Variación demográfica de aves insectívoras del sotobosque en relación con la calidad del hábitat en un bosque seco tropical

dc.contributor.advisorMontenegro Díaz, Olga L.spa
dc.contributor.authorLoaiza Gómez, Camilospa
dc.contributor.researchgroupGrupo en conservación y manejo de vida silvestrespa
dc.date.accessioned2020-12-14T17:55:01Zspa
dc.date.available2020-12-14T17:55:01Zspa
dc.date.issued2020-12-14spa
dc.description.abstractPopulation assessments, as well as habitat quality estimations at threatened ecosystems such as tropical dry forest, are important elements for understanding species biology, and represent information sources for improvement of decision making in management and conservation, especially during ecological restoration processes. These processes should consider not only rare, endemic or endangered species, but also common or generalist species, as they can also show sensitivity to disturbances. The remnant of tropical dry forest located along the El Quimbo hydroelectric project, in the department of Huila in Colombia, still houses an important biological diversity that is being conserved through restoration practices. I made an analysis of abundance, spatially explicit habitat quality and plant architecture across a gradient of disturbance of a tropical dry forest relict for three insectivorous bird species: White-bellied Antbird (Myrmeciza longipes), Barred Antshrike (Thamnophilus doliatus) and Pale-breasted Spinetail (Synallaxis albescens). Abundance, habitat quality assessments, and plant architectural analysis were made between June 2018 and June 2019 at 186 count points that worked also as plots for habitat variables measurement. I divided the area in three zones according to their conservation status and adjusted Generalized Linear Models (GLM) to evaluate associations among the microhabitat and landscape variables; and abundance. For habitat quality surveys I used a Habitat Suitability Index (HSI) for each one of the three species, and I made it spatially explicit. For defining plant architectural models, dominant vegetal species were recorded in each plot, then they were photographed and finally their models were identified by mean of a synoptic key based on an architectural analysis available for tropical trees and forests. Results showed that abundance of the three bird species varied according to cover type. The White-bellied Antbird had higher abundance in forests and thickets than in shrublands fragments, Barred Antshrike was more abundant in shrubland and thicket than in forest fragments, and Pale-breasted Spinetail had the highest abundance in shrubland and the lowest in forest fragments. The abundance of both White-bellied Antbird and Pale-breasted Spinetail did not differ among zones with different levels of disturbance, while the abundance of Barred Antshrike decreased in zones with more disturbance. Through the habitat quality assessment, I identified that for the White-bellied Antbird 38.44% (IC95% 34.05 – 42.98) of the study area available habitat represented low quality (which means the area did not have the environmental resources for maintenance of individuals), associated with fragments of shrublands and thickets. Accordingly, I propose as restoration focus in those sites, in order to increase vegetal structures of the understory for foraging, vegetal cover as refuge against predators and adverse climate, and understory forks for nests support and construction. For the Barred Antshrike 39.91% (IC95% 35.48–44.47) of the study area represented low habitat quality in sites with low shrubland cover. Through White-bellied Antbird’s habitat restoration process, improving vegetal structure for shrubland fragments and thicket fragments and increasing the shrubland fragments area, would beneficiate Barred Antshrike’s habitat. By the architectural analysis, we detected seven of the 23 proposed models for tropical woody plants, which were assigned into three broad groups depending on the habitat quality and the resources they offer. In addition, we compelled a list of 42 plant species present at the study area and their corresponded architectural model as an input for selection of plant species in restoration.spa
dc.description.abstractLas evaluaciones poblacionales, así como las estimaciones de calidad de hábitat en ecosistemas amenazados como el bosque seco tropical, resultan en elementos importantes para el entendimiento de la biología de las especies y la mejora en la toma de decisiones de manejo y conservación, especialmente durante un proceso de restauración ecológica. Estos procesos deben considerar no solo especies raras, endémicas o en peligro, sino también especies comunes o generalistas, pues también pueden mostrar sensibilidad a los disturbios. El relicto de bosque seco tropical localizado a lo largo de la hidroeléctrica El Quimbo, en el departamento del Huila en Colombia, alberga aún una importante diversidad biológica que se busca conservar a través de procesos de restauración. En esta investigación realicé un análisis de abundancia, calidad de hábitat y arquitectura de las plantas para tres especies de aves en el relicto de bosque seco ubicado a lo largo de la hidroeléctrica del Quimbo, el cual exhibe un gradiente de perturbación. Las especies evaluadas fueron tres aves insectívoras: el hormiguero ventriblanco (Myrmeciza longipes), el batará rayado (Thamnophilus doliatus) y el pijuí pechiblanco (Synallaxis albescens). La evaluación de abundancia de estas aves, la calidad de hábitat y el análisis de la arquitectura de las plantas la realicé entre junio del 2018 y junio del 2019 en 186 puntos de conteo que también fueron utilizados como parcelas para medición de variables de hábitat. Dividí el área en tres zonas de acuerdo con su estado de conservación y ajusté Modelos Lineales Generalizados (GLM, por sus siglas en inglés) con el fin de evaluar las relaciones entre la abundancia y las variables de microhábitat y del paisaje. Para la evaluación de la calidad de hábitat en el área de estudio utilicé un índice de Adecuabilidad de Hábitat (HSI por sus siglas en inglés), para cada una de las tres especies de aves y lo hice espacialmente explícito. Para la definir los modelos arquitectónicos de las plantas, se registraron las especies vegetales dominantes en cada parcela, se fotografiaron y finalmente se identificó su modelo por medio de una clave sinóptica basada en un análisis de arquitectura disponible para árboles y bosques tropicales. Los resultados mostraron que la abundancia de las tres especies de aves varió según el tipo de cobertura. El hormiguero ventriblanco tuvo mayor abundancia en fragmentos de bosques y matorrales que en fragmentos de arbustales, el batará rayado fue más abundante en fragmentos de arbustales y matorrales que en fragmentos de bosque, y el pijuí pechiblanco tuvo su mayor abundancia en fragmentos de arbustales y su menor abundancia en fragmentos de bosque. La abundancia del hormiguero ventriblanco y el pijuí pechiblanco no se diferenció entre las zonas con diferente nivel de disturbio, mientras que la abundancia del batará rayado fue menor en zonas con mayor disturbio. En la evaluación de calidad de hábitat Identifiqué que para el hormiguero pechiblanco el 38.44% (IC95% 34.05 – 42.98) del hábitat disponible en el área de estudio presentó baja calidad (lo que significa que el área no tiene los recursos ambientales suficientes para el mantenimiento de poblaciones e individuos de la especie), y corresponde a fragmentos de arbustales y matorrales. Por lo tanto, propongo estos sitios como foco de procesos de restauración, con el fin de incrementar en ellos estructura del sotobosque para el forrajeo, cobertura vegetal para refugio contra predadores y el clima adverso, y horquetas en el sotobosque para el soporte y construcción de nidos. Para El batará rayado el 39.91% (IC95% 35.48–44.47) del área de estudio presentó mala calidad en sitios caracterizados por baja cobertura de arbustales. A través del proceso de restauración para el hormiguero pechiblanco, la rehabilitación de la estructura de la vegetación de fragmentos de arbustal y matorral y el incremento del área de fragmentos de arbustal, beneficiaría también el hábitat del batará rayado. Con el análisis de arquitectura se detectaron siete de los 23 modelos propuestos para plantas leñosas tropicales; los cuales se agruparon en tres grandes grupos según la calidad de hábitat y recursos que ofrecen para las aves. Además, se presenta un listado con 42 especies de plantas presentes en el área de estudio y su modelo arquitectónico correspondiente, como insumo para la selección de especies vegetales en la restauración.spa
dc.description.additionalLínea de Investigación: Conservación y Manejo de Vida Silvestrespa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipMincienciasspa
dc.format.extent118spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78711
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAkcakaya, H. R.,Burgman, M. A., & Ginzburg, L. R. (1999). Applied population ecology: principles and computer exercises using RAMAS EcoLab 2.0. Second Edition. Sinuar Associates, Inc. Sunderland Massachusetts USA.spa
dc.relation.referencesAkresh, M. E., King, D. I., & Brooks, R. T. (2015). Demographic response of a shrubland bird to habitat creation, succession, and disturbance in a dynamic landscape. For. Ecol. Manage. 336, 72–80.spa
dc.relation.referencesAndriolo, A., Piovezan, U., Da Costa, M. J. R. P., Torres, H. A., Vogliotti, A., Zerbini, A. N., & Duarte, J. M. B. (2013). Severe population decline of marsh deer, blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zoologia 30, 630–638.spa
dc.relation.referencesArcGIS [software GIS]. (2010). Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc.spa
dc.relation.referencesBarrance, A., Schreckenberg, K., & Gordon, J. (2009). Conservación mediante el uso: Lecciones aprendidas en el bosque seco tropical mesoamericano. (A. Barrance, K. Schreckenberg, & J. Gordon, Eds.). Londres: Overseas Development Institute.spa
dc.relation.referencesBenedict, M., & McMahon, E. (2002). Green infrastructure: smart conservation for the 21st century. Renew. Resour. 12–18.spa
dc.relation.referencesBlock, W. M., & Brennan, L. A. (1993). The habitat concept in ornithology: theory and applications. Curr. Ornithol. 11, 35–91.spa
dc.relation.referencesBurnham, K. P., & Anderson, D.R.(2002). Model selection and multi- model inference: a practical information-theoretic approach. Second edition. Springer, New York, New York, USA.spa
dc.relation.referencesBuxton, P. A. (1932). Terrestrial Insects and the Humidity of the Environment. Biol. Rev. 7, 275–320.spa
dc.relation.referencesCanaday, C. (1997). Loss of insectivorous birds along a gradient of human impact in amazonia. Biol. Conserv. 77, 63–77.spa
dc.relation.referencesCarvajal-cogollo, J. E., & Urbina-Cardona, J. N. (2008). Patrones De Diversidad Y Composición De Reptiles En Fragmentos De Bosque Seco Tropical En Córdoba, Colombia. Trop. Conserv. Sci. 1, 397–416.spa
dc.relation.referencesCastaño-Villa, G. J., Ramos-Valencia, S. A., & Fontúrbel, F. E. (2014). Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecologica. 61,19–23.spa
dc.relation.referencesCastaño-Villa, G. J., Santisteban-Arenas, R., Hoyos-Jaramillo, A., Estévez-Varón, JV. (2019). Fontúrbel FE. Foraging behavioural traits of tropical insectivorous birds lead to dissimilar communities in contrasting forest habitats. Wildlife Biol. 1, 1–6.spa
dc.relation.referencesChandler, R. B., & King, D. I. (2011). Habitat quality and habitat selection of golden-winged warblers in Costa Rica: An application of hierarchical models for open populations. J. Appl. Ecol. 48, 1038–1047.spa
dc.relation.referencesChidi B., E., Ebenezer I., M., & Kenneth U., E. (2015). Tree Crown Architecture : Approach to Tree Form , Structure and Performance : A Review. Int. J. Sci. Res. Publ. 5, 1–6.spa
dc.relation.referencesCosson, J. F., Ringuet, S., Claessens, O., De Massary, J. C., Dalecky, A., Villiers, J. F., Granjon, L., & Pons, J. M. (1999). Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol. Conserv. 91, 213–222.spa
dc.relation.referencesDi Giacomo, A. G. (1998). Nidificación de Thamnophilus doliatus en Argentina. El Hornero, 015 (01), 053–057.spa
dc.relation.referencesDiGiovanni, A., & Pollock, H.S. (2018). White-bellied Antbird (Myrmeciza longipes), In Neotropical Birds Online (T. S. Schulenberg, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA. retrieved from Neotropical Birds Online: https://neotropical.birds.cornell.edu/Species-Account/nb/species/whbant1spa
dc.relation.referencesEdwards, E. (1983). A broad-scale structural classification of vegetation for practical purposes. Bothalia 14, 705–712.spa
dc.relation.referencesErdas. (2005). ERDAS Field Guide. ERDAS Imagine de Leica Geosystems. Version 10.0. Buford Highway NE, Suite 400, Atlanta, GA. 2010.spa
dc.relation.referencesFearnside, P. M. (2014). Análisis de los principales proyectos hidro-energéticos en la región amazónicaspa
dc.relation.referencesFish and Wildlife Service US. (1981). Standars for the Development of Habitat Suitability Index Models. Washington D.C.: U.S. Fish and Wildlife Service.spa
dc.relation.referencesFranklin, A. B., Anderson, D. R., R.J., G., & Burnham, K. P. (2000). Climate , Habitat Quality , and Fitness in Northern Spotted Owl Populations in Northwestern California. Ecol. Monogr. 70, 539–590.spa
dc.relation.referencesGaitán García, C. D. (2013). Temporada reproductiva y densidad poblacional en tres especies de aves de la familia Thamnophilidae del bosque seco tropical en el departamento del Tolima. Universidad del Tolima.spa
dc.relation.referencesGillies, C. S., & St Clair, C. C. (2010). Functional responses in habitat selection by tropical birds moving through fragmented forest. J. Anim. Ecol. 47, 182–190.spa
dc.relation.referencesGotelli, N. J. (2001). A Primer of Ecology. (N. J. Gotelli, Ed.)J. Anim. Ecol. Third., Vol. 65. Sunderland, Massachusetts, USA: Sinauer Associates, Inc.spa
dc.relation.referencesGrosjean, P., & Ibanez, F. (2018). pastecs: Package for Analysis ofSpace-Time Ecological Series. R package version 1.3.21. https://CRAN.R-project.org/package=pastecsspa
dc.relation.referencesHall, L. S., Krausman, P. R., & Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 25, 173–182.spa
dc.relation.referencesHalle´ ,F., Oldeman R.A.A., & Tomlinson, P.B.(1978). Tropical trees and forests: An architectural analysis. Berlin, Heidelberg, New York: Springer-Verlag.spa
dc.relation.referencesHarding, E. K., Crone, E. E., Eldered, B. D., Hoekstra, J. M., McKerrow, A. J., Perrine, J. D., Regetz, J., Rissler, L. J., Stanley, A. G., Walters, E. L., & Goup, N. H. C. plan working. (2002). The scientific foundations of habitat conservation plans: a quantitative assessment. Ecol. Appl. 12, 488–500.spa
dc.relation.referencesHilty, S. L., & Brown, W.L. (2001). Guía de las aves de Colombia. Cali, Colombia: American Bird Conservancy.spa
dc.relation.referencesJenks, G. (1977). Optimal Data Classification for Choropleth Maps. Occasional Paper 2, Department of Geography, 1999. "Thematic Cartography and Visualization". University of Kansas, Posted from, Slocum, T.Prentice Hall.spa
dc.relation.referencesJohnson, M. D. (2007). Measuring habitat quality: A review. In Condor. Vol. 109, pp. 489–504.spa
dc.relation.referencesKilpatrick, A. M., Salkeld, D. J., Titcomb, G., & Hahn, M. B. (2017). Conservation of biodiversity as a strategy for improving human health and well-being. Philos. Trans. R. Soc. B 372, 1–9.spa
dc.relation.referencesKleiber, C., & Zeileis, A.(2008). Applied Econometrics with R. New York: Springer-Verlag. ISBN 978-0-387-77316-2. URL https://CRAN.R-project.org/package=AER.spa
dc.relation.referencesKnutson, M. G., Powell, L. A., Hines, R. K., Friberg, M. A., & Niemi, G. J. (2006). An assessment of bird habitat quality using population growth rates. Condor 108, 301–314.spa
dc.relation.referencesKoloff, J., & Mennill, D. (2011a). Aggressive responses to playback of solos and duets in a Neotropical antbird. Anim. Behav. 82, 587–593.spa
dc.relation.referencesKoloff, J., & Mennill, D. (2011b). Barred Antshrike (Thamnophilus doliatus), version 1.0. In Neotropical Birds Online (T. S. Schulenberg, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/nb.barant1.01spa
dc.relation.referencesKrausman, P. R. (1999). Some Basic Principles of Habitat Use. Grazing Behav. Livest. Wildl. 85–90.spa
dc.relation.referencesKristan, W. B. (2007). Expected effects of correlated habitat variables on habitat quality and bird distribution. Condor 109, 505–515.spa
dc.relation.referencesLauver, C. L., Busby, W. H., & Whistler, J. L. (2002). Testing a GIS model of habitat suitability for a declining grassland bird. Environ. Manage. 30, 88–97.spa
dc.relation.referencesLoaiza, C., Montengro, O. L., King, D., et al. (2020). Variation in abundance and habitat relationship of three understory insectivorous birds in a disturbed landscape of Neotropical dry forest of Colombia. Avian Res. 11: 33. https://doi.org/10.1186/s40657-020-00219-4spa
dc.relation.referencesLosada-Prado, S., & Molina-Martinez, Y. (2011). Avifauna del bosque seco tropical en el departamento del Tolima (Colombia): Análisis De La Comunidad. Caldasia 33, 271–294.spa
dc.relation.referencesMac Nally, R., & Bennet, A. F. (1997). Species-specific predictions of the impact of habitat fragmentation: local extinction of birds in the box-ironbark forests of central Victoria, Australia. Biol Conserv. 82,147-155. Doi: https://doi.org/10.1016/S0006-3207(97)00028-1.spa
dc.relation.referencesMansor, M. S., & Ramli, R. (2017). Foraging niche segregation in Malaysian babblers (Family: Timaliidae). PloS one 12(3), 1-13.spa
dc.relation.referencesMansor, M. S., Nor, S. M., Ramli, R. & Sah, S. A. M. (2018). Niche shift in three foraging insectivorous birds in lowland Malaysian forest patches. Behav Processes. [Internet].157(September), 73–9. doi:10.1016/j.beproc.2018.09.001.spa
dc.relation.referencesMarone, L. (1991). Estatus de residencia y Categorizacion Trófica de las especies de aves en la Reserva de La Biosfera de Ñacñan, Mendoza. El Hornero 13, 207–210.spa
dc.relation.referencesMarra, P. P., & Remsen, J. V. (1997). Insights into the Maintenance of High Species Diversity in the Neotropics : Habitat Selection and Foraging Behavior in Understory Birds of Tropical and Temperate Forests. Ornithol. Monogr. 48, 445–483.spa
dc.relation.referencesMarra, P. P., Studds, C. E., Wilson, S., Sillett, T. S., Sherry, T. W., Holmes, R. T., & Marra, P. P. (2015). Non-breeding season habitat quality mediates the strength of density- dependence for a migratory bird. Proc. R. Soc. B 282, 1–8.spa
dc.relation.referencesMatseur, E. A., Millspaugh, J. J., Thompson, F. R., Dickerson, B. E., & Rumble, M. A. (2019). The importance of disturbance and forest structure to bird abundance in the Black Hills. Condor 121, 1–18.spa
dc.relation.referencesMcClanahan, T. R, & Wolfe, R. W. (1999). Accelerating forest succession in a fragmented landscape: the role of birds and perches. NCASI Tech Bull. 7, (781 I):331. doi:10.1046/j.1523-1739.1993.07020279.x.spa
dc.relation.referencesMckellar, A. E., Kesler, D. C., Mitchell, R. J., Delaney, D. K., & Walters, J. R. (2014). Geographic variation in fitness and foraging habitat quality in an endangered bird. Biol. Conserv. 175, 52–64.spa
dc.relation.referencesMorales, N. (2015). Caracterización de fauna en unidades de manejo del plan piloto de restauración ecológica en el área de compensación del proyecto hidroeléctrico El Quimbo. Caracterización de avifauna.spa
dc.relation.referencesMorrison, M. L., Marcot, B. G., & Manna, R. W. (2007). Wildlife-Habitat Relationships: Concepts and Applications. (L. M. Morrison, G. B. B. Marcot, & R. W. Mannan, Eds.)J. Range Manag. Third., Vol. 47. Washington D.C.: Island Press.spa
dc.relation.referencesNatura, F. (2015). Caracterización de fauna en unidades de manejo del plan piloto de restauración ecológica en el área de compensación del proyecto hidroeléctrico El Quimbospa
dc.relation.referencesNatura, F. (2017). Así avanza el Plan Piloto de Restauración Ecológica del bosque seco tropical en cuatro municipios del Huila/Noticias, Bogotá Colombia. Recuperado de: https://natura.org.co/asi-avanza-el-plan-piloto-de-restauracion-ecologica-del-bosque-seco-tropical-en-huila/.spa
dc.relation.referencesNiemi, G.J., & McDonald, M.E. (2004). Application of ecological indicators. Annu. Rev. Ecol. Evol. S. 35, 89-111.spa
dc.relation.referencesPaladines, R. (2003). Propuesta de conservación del Bosque seco en el Sur de Ecuador. Lyonia, Honolulu 4, 183–186.spa
dc.relation.referencesPandit, M. K., & Grumbine, R. E. (2012). Potential Effects of Ongoing and Proposed Hydropower Development on Terrestrial Biological Diversity in the Indian Himalaya. Conserv. Biol. 26, 1061–1071.spa
dc.relation.referencesPinzón, C. A. (2014). Restauración ecológica del bosque seco – proyecto hidroeléctrico El Quimbo - Informe Final.spa
dc.relation.referencesPizano, C., & Garcia, H. (editores). (2014). El Bosque Seco Tropical en Colombia. (C. Pizano & H. Garcia, Eds.). Primera. Bogotá, D.C. Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).spa
dc.relation.referencesPollock, H. S., Cheviron, Z. A., Agin, T. J., & Brawn, J. D. (2015). Absence of microclimate selectivity in insectivorous birds of the Neotropical forest understory. Biol. Conserv. 188, 116–125.spa
dc.relation.referencesPoulin, B., Leeebvre, G. T. A. N., & Mcneil, R. (1994). D Diets of land birds from northeastern Venezuela.. Condor 96, 354–361.spa
dc.relation.referencesPrieto-Cruz, A., Montenegro Díaz, O. L., Rudas, A., Rodríguez, J., & Aguirre, J. (2016). Áreas propuestas para las actividades de reubicación de la fauna silvestre que será afectada por las actividades constructivas y de adecuación del vaso del embalse del proyecto hidroeléctrico Ituango ( Antioquia , Colombia ) Evaluación del hábitat y recom. (A. Prieto, O. Montenengro Díaz, A. Rudas, J. Rodríguez, & J. Aguirre, Eds.). Primera. Bogotá: Universidad Nacional de Colombia (Sede Bogotá). Facultad de Ciencias. Instituto de Ciencias Naturales, EPM.spa
dc.relation.referencesR Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.referencesRemsen, J.V., Jr. (2018). Palebreasted Spinetail (Synallaxis†albescens). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., & de Juana, E. (editors). Handbook†of†the†Birds†of†the†World†Alive. Lynx Edicions, Barcelona. (retrieved from https://www.hbw.com/node/56433 on 27 August 2018).spa
dc.relation.referencesReza, M. I. H., Abdullah, S. A., Nor, S. B. M., & Ismail, M. H. (2013). Integrating GIS and expert judgment in a multi-criteria analysis to map and develop a habitat suitability index: A case study of large mammals on the Malayan Peninsula. Ecol. Indic. 34: 149–158. https://doi.org/10.1016/j.ecolind.2013.04.023spa
dc.relation.referencesRoberts, H.P & King, D.I. (2019). Variation in plumage reflects avian habitat associations not revealed by abundance. The Wilson Journal of Ornithology. 131, 339–347.spa
dc.relation.referencesRosenberg, K. V. (1990). Dead-leaf foraging specialization in tropical forest birds. Lousiana State University and Agricultural and Mechanical College.spa
dc.relation.referencesSekercioglu, C. H. (2009). Tropical Ecology : Riparian Corridors Connect Fragmented Forest Bird Populations. Curr. Biol. 19, R210–R213.spa
dc.relation.referencesSekercioglu, C. H. et al. (2002). ‘Disappearance of insectivorous birds from tropical forest fragments’. Proc. Natl. Acad. Sci. U. S. A. 99(1), pp. 263–267. doi: 10.1073/pnas.012616199.spa
dc.relation.referencesShiels, A. B, & Walker, L. R. (2003). Bird perches increase forest seeds on Puerto Rican landslides. Restor Ecol. 11(4):457–465. doi:10.1046/j.1526-100X.2003.rec0269.x.spa
dc.relation.referencesSigel, B. J., Sherry, T. W., & Young, B. E. (2006). Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva Biological Station, Costa Rica. Conserv. Biol. 20, 111–121.spa
dc.relation.referencesStevens, K. P., Holland, G. J., Clarke, R. H., & Cooke, R. (2015). What Determines Habitat Quality for a Declining Woodland Bird in a Fragmented Environment : The Grey-Crowned Babbler Pomatostomus temporalis in South-Eastern Australia ? PLoS One 10, 1–14.spa
dc.relation.referencesStouffer, P. C., & Bierregaard, R. O. (1995). Use of Amazonian forest fragments by understory insectivorous birds: Effects of fragment size, surrounding vegetation and time since isolation. Ecol. Monogr. 76, 2429–2445.spa
dc.relation.referencesStouffer, P.C., & Borges, S. H. (2000). Conservation recommendations for understory birds in Amazonian forest fragments and secondary areas. In: Bierregaard, R.O., Gascon, C., Lovejoy, T. E., dos Santos, A.A., Eds. Lessons from Amazonia: the ecology and conservation of a fragmented forest. New Haven, Connecticut: Yale University Press.spa
dc.relation.referencesStraneck, R. J. (1999). Una vocalizacion del Pijui Comun de Cola Parda, Synallaxis albescens (Aves, Furnariidae), es similar al sonido mecanico de advertencia de la Vibora de Cascabel, Crotalus durissus terrificus (Serpentes, Crotalidae). A vocalization of the Pale-breasted spin. Revista Del Museo Argentino de Ciencias Naturales, 1(1), 115–119.spa
dc.relation.referencesStratford, J. A., & Stouffer, P. C. (1999). Local Extincitons of Terrestrial Insectivorous Birds in a Fragmented Landscape near Manaus, Brazil. Conserv. Biol. 13, 1416–1423.spa
dc.relation.referencesStratford, J. A., & Stouffer, P. C. (2015). Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115.spa
dc.relation.referencesTamayo, A. M. (2020). Evaluación de riesgos de origen natural y antrópico que pueden afectar el proceso de restauración ecológica del bosque seco tropical en el área de compensación ambiental de la central hidroeléctrica El Quimbo. Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Maestría en Gestión Ambiental, Bogotá, Colombia.spa
dc.relation.referencesTerrado, M., Sabater, S., Chaplin-Kramer, B., Mandle, L., Ziv, G., & Acuña, V. (2016). Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70.spa
dc.relation.referencesTirpak, J. M., Jones-Farrand, D. T., Thompson, F. R., Twedt, D. J., Baxter, C. K., Fitzgerald, J. A., & Uihlein, W. B., (2009). Assessing ecoregional-scale habitat suitability index models for priority landbirds. J. Wildl. Manage. 73(8): 1307–1315. https://doi.org/10.2193/2008-125.spa
dc.relation.referencesToms, J.D., Schmiegelow, F.K., Hannon, S.J. & Villard, M.A. (2006). Are point counts of boreal songbirds reliable proxies for more intensive abundance estimators?. Auk, 123:438-454.spa
dc.relation.referencesVale, M. M., Cohn-Haft, M., Bergen, S., & Pimm, S. L. (2008). Effects of future infrastructure development on threat status and occurrence of Amazonian birds. Conserv. Biol. 22, 1006–1015.spa
dc.relation.referencesVallecillo, S., Maes, J., Polce, C., & Lavalle, C. (2016). A habitat quality indicator for common birds in Europe based on species distribution models. Ecol. Indic. 69, 488–499.spa
dc.relation.referencesVester, H. F. M., & Cleef, A. M. (1998). Tree architecture and secondary tropical rain forest development. A case study in Araracuara, Colombian Amazonia. Flora, 193(1), 75–97. https://doi.org/10.1016/S0367-2530(17)30816-2.spa
dc.relation.referencesVogel, H. F., McCarron, V. E. A., & Zocche, J. J. (2018). Use of artificial perches by birds in ecological restoration areas of the Cerrado and Atlantic forest Biomes in Brazil. Neotrop Biol Conserv. 13(1):24–36. doi:10.4013/nbc.2018.131.04.spa
dc.relation.referencesWalker, B. H. (1992). Biodiversity and Ecological Redundancy. Conserv Biol. 6(1): 18-23. Doi: 10.1046/j.1523-1739.1992.610018.x.spa
dc.relation.referencesWalther, B. A. (2002). Vertical stratification and use of vegetation and light habitats by Neotropical forest birds. J. fur Ornithol. 143, 64–81.spa
dc.relation.referencesWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.spa
dc.relation.referencesWilke, C.O. (2019). cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 0.9.4. https://CRAN.R-project.org/package=cowplotspa
dc.relation.referencesZimmer, K., and M.L., Isler. (2018). White-bellied Antbird (Myrmeciza longipes). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from https://www.hbw.com/node/56821 on 30 August 2018).spa
dc.relation.referencesZimmer, K., Isler, M.L. & Christie, D.A. (2018). Barred Antshrike (Thamnophilus doliatus). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from https://www.hbw.com/node/56662 on 30 August 2018).spa
dc.relation.referencesZohmann, M., Pennerstorfer, J., & Nopp-Mayr, U., (2013). Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecol. Modell. 254: 22–32. https://doi.org/10.1016/j.ecolmodel.2013.01.008spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.proposalBirdseng
dc.subject.proposalArquitectura de las plantasspa
dc.subject.proposalEl Quimboeng
dc.subject.proposalModelos de hábitatspa
dc.subject.proposalHSIspa
dc.subject.proposalModelos lineales generalizadosspa
dc.subject.proposalRestauración de hábitatspa
dc.subject.proposalAvesspa
dc.titleVariación demográfica de aves insectívoras del sotobosque en relación con la calidad del hábitat en un bosque seco tropicalspa
dc.typeOtrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80087641.2020.pdf
Tamaño:
6.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: