.referencesFlorez, V., Fisher, G. y Sora, A. (2000). Crecimiento y Desarrollo. En: Florez V, Fisher G, Sora A, editor(es). Producción, Poscosecha y Exportación de la Uchuva. Bogotá: Universidad Nacional de Colombia. (p. 9-26).spa
dc.relation.referencesGarcia, N., Gutierrez, P. y Marin, M. (2013). Detección y cuantificación del Potato mop-top virus (PMTV) en Colombia mediante qRT-PCR. Acta agron. 62(2), 120-128.spa
dc.relation.referencesGallo Y. (2012). Generación de antígenos derivados de la proteína de la cápside de PVY, TaLMV y PMTV, para la producción de anticuerpos útiles en el desarrollo de pruebas serológicas (Tesis de Maestría). Bogota: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombiaspa
dc.relation.referencesGallo-García, Y. (2020) Caracterización molecular del viroma de plantas solanáceas de importancia económica en Antioquia (Tesis de Doctorado). Medellín: Facultad de Ciencias, Universidad Nacional de Colombiaspa
dc.relation.referencesGallo-García, Y., Jaramillo-Mesa, H., Toro-Fernández, L. F., Marín-Montoya, M. y Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Arch Virol. 163(6), 1713-1716. https://doi.org/10.1007/s00705-018-3796-8spa
dc.relation.referencesGallo-García, Y., Marín, M. y Gutiérrez, P. A. Detection of RNA viruses in Cape gooseberry (Physalis peruviana L.) by RNAseq using total RNA and dsRNA inputs. (2020). Arch Phytopathol Pflanzenschutz. 53:9-10, 395-413. https://doi.org/10.1080/03235408.2020.1748368spa
dc.relation.referencesGaray-Arroyo, A., Sánchez, M., García-Ponce, B., Álvarez-Buylla, E. R. y Gutiérrez, C. (2014). La Homeostasis de las Auxinas y su Importancia en el Desarrollo de Arabidopsis Thaliana. Rev Educ Bioquím. 33(1), 13-22.spa
dc.relation.referencesGella, R. y Errea, P. (1998). Application of In Vitro Therapy for Ilarvirus Elimination in Three Prunus Species. J Phytopathol. 146(8-9), 445-449. https://doi.org/10.1111/j.1439-0434.1998.tb04779.xspa
dc.relation.referencesGhafoor, A., Shah, G. B. y Waseem, K. (2003). In vitro response of potato (Solanum tuberosum L.) to various growth regulators. Biotecth. 2(3), 191-197.spa
dc.relation.referencesGil, J., Cortez, J. y Marin, M. (2013). Detección serológica y caracterización molecular de Potato virus S (PVS, Carlavirus) en cultivos de papa de Colombia. Rev Bio Trop. 61(2), 565-575spa
dc.relation.referencesGitHub. Github-Seqtk. Recuperado el 15 de marzo del 2020 de https://github.com/lh3/seqtkspa
dc.relation.referencesGrabherr, M., Haas, B., Yassour, M., Levin, J., Thompson, D., Amit, I., Adiconis, X., Fan, L., Radchowdhury, R.,Zeng, Q.,Chen, Z., Mauceli, E., Hacohen, N. Gnirke, A., Rhind, N.,Palma, F.,Birren, B. W., Nusbaum, C., Friedman, K. L. T. y Regev, A. (2013). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 29(7), 644-652.spa
dc.relation.referencesGray, D. y Benton, C. (1991). In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tiss Org Cult. 27, 7-14. https://doi.org/10.1007/BF00048199spa
dc.relation.referencesGreen, K. J., Chikh-Ali, M., Hamasaki, R. T., Melzer, M. J. y Karasev, A. V. (2017). Potato virus Y (PVY) Isolates from Physalis peruviana are Unable to Systemically Infect Potato or Pepper and Form a Distinct New Lineage Within the PVYC Strain Group. Phytopathology. 107(11), 1433-1439. https://doi.org/10.1094/PHYTO-04-17-0147-Rspa
dc.relation.referencesGutierrez, P., Alzate, J. F. y Marin, M. (2015). Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia. Virus Genes. 50(3), 518-522. https://doi.org/10.1007/s11262-015-1181-1spa
dc.relation.referencesHao, D., Sun, X., Ma, B., Zhang, J. S. y Guo, H. (2017). Ethylene. Li, J., Li, C. y Smith, S. M. (Ed). Hormone Metabolism and Signaling in Plants. (pp. 203-241). Elsevier: Academic Press.spa
dc.relation.referencesHamasaki, R. T., Motomura, S. A, Melzer, M. J. y Bushe, B. C. (2015). Potato virus Y: A pathogen associated with an emerging disease of poha in Hawaii. Plant Dis. 109.spa
dc.relation.referencesHanley-Bowdoin, L., Settage, S. B., Orozco, B. M., Nagar, S. y Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol. 35(2), 105-40.spa
dc.relation.referencesHeather, J. M. y Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics. 107(1), 1-8. https://doi.org/10.1016/j.ygeno.2015.11.003spa
dc.relation.referencesHenson, J. y French, R. (1993). The Polymerase chain reaction and plant disease diagnosis. Annu Rev Phytopathol. 31, 81-109. https://doi.org/10.1146/annurev.py.31.090193.000501spa
dc.relation.referencesHo, T. y Tzanetakis, L. (2014). Development of a virus detection and discovery pipeline using next generation sequencing. Virology. 471-473, 54-60. https://doi.org/10.1016/j.virol.2014.09.019spa
dc.relation.referencesHull, R. (2014). Plant Virology. (pp. 1118). Academic Press.spa
dc.relation.referencesHunt, M., Gall, A., Ong, S. H., Brener, J., Ferns, B., Goulder, P., Nastouli, E., Keane, J. A., Kellam, P. y Otto, T. D. (2015). IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics. 31(14), 2374-2376. https://doi.org/10.1093/bioinformatics/btv120spa
dc.relation.referencesICTV. (2019). Bromoviridae. Recuperado el 20 de enero del 2020 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/251/bromoviridaespa
dc.relation.referencesICTV. (2020). Betaflexiviridae. Recuperado el 14 septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/241/betaflexiviridaespa
dc.relation.referencesICTV. (2018). Closteroviridae. Recuperado el 21 de enero de 2020 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/255/closteroviridaespa
dc.relation.referencesICTV. (2020). Caulimoviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_9th_report/reverse-transcribing-dna-and-rna-viruses-2011/w/rt_viruses/153/caulimoviridaespa
dc.relation.referencesICTV. (2018). Geminiviridae. Recuperado el 15 de abril de 2020 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/w/geminiviridaespa
dc.relation.referencesICTV. (2020). Secoviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/secoviridaespa
dc.relation.referencesICTV. (2020). Virgaviridae. Recuperado el 15 de septiembre de 2021 de https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/virgaviridaespa
dc.relation.referencesJain, M., Olsen, H. E., Paten, B. y Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17(1), 239. https://doi.org/10.1186/s13059-016-1103-0spa
dc.relation.referencesJaramillo, J. L. y Zuluaga, J. S. (2015).Cartilla para el manejo integrado de plagas en cultivos de uchuva y gulupa. Secretaría de Agricultura y Desarrollo Rural de Antioquia, Corporación para Investigaciones Biológicas. Medellín, Colombia. http://fedepasifloras.org/es/wp-content/uploads/2018/01/Cartilla-uchuva-y-gulupa_FINAL.pdfspa
dc.relation.referencesJaramillo-Mesa, H. (2017). Análisis del transcriptoma y viroma de Passiflora edulis f. edulis en cultivos de Antioquia utilizando métodos de secuenciación de nueva generación (Tesis de Maestría). Medellín: Facultad de Ciencias, Universidad Nacional de Colombia.spa
dc.relation.referencesJoo-jin, J., Ho-jong, J. y Jeaejong, N. (2014). A Review of Detection Methods for the Plant Viruses. Res Plant Dis. 20, 173-181. http://dx.doi.org/10.5423/RPD.2014.20.3.173spa
dc.relation.referencesKamenova, I. y Adkins, S. (2004). Comparison of Detection Methods for a Novel Tobamovirus Isolated from Florida Hibiscus. Plant Dis. 88(1), 34-40. https://doi.org/10.1094/PDIS.2004.88.1.34spa
dc.relation.referencesKarasev, A. V. y Gray, S. M. (2013). Continuous and emerging challenges of Potato virus Y in potato. Annu Rev Phytopathol. 51, 571-586. https://doi.org/10.1146/annurev-phyto-082712-102332spa
dc.relation.referencesKasibhatla, S., Waman, V., Kale, M. y Kulkarni-Kale, U. (2016). Analysis of Next-generation Sequencing Data in Virology - Opportunities and Challenges. http://dx.doi.org/10.5772/61610spa
dc.relation.referencesKerlan, C. (2006). Potato virus Y. Descriptions of Plant Viruses. Recuperado el 24 de marzo marzo de 2020 de http://www.dpvweb.net/dpv/showdpv.php?dpvno=414spa
dc.relation.referencesKing, A., Adams, M. y Lefkowitz, E. (2011). Family- Betaflexiviridae. King, A., Adams, M., Carstens, E. y Lefkowitz, E. (Ed), Virus Taxonomy. (pp. 920-941). Elsevier Inc.spa
dc.relation.referencesKreuze, J., Hammond, J., Pearson, M., Martelli, G. P., Adams, M. J., Ryu, K. H., Namba, S., Candrese, T. y Vaira, A. M. (2012). Family-Alphaflexiviridae. King, A., Adams, M., Carstens, E., Lefkowitz, E. (Ed), Virus Taxonomy. (pp. 904-919). Elsevier Academic Pressspa
dc.relation.referencesKreuze, J., Vaira, A. M., Mezel, W., Candresse, T., Zavriev, S. K., Hammond, J. y Ryu, H. (2020). ICTV virus taxonomy profile: Alphaflexiviridae. J Gen Virol. 101, 699-700.spa
dc.relation.referencesLaimer, M. y Barba, M. (2011). Elimination of systemic pathogens by thermo‐ therapy, tissue culture, or in vitro micrografting. Hadidi, A., Barba, M., Candresse, T. y Jelkmann, W. (Ed), Virus and Virus-like diseases of pome and stone fruits. (pp. 389-393). APS. 10.1094/9780890545010.065.spa
dc.relation.referencesLe Gall, O., Christian, P., Fauquet, C. M., King, A. M., Knowles, N. J., Nakashima, N., Stanway, G. y Gorbalenya, A. E. (2007). Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol. 153(4), 715-727. https://doi.org/10.1007/s00705-008-0041-xspa
dc.relation.referencesLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Mather, G., Abecasis, G. y Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics. 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352spa
dc.relation.referencesLi, L., Feng, H., Hu, L., Wang, M. y Wang, Q. (2015). Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Annal Appl Biol. 168(1), 142–150. https://doi.org/10.1111/aab.12250spa
dc.relation.referencesLi, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Z, Hang, H., Gan, J., Li, N., Hu, X., Liu, B., Yang, B. y Fan, W. (2012). Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-brujin-graph. Brief Funt Genomics. 11(1), 25-37. https://doi.org/10.1093/bfgp/elr035spa
dc.relation.referencesLima, J. A., Nascimento, A. K, Radaelli, P., Purcifull, D. E. y Al-Moslih, Y. (2012). Serology Applied to Plant Virology. Intech open. https://doi.org/10.5772/38038spa
dc.relation.referencesLim, S. T., Wong, S. M. y Goh, C. J. (1993). Elimination of Cymbidium mosaic virus and Odontoglossum ringspot virus from orchids by meristem culture and thin section culture with chemotherapy. Ann appl. Biol. 122(2), 289-297.spa
dc.relation.referencesLuo, C., Tsementzi, D., Kyrpides, N., Read, T. y Konstantinidis, K. (2012). Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. 7(2), e30087 https://doi.org/10.1371/journal.pone.0030087spa
dc.relation.referencesMarín, M. y Gutiérrez, P. A. (2016). Principios de virología molecular de plantas tropicales. Colombia: Corpoicaspa
dc.relation.referencesMarston, D., McElhinney, L., Ellis, R., Horton, D., Wise, E., Leech, S., David, D., Lamballerie, X. y Fooks, A. R. (2013). Next generation sequencing of viral RNA genomes. BMC Genomics. 14, 444. https://doi.org/10.1186/1471-2164-14-444spa
dc.relation.referencesMartinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E. y Dandekar, A. M. (2015). Advanced methods of plant disease detection. Agron Sustain Dev. 35, 1–25. https://doi.org/10.1007/s13593-014-0246-1spa
dc.relation.referencesMedford, J. (1992). Vegetative Apical Meristems. Plant Cell. 4, 1029–1039.spa
dc.relation.referencesMedina, H., Gutiérrez, P. y Marín, M. (2015). Detección del Potato virus Y (PVY) en tubérculos de papa mediante TAS-ELISA y qRT-PCR en Antioquia (Colombia). Bioagro. 27(2), 83-92.spa
dc.relation.referencesMendoza, J. H., Aida, R. y Millán, P. (2012). Caracterización físico química de la Uchuva (Physalis peruviana) en la región de Silvia Cauca. Biotec Sec Agro. 10(2), 188-196.spa
dc.relation.referencesMontiel-Martinez, O., Pastelín-Solano, M., Ventura-Zapata, E., Castañeda-Castro, O., Gonzalez-Arnao, M. y Guevara-Valencia, M. (2011). Trop Subtrop Agroecosyst13(3), 537-542.spa
dc.relation.referencesMorel, G. y Martin, C. (1952). Guerison de dahlias atteints d’une maladie A virus. C R Acad Sci. 235, 1324-1325.spa
dc.relation.referencesMoury, A. (2010). A new lineage sheds light on the evolutionary history of Potato virus Y. Mol Plant Pathol. 11(1), 161-168. https://doi.org/10.1111/j.1364-3703.2009.00573.xspa
dc.relation.referencesMurat, G., Salih, K., Sina, K., Elmira, M., Yusa, T., Sezai, E. y Kafkas, E. (2016). In vitro propagation of Physalis peruviana (L.) using apical shoot explants. Acta Sci Pol-Hortoru. 15(5), 109-118.spa
dc.relation.referencesNie, X. y Singh, R. (2001). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. J Virol Methods. 91(1), 37-49.spa
dc.relation.referencesOlspert, A., Chung, B. Y., Atkins, J. F., Carr, J. P. y Firth, A. E. (2015). Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep. 16(8), 995-1004. https://doi.org/10.15252/embr.201540509spa
dc.relation.referencesOkali, O., Sumberg, J. y Farrington, J. (1994). Farmer Participatory Research: Rhetoric and Reality. https://doi.org/10.3362/9781780444932spa
dc.relation.referencesO'Herlihy, E. A, Croke, J. T. y Cassells, A. C. (2003). Influence of in vitro factors on titre and elimination of model fruit tree viruses. Plant Cell Tiss Org. 72(1), 33-42. https://doi.org/10.1023/A%3A1021260202876spa
dc.relation.referencesPacheco, R. y Salamanca, R. (2010). Propagación de especies nativas de la región andina. Bogotá: Jardín botanico de Bogota Jose Celestino Mutís.spa
dc.relation.referencesPanattoni, A., Luvisi, A. y Triolo, E. (2013). Review: Elimination of viruses in plants: twenty years of progress. Span J Agric Res. 11(1), 173–188. http://dx.doi.org/10.5424/sjar/2013111-3201spa
dc.relation.referencesPeña, H., Vázquez-Juárez, R., Mejia, H. y Garzon-Tiznado, J. (2004). Geminivirus en Tomate (Lycopersicon esculentum Mill.) y Rango de Hospedantes en Baja California Sur, México. Rev Mex Fitopatol. 22(1),107-116.spa
dc.relation.referencesPerea, M. y Fischer, G. (2010). Uchuva Physalis peruviana L. (Solanaceae). Perea, M., Matallana, L. P., Tirado, A., (Ed). Biotecnología aplicada al mejoramiento de los cultivos de frutales tropicales. Bogotá: Universidad Nacional de Colombia. (pp. 466-490).spa
dc.relation.referencesPlant List. (2013). The Plant list a workinglist of all plants species. Recuperado el 18 de enero de 2020 de http://www.theplantlist.org/tpl1.1/search?q=physalisspa
dc.relation.referencesPorter, K. G. y Kuehnle, A. R. (1997). Using Dithiouracil and Ribavirin to eliminate Cymbidium mosaic virus during micropropagation of ‘Uniwai mist’ Dendrobium orchid. HortTechnology. 7, 161-164. https://doi.org/10.21273/HORTTECH.7.2.161spa
dc.relation.referencesPrakash, O., Misra, A. K., Singh, S. J. y Srivastava, K. M. (1988). Isolation, purification and electron microscopy of mosaic virus of cape gooseberry. Int J Trop Plant Diseases. 6(1), 85-87.spa
dc.relation.referencesProexport. (2018). Informe frutas exóticas, mermeladas y frutas deshidratadas. Recuperado el 10 de noviembre de 2019 de http://antiguo.proexport.com.co/vbecontent/library/documents/DocNewsNo10050Dspa
dc.relation.referencesProColombia. (2021). Aumentan los pedidos de frutas colombianas en Europa. Recuperado el 15 de septiembre de 2021 de https://procolombia.co/noticias/aumentan-los-pedidos-de-frutas-colombianas-en-europaspa
dc.relation.referencesPurcifull, D. E., Hiebert, E., Petersen, M. y Webb, S. (2001). Virus detection – Serology. Maloy, O. C., Murray, T. D., (Ed). Encyclopedia of Plant Pathology. (pp. 1100-1109). John Wiley & Sons Inc.spa
dc.relation.referencesQiaochun, W. y Valkonen, J. P. (2009). Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci. 14(3), 119-122. https://doi.org/10.1016/j.tplants.2008.11.010spa
dc.relation.referencesQuenouille, J., Vassilakos, N. y Moury, B. (2013). Potato virus Y: A major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Mol Plant Pathol. 14(5), 439-452. https://doi.org/10.1111/mpp.12024spa
dc.relation.referencesQuinche, R. C. (2009). Aplicación de tiempos y movimientos a la distribución física internacinal (DFI) de uchuva con destino a Holanda vía marítima. Bogotá: Universidad de la Salle Recupera el 15 de abril del 2020 de https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1089&context=administracion_agronegociosspa
dc.relation.referencesRadford, A. D, Chapman, D., Dixon, L., Chantrey, J., Darby, A. C. y Hall, N. (2012). Application of next-generation sequencing technologies in virology. J Gen Virol. 93(9),1853-1868. https://doi.org/10.1099/vir.0.043182-0spa
dc.relation.referencesRaven P, Evert R, Eicchorn S. Biology of plants. 6 ed. New York: Freeman and Company Worth Publishers;1999.spa
dc.relation.referencesRojas, M., Gilbertson, R., Russell, D. R., Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis. 77(4), 340-347. http://dx.doi.org/10.1094/PD-77-0340spa
dc.relation.referencesRoumagnac, P., Granier, M.m Bernardo, P., Maëlle, D., Ferdinand, R., Galzi, S., Fernandez, E., Julian, C., Abt, I. Filloux, D, Mesléard, F., Varsani, A., Blanc, S., Martin, D. P. y Peterschmitt, M. (2015). Alfalfa leaf curl virus: An Aphid -transmitted Geminivirus. J Virol. 86(18), 9683-9688. https://doi.org/10.1128/jvi.00453-15spa
dc.relation.referencesRuby, J., Bellare, P. y Derisi, J. (2013). Price: software for the targeted assembly of components of (Meta) genomic sequence data. G3 (Bethesda). 3(5), 865-880. https://doi.org/10.1534/g3.113.005967spa
dc.relation.referencesRuíz, X. (2009). Desarrollo de estrategias para la obtención de material de siembra de lulo (Solanum quitoense L.) (Trabajo de grado). Popayán: Facultad Ciencias Agropecuarias, Universidad del Cauca.spa
dc.relation.referencesSalamon, P. y Palkovics, L. (2005). Occurrence of Colombia Datura Virus in Brugmansia Hybrids, Physalis peruviana L. and Solanum muricatum AIT in Hungary. Acta Virol. 49(2), 117-122.spa
dc.relation.referencesSandhu, A., Singh, S., Minhas, P. y Grewal, G. (1989). Rhizogenesis of Shoot Cuttings of Raspberry (Physalis Peruviana L.). Indian J Hortic. 46(3), 376-378.spa
dc.relation.referencesSanger, F., Brownlee, G. y Barrell, B. (1965). A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 13(2), 373-398. https://doi.org/10.1016/S0022-2836(65)80104-8spa
dc.relation.referencesScholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., saunders, K., Candresse, T., Alquist, P., Hemenway, C. y Foster, G. (2011). Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol. 12(9), 938-954. https://doi.org/10.1111/j.1364-3703.2011.00752.xspa
dc.relation.referencesSchulze, S. y Kluge, S. (1994). The mode of inhibition of TMV and PVX-induced RNA-dependent RNA polymerase by some antiphytoviral drugs. J Phytopathol. 141, 77–85.spa
dc.relation.referencesShamsadden-Saeed, F., Massumi, H., Moradi, S., Maddahian, M., Heydarnejad, J., Pour, A. H. y Varsani, A. (2014). Incidence and characterization of Potato virus V infections in Iran. Virus Dis. 25(1), 78-84. https://doi.org/10.1007/s13337-013-0178-4spa
dc.relation.referencesSimpkins, I., Walkey, D. G. A. y Neely, H. A. (1981). Chemical suppression of virus in cultured plant tissues. Ann Appl Biol. 99, 161-169.spa
dc.relation.referencesSingh, R., Valkonen, J., Gray, S., Boonham, N., Jones, R., Kerlan, C. y Schubert, J. (2007). Discussion paper: The naming of Potato virus Y strains infecting potato. Archi Virol. 153, 1-13. https://doi.org/10.1007/s00705-007-1059-1spa
dc.relation.referencesSkiada, F., Grigoriadou, K., Maliogka, V., Katis, N. y Eleftheriou, E. (2009). Elimination of Grapevine leafroll associated virus 1 and Grapevine Rupestris pitting‐associated virus from grapevine cv. Agiorgitiko and a micropropagation of protocol for mass production of virus-free plantlets. J Plant Pathol. 91(1), 177-184. 10.4454/jpp.v91i1.639spa
dc.relation.referencesSmith, G. R., Fletcher, J. D., Marroni, V., Kean, J. M., Stringer, L. D. y Vereijssen, J. (2017). Plant pathogen eradication: determinants of successful programs. Australasian Plant Pathol. 46, 277-284. http://dx.doi.org/10.1007/s13313-017-0489-9spa
dc.relation.referencesSohn, J. y Nam, J. (2018). The present and future de novo whole-genome assembly. Brief Bioinform. 19(1), 23-40. https://doi.org/10.1093/bib/bbw096spa
dc.relation.referencesSrivastava, L. M. (2002). Abscisic Acid. Srivastava, L. M. (Ed), Plant Growth and Development: Hormones and Environment (pp. 217-231). Department of Biological Sciences, Simon Fraser University, Burnay, British Columbia, Canada.spa
dc.relation.referencesThompson, J., Dasgupta, I., Fuchs, M., Iwanami, T., Karasev, A., Petrzik, K ., Sanfaçon, H.,Tzanetakis, I.,Van der glut, R., Wetzel, T., Yoshiwaka, N. e ICTV Report Consortium. (2017). Perfil de taxonomía de virus ICTV: Secoviridae . J Gen Virol. 529-531. https://doi.org/10.1099/jgv.0.000779spa
dc.relation.referencesThompson, J. R., Kamath, N. y Perry, K. L. (2014). An Evolutionary Analysis of the Secoviridae Family of Viruses. PLoS One. 9(9). https://doi.org/10.1371/journal.pone.0106305spa
dc.relation.referencesToussaint, A., Kummert, J., Maroquin, C., Lebrun, A. y Roggemans, J. (1993). Use of Virazole® to eradicate Odontoglossum ringspot virus from in vitro cultures of Cymbidium Sw. Plant Cell, Tissue an Organ Culture. 32(3), 303-309. https://doi.org/10.1007/BF00042293spa
dc.relation.referencesTrenado, H., Fortes, I., Louro, D. y Navas‐Castillo, J. (2007). Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur J Plant Pathol. 118, 193-196. https://doi.org/10.1007/s10658-007-9129-5spa
dc.relation.referencesUgarte, C., Villarroel, C., Aguirre, G. y State, M. (2016). Capítulo 6: Medios de cultivo. Aguirre, G., Pierre, J. y Ligue, L. (Ed), Aplicación del cultivo de tejidos en la multiplicación y conservación de los recursos fitogenéticos de Cochambamba (pp. 77-88). Bolivia: Universidad Mayor de San Simón.spa
dc.relation.referencesVallejo, D., Gutiérrez, P. A. y Marín, M. (2016). Genome characterization of a Potato virus S (PVS) variant from tuber sprouts of Solanum phureja Juz. et Buk. Agron Colomb. 34, 51-60.spa
dc.relation.referencesValli, A., López-Moya, J. y García, J. (2007). Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol. 88(3), 1016-1028.spa
dc.relation.referencesValverde, R., Nameth, S. y Jordan, R. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis. 74(93), 255-258spa
dc.relation.referencesVerhoeven, J., Botermans, M., Roenhorst, J., Westerhof, J. y Meekes, E. (2009). First Report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) from Turkey and Germany. Plant Disease. 93, 316. https://doi.org/10.1094/PDIS-93-3-0316Aspa
dc.relation.referencesWan, Y., Renner, D., Albert, I. y Szpara, M. (2015). VirAmp: a galaxy-based viral genome assembly pipeline. Gigascience. 28(4),19. Doi: https://doi.org/10.1186/s13742-015-0060-yspa
dc.relation.referencesWang, Q., Mawassi, M., Li, P., Gafny, R., Sela, I. y Tanne, E. (2003). Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci. 165(2), 321-327. https://doi.org/10.1016/S0168-9452(03)00091-8spa
dc.relation.referencesWang, Q. y Valkonen, J. (2008). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J Virol Methods. 154(1-2), 135-145. https://doi.org/10.1016/j.jviromet.2008.08.006spa
dc.relation.referencesWang, Q., Cuellar, W., Rajamäki, M., Hirata, Y. y Valkonen, J. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol. 9(2), 237-250. https://bsppjournals.onlinelibrary.wiley.com/journal/13643703spa
dc.relation.referencesWang Q, Panis B, Engelmann F, Lambardi M, Valkonen J. Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation.Trends Plant Sci. 2009;14(3):351-363. Doi: 10.1016/j.tplants.2008.11.010.spa
dc.relation.referencesWang, M. R., Chen, L., Hamborg, Z. y Blystad, D. R. (2018). Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species. Loyola-Vargas, V., Ochoa-Alejo, N. (Ed), Plant Cell Culture Protocols. (Vol. 1815, pp. 257-268). Methods Mol Biol. https://doi.org/10.1007/978-1-4939-8594-4_17spa
dc.relation.referencesWang, M. R., Cui, Z. H., Li, J. W., Hao, X. Y., Zhao, L. y Wang, Q. C. (2018). In vitro thermotherapy-based methods for plant virus eradication. Plants Method. 14(87). https://doi.org/10.1186/s13007-018-0355-yspa
dc.relation.referencesWard, L., Tang, J., Veerakone, S., Quinn, B., Harper, S., Delmiglio, C. y Clover, G. R. (2010). First Report of Potato spindle tuber viroid in Cape Gooseberry (Physalis peruviana) in New Zealand. Plant Dis. 94(4), 479. https://doi.org/10.1094/pdis-94-4-0479aspa
dc.relation.referencesWetzel, T., Candresse, T., Macquaire, G., Ravelonandro, M. y Dunez, J. (1992). A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J Virol Methods. 39(1-2), 27-37. https://doi.org/10.1016/0166-0934(92)90122-Tspa
dc.relation.referencesWyatt, S. D. y Brown, J.K. (1996). Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology. 86, 1288-1293. Tspa
dc.relation.referencesWylie, S., Adams, M., Chalam, C., Kreuze, J., López-Moya, J., Ohshima, K., et al. ICTV Virus Taxonomy Profile: Potyviridae. J Gen Virol. 2017;98(3):352-354. https://doi.org/10.1099/jgv.0.000740spa
dc.relation.referencesXi, Z., Zhang, R., Yu, Z. y Ouyang, D. (2006). The interaction between tylophorine B and TMV next term RNA. Bioorg Med Chem Lett. 16, 4300-4304.spa
dc.relation.referencesXia, Y., Fan, Z., Yao, J., Liao, Q., Li, W., Qua, F. y Peng, L. (2006). Discovery of bitriazolyl compounds as novel antiviral candidates for combating the Tobacco mosaic virus. Bioorg Med Chem Lett. 16, 2693-2698.spa
dc.relation.referencesYang, X., Charlebois, P., Gnerre, S., Coole, M., Lennon, N., Levin, J., Qu, J., Ryan, E. M., Zody, M. C. y Henn, M. R. (2012). De novo assembly of highly diverse viral populations. BMC Genomics. 13(1), 475. https://doi.org/10.1186/1471-2164-13-475spa
dc.relation.referencesYang, X., Charlebois, P., Macalalad, A., Henn, M. y Zody, M. (2013). V-Phaser 2: variant inference for viral populations. BMC Genomics. 14(674). https://doi.org/10.1186/1471-2164-14-674spa
dc.relation.referencesZapata, C., Creighton, M. y Smith, R. (1995). An in vitro procedure to eradicate Potato viruses X, Y, and S from Russet Norkotah and two of its strains. In Vitro Cellular & Developmental Biology. Plant. 31(3), 153-159.spa
dc.relation.referencesZapata, J. L., Saldarriaga, A., Londoño, M. y Díaz, C. (2002). Manejo del cultivo de la uchuva en Colombia. Corpoica.spa
dc.relation.referencesZerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P, Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P. y Varsani, A. (2017). ICTV virus Taxonomy profile: Geminiviridae. J Gen Virol. 98, 131-133. https://doi.org/10.1099/jgv.0.000738spa
dc.relation.referencesZerbino, D. y Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using Brujin graphs. Genome Res. 18(5), 821-829. https://dx.doi.org/10.1101%2Fgr.074492.107spa
dc.relation.referencesZhao, G., Krishnamuth, S., Cai, Z. y Popov, V. L., Travassos da Rosa, A. P., Guzman, H.,Cao, S.,Viirgin, H. W.,Tesh, R. B. y Wang, D. (2013). Identification of novel viruses using VirusHunter –an automated data analysis pipeline. PlosOne. 8, e78470. https://doi.org/10.1371/journal.pone.0078470spa
dc.relation.referencesZhao, G., Wu, G., Lim, E. S., Droit, L., Krishnamuthy, S., Barouch, D. H., Virgin, H. W. y Wang, D. (2017). VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology. 503, 1-30. https://doi.org/10.1016/j.virol.2017.01.005spa
dc.relation.referencesTamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9(4): 678-687. https://10.1093/oxfordjournals.molbev.a040752spa
dc.relation.referencesZapata, J.L., A. Saldarriaga, M. Londoño, C. Díaz. 2005. Las enfermedades limitantes en cultivo y poscosecha de la uchuva y su control. pp. 97-110. In: Fischer, G., D. Miranda, W. Piedrahita, J. Romero (eds.). Avances en cultivo, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colombia. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesSavi, A., E. Silva, S. Campos, C. Bolson, T. Vinícius, A. Nhani, A. Bogo, R. Trezzi, F. Nascimento. 2021. Near-complete genome sequence and seed transmission evaluation of Physalis rugose mosaic virus from southern Brazil. Ciencia Rural 51(4): 1-8. https:// 10.1590/0103-8478cr20200702spa
dc.relation.referencesSastry, K.S. 2013. Seed-borne plant virus diseases. Springer, New Delhi. 349 p.spa
dc.relation.referencesSaitou, N., M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406–425. https://10.1093/oxfordjournals.molbev.a040454spa
dc.relation.referencesProcolombia. 2020. Uchuva (Goldenberry). https://docs.procolombia.co/int-procolombia/es/exportaciones/ficha_uchuva_final.pdf (accessed 20 October 2020)spa
dc.relation.referencesPallas, V., F. Aparicio, M.C. Herranz, K. Amari, M.A. Sanchez-Pina, A. Myrta, J.A. Sanchez-Navarro. 2012. Ilarviruses of Prunus spp.: a continued concern for fruit trees. Phytopathology 102(12): 1108-20. https://10.1094/PHYTO-02-12-0023-RVWspa
dc.relation.referencesMuñoz, D., P. Gutiérrez, M. Marín. 2016. Detection and genome characterization of Potato virus Y isolates infecting potato (Solanum tuberosum L.) in La Union Antioquia, Colombia. Agronomía Colombiana 34(3): 317-328. https://dx.doi.org/10.15446/agron.colomb.v34n3.59014spa
dc.relation.referencesMohamed, E.F. 2010. Interaction between some viruses which attack tomato (Lycopersicon esculentum Mill.) plants and their effect on growth and yield of tomato plants. Journal of American Science 6(8): 311-320.spa
dc.relation.referencesMistry, J., S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson, R.D. Finn, A. Bateman. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1): D412-D419. https://doi.org/10.1093/nar/gkaa913spa
dc.relation.referencesKumar, S., G. Stecher, M. Li, C. Knyaz, K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. https://doi: 10.1093/molbev/msy096.spa
dc.relation.referencesKreuze, J., A.M. Vaira, W. Menzel, T. Candresse, S. Zavriev, J. Hammond, H. Ryu. 2020. Report Consortium I ICTV Virus Taxonomy Profile: Alphaflexiviridae. Journal of General Virology 101(7): 699-700. https://10.1099/jgv.0.001436spa
dc.relation.referencesKitajima, E.W. 2020. An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica 20(2): e20190932. https://doi.org/10.1590/1676-0611-BN-2019-0932.spa
dc.relation.referencesJohansen, E., M.C. Edwards, R.O. Hampton. 1994. Seed transmission of viruses: Current Perspectives. Annual Review of Phytopathology 32: 363-386.spa
dc.relation.referencesHameed, A., Z. Iqbal, S. Asad, S. Mansoor. 2014. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. Plant Pathology Journal 30(4): 407–415. https://doi.org/10.5423/PPJ.OA.05.2014.0039spa
dc.relation.referencesGutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo, M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604. https://doi.org/10.1016/j.pmpp.2021.101604spa
dc.relation.referencesGutiérrez, P., H.J. Mesa, M. Marín. 2016. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja, Acta Virologica 60(1): 49–54. https://doi.org/10.4149/av_2016_01_49.spa
dc.relation.referencesGutiérrez, P.A., J.F. Alzate, M.M. Montoya. 2015. Complete genome sequence of an isolate of Potato virus X (PVX) infecting cape gooseberry (Physalis peruviana) in Colombia. Virus Genes 50(3): 518-522. https://10.1007/s11262-015-1181-1spa
dc.relation.referencesGutiérrez, P.A., J.F. Alzate, M.A. Marín-Montoya. 2013. Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology 158: 2205–2208. https://doi.org/10.1007/s00705-013-1730-7.spa
dc.relation.referencesGómez, J.E., F. Morales, J. Arroyave. 1997. Mosaic disease of Physalis peruviana in Colombia. ASCOLFI Informa. 23:52.spa
dc.relation.referencesGarcía, A. 2021. Prevalence of RNA viruses in certified, and informal potato seed tubers in the province of Antioquia (Colombia). MSc thesis Biotechnology. Universidad Nacional de Colombia sede Medellín.spa
dc.relation.referencesGallo, Y., M. Marín, P.A. Gutiérrez. 2021. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiological and Molecular Plant Pathology 113: 101570. https://10.1016/j.pmpp.2020.101570spa
dc.relation.referencesFuchs, M., C. Schmitt-Keichinger, H. Sanfaçon. 2017. A renaissance in Nepovirus research provides new insights into their molecular interface with hosts and vectors. Advances in Virus Research 97: 61-105. doi: 10.1016/bs.aivir.2016.08.009spa
dc.relation.referencesFerriol, I., M. Vallino, M. Ciuffo, J.C. Nigg, E.J. Zamora-Macorra, B.W. Falk, M. Turina. 2018. The Torradovirus-specific RNA2-ORF1 protein is necessary for plant systemic infection. Molecular Plant Pathology 19(6): 1319-1331. https://10.1111/mpp.12615spa
dc.relation.referencesFariña, A.E., E.S. Gorayeb, V.M. Camelo-García, J. Bonin, T. Nagata, J.M.F. Silva, A. Bogo, J.A.M. Rezende, F.N. da Silva, E.W. Kitajima. 2019. Molecular and biological characterization of a putative new sobemovirus infecting Physalis peruviana. Archives of Virology 164(11): 2805–2810. https://10.1007/s00705-019-04374-yspa
dc.relation.referencesEdgar, R.C., R.M. Drive, M. Valley. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.spa
dc.relation.referencesDaza, P.A., P.A. Rodríguez. 2006. Enfermedades de origen viral en plantas de uchuva (Physalis peruviana L.) en el Departamento de Cundinamarca. Biology Thesis. Pontificia Universidad Javeriana, Bogotá, Colombia.spa
dc.relation.referencesCutler, J., J. Langer, S. Von Bargen, O. Acosta-Losada, F. Casierra-Posada, A. Castañeda-Cárdenas, M. Betancourt-Vásquez, W. Cuellar, E. Arvydas-Stasiukynas, D. Altenbach, C. Büttner. 2018. Preliminary evaluation of associated viruses in production systems of cape gooseberry, purple passion fruit, and rose. Revista Colombiana de Ciencias Hortícolas 12(2): 390-396. https://10.17584/rcch.2018v12i2.7799spa
dc.relation.referencesBushmanova, E., D. Antipov, A. Lapidus, A.D. Prjibelski. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data, GigaScience 8(9): 1-13. https://doi.org/10.1093/gigascience/giz100spa
dc.relation.referencesBarker, H., M.F.B. Dale. 2006. Resistance to Viruses in Potato. In: Loebenstein G., J.P. Carr (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_15spa
dc.relation.referencesÁlvarez, D., P. Gutiérrez-Sánchez, M. Marín-Montoya. 2017. Genome sequencing of Potato yellow vein virus (PYVV) and development of a molecular test for its detection. Bioagro 29: 3–14.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocLa uchuva (Physalis peruviana L.)
dc.subject.armarcLa uchuva - Enfermedades y plagas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembCultivo de tejidos vegetales
dc.subject.proposalCultivo de tejidos vegetales in vitrospa
dc.subject.proposalDetección viralspa
dc.subject.proposalRT-qPCRother
dc.subject.proposalSecuenciación de masiva de alto rendimientospa
dc.subject.proposalSolanaceaeother
dc.subject.proposalHigh-throughput sequencingeng
dc.subject.proposalthermotherapyeng
dc.subject.proposalviral detectioneng
dc.subject.proposalQuimioterapiaspa
dc.subject.proposalTermoterapiaspa
dc.subject.proposalChemotherapyeng
dc.subject.proposalPlant in vitro Cultureeng
dc.titleCaracterización genómica de los virus que infectan los cultivos de uchuva (Physalis peruviana) en Antioquia para el apoyo de los programas de certificación de semillaspa
dc.title.translatedGenome characterization of viruses infecting cape gooseberry (Physalis peruviana) in Antioquia as support for seed certification programseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110571619.2022.pdf
Tamaño:
21.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: