Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
dc.contributor.advisor | López Álvarez, Diana Carolina | |
dc.contributor.author | Roncancio Duque, Néstor Javier | |
dc.contributor.cvlac | Roncancio Duque, Nestor Javier | spa |
dc.contributor.googlescholar | Roncancio Duque, Nestor | spa |
dc.contributor.orcid | 0000-0001-8575-8272 | spa |
dc.contributor.researchgroup | Biodiversidad y Conservación | spa |
dc.contributor.researchgroup | Bioinformática | spa |
dc.contributor.researchgroup | Ecología y Conservación de Fauna Silvestre | spa |
dc.contributor.scopus | 57200223135 | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000050 | |
dc.date.accessioned | 2024-07-05T19:36:04Z | |
dc.date.available | 2024-07-05T19:36:04Z | |
dc.date.issued | 2024-06-27 | |
dc.description | Ilustraciones, tablas | eng |
dc.description.abstract | Concerning the gut microbiota, the hypothesis posits that increased microbial diversity contributes significantly to enhanced functionality across various associated processes. The intestinal microbiota exhibits high susceptibility to diverse forms of stress, and the impact of such stressors can be profound, affecting both its composition and function. A comprehensive understanding of how distinct forms of stress influence the intestinal microbiota is imperative for the developing strategies aimed at preserving gastrointestinal health and, consequently, the overall well-being of individuals. Conversely, parasites constitute integral components within natural processes that could determine population regulation and maintain ecosystem balance. However, both natural and anthropogenic changes can disrupt these ecological processes. Among infectious diseases, those induced by protozoa are prominent contributors to human morbidity and mortality. The environmental changes exacerbate interactions among wildlife, domestic animals, and humans, thereby intensifying transmission rates between species. Thus, the objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa. The study identified several new species within the six assessed host species. A predominant proportion of phyla Ascomycota, Pseudomonadota, Basidiomicota, and Apicomplexa were observed, reflecting a healthy intestinal microbiota and a potential predominance of certain negative elements. Comparisons between canines and equines, as well as between tapirs and bears among terrestrial mammals, indicated greater similarity in both gut microbiota and protozoa. In primates, the red howler monkey exhibited closer proximity to bovines and equines than to other primates. The findings indicated that a higher proportion of natural vegetation coverage correlated with increased similarity in gut microbiota among wild and domestic mammals. Additionally, higher proportions of natural vegetation coverage, presence of water bodies, number of forest patches, and irregularities in forest shapes were associated with greater diversity (both richness and evenness) in gut microbiota and intestinal protozoa across different scales. (Texto tomado de la fuente) | eng |
dc.description.abstract | Con relación a la microbiota intestinal, la hipótesis postula que un aumento en la diversidad microbiana contribuye significativamente a una mejor funcionalidad en varios procesos asociados con ella. La microbiota intestinal muestra una alta susceptibilidad a diversas formas de estrés, y el impacto de tales factores estresantes puede ser profundo, afectando tanto su composición como su función. Una comprensión integral de cómo distintas formas de estrés afectan a la microbiota intestinal es imperativa para el desarrollo de estrategias destinadas a preservar la salud gastrointestinal y, por ende, el bienestar general de los individuos. Por otro lado, los parásitos constituyen componentes integrales dentro de procesos naturales que podrían determinar la regulación poblacional y mantienen el equilibrio del ecosistema. Sin embargo, tanto los cambios naturales como los antropogénicos pueden perturbar estos procesos ecológicos. Entre las enfermedades infecciosas, aquellas inducidas por protozoos son contribuyentes destacados a la morbilidad y mortalidad humanas. Los cambios ambientales exacerban las interacciones entre la vida silvestre, los animales domésticos y los humanos, intensificando así las tasas de transmisión entre especies. Por tanto, el objetivo de este estudio fue investigar las asociaciones, incluyendo relaciones y similitudes, de la estructura del paisaje, influenciada por actividades humanas, la diversidad de la microbiota intestinal y la abundancia de protozoarios gastrointestinales entre mamíferos silvestres y domésticos en Colombia. La determinación taxonómica se hizo mediante metabarcoding con cebadores dirigidos al gen rRNA 18S y secuenciación Nanopore, con un enfoque principal en la detección de protozoos. Se recopilaron un total de 148 muestras de seis mamíferos silvestres y tres mamíferos domésticos en 29 paisajes focales en Colombia. También se empleó la microscopía para validar algunos agentes. Para describir epidemiológicamente las muestras, se estimaron la riqueza de taxones en la microbiota intestinal, así como la prevalencia, intensidad media y abundancia media de los protozoarios. Se utilizaron regresiones Beta y Poisson bayesianas para evaluar la relación entre las métricas del paisaje y la disimilitud, la diversidad de la microbiota intestinal y de protozoarios, y la abundancia de protozoarios específicos. El estudio identificó varias especies no reportadas previamente en las seis especies silvestres hospedadoras evaluadas. Se observó una proporción predominante de los phylum Ascomycota, Pseudomonadota, Basidiomicota y Apicomplexa, reflejando por un lado una microbiota intestinal saludable, aunque también la posible predominancia de ciertos elementos negativos. Las comparaciones entre caninos y equinos, así como entre tapires y osos entre los mamíferos terrestres, indicaron una mayor similitud tanto en la microbiota intestinal como en los protozoarios. En primates, el mono aullador rojo mostró una proximidad más cercana a los bovinos y equinos que a otros primates. Los hallazgos indicaron que una mayor proporción de cobertura vegetal natural estaba relacionada con una mayor similitud en la microbiota intestinal entre mamíferos silvestres y domésticos. Además, mayores proporciones de cobertura vegetal natural, presencia de cuerpos de agua, número de parches de bosque e irregularidades en la forma de los bosques se asociaron con una mayor diversidad (tanto en riqueza como en equidad) en la microbiota intestinal y de protozoarios intestinales a diferentes escalas. | spa |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Agrarias | spa |
dc.description.methods | The objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa. | spa |
dc.format.extent | xvi, 132 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86409 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.department | Doctorado en Ciencias Agrarias | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrarias | spa |
dc.relation.references | Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S | spa |
dc.relation.references | Aguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press | spa |
dc.relation.references | Artois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_1 | spa |
dc.relation.references | Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144. | spa |
dc.relation.references | Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009 | spa |
dc.relation.references | Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title). | spa |
dc.relation.references | Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer. | spa |
dc.relation.references | Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002 | spa |
dc.relation.references | Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA. | spa |
dc.relation.references | Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282 | spa |
dc.relation.references | Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305 | spa |
dc.relation.references | Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546 | spa |
dc.relation.references | Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460 | spa |
dc.relation.references | Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0 | spa |
dc.relation.references | Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822 | spa |
dc.relation.references | Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64 | spa |
dc.relation.references | Bard, S. M., & Cain III, J. W. (2019). Pathogen prevalance in American black bears (Ursus americanus amblyceps) of the Jemez Mountains, New Mexico, USA. Journal of Wildlife Diseases, 55(4), 745–754. | spa |
dc.relation.references | Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122. | spa |
dc.relation.references | Borka-Vitális, L., Domokos, C., Földvári, G., & Majoros, G. (2017). Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus, 28(1), 20–30. | spa |
dc.relation.references | Brena, P., Gauthier, D., Humeau, A., Baurier, F., Dej, F., Lemberger, K., Chollet, J.-Y., & Decors, A. (2018). How Can Computer Tools Improve Early Warnings for Wildlife Diseases? In How Information Systems Can Help in Alarm/Alert Detection (pp. 241–256). Elsevier. | spa |
dc.relation.references | Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836. | spa |
dc.relation.references | Chica Cardenas, L. A. (2021). Estimating the andean bear diet through DNA metabarcoding and its relationships to the gut microbiome [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/58061 | spa |
dc.relation.references | Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1311), 101–118. | spa |
dc.relation.references | Cruz Hurtado, S. S. M., & Muñoz Huamaní, M. (2016). Identificación de parásitos gastrointestinales de carnívoros en cautiverio criados en el centro recreacional municipal del Cerrito de la Libertad de Huancayo. | spa |
dc.relation.references | Diamond, J. (2016). Sociedades comparadas: Un pequeño libro sobre grandes temas. Debate. | spa |
dc.relation.references | Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278 | spa |
dc.relation.references | Elbroch, L. M., Lendrum, P. E., Allen, M. L., & Wittmer, H. U. (2015). Nowhere to hide: Pumas, black bears, and competition refuges. Behavioral Ecology, 26(1), 247–254 | spa |
dc.relation.references | Figueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus, 26(1), 21–27. https://doi.org/10.2192/URSUS-D-14-00034.1 | spa |
dc.relation.references | Francis, E. K., & Šlapeta, J. (2022). A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. International Journal for Parasitology, 52(6), 331–342. https://doi.org/10.1016/j.ijpara.2022.01.002 | spa |
dc.relation.references | García Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056. | spa |
dc.relation.references | Gilbert, B. (1989). Behavioral plasticity and bear-human conflicts. 1–8. | spa |
dc.relation.references | Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J. P., Cuesta, F., & Castellanos, A. (2006). Andean bear–livestock conflicts: A review. Ursus, 17(1), 8–15. | spa |
dc.relation.references | Goldstein, I. R. (2002). Andean bear-cattle interactions and tree nest use in Bolivia and Venezuela. Ursus, 369–372. | spa |
dc.relation.references | Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007 | spa |
dc.relation.references | Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260. | spa |
dc.relation.references | Jorgenson, J. P., & Sandoval-A, S. (2005). Andean bear management needs and interactions with humans in Colombia. Ursus, 16(1), 108–116. | spa |
dc.relation.references | Kattan, G., Hernández, O. L., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., Restrepo, H., & Cuesta, F. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx, 38(2), 155–163. | spa |
dc.relation.references | Kindschuh, S. R., Cain III, J. W., Daniel, D., & Peyton, M. A. (2016). Efficacy of GPS cluster analysis for predicting carnivory sites of a wide‐ranging omnivore: The American black bear. Ecosphere, 7(10), e01513. | spa |
dc.relation.references | King, J. S., Jenkins, D. J., Ellis, J. T., Fleming, P., Windsor, P. A., & Šlapeta, J. (2011). Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. The Veterinary Journal, 188(1), 24–33. | spa |
dc.relation.references | Lesmerises, R., Rebouillat, L., Dussault, C., & St-Laurent, M.-H. (2015). Linking GPS telemetry surveys and scat analyses helps explain variability in black bear foraging strategies. PLoS One, 10(7), e0129857. | spa |
dc.relation.references | Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections. | spa |
dc.relation.references | Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79. | spa |
dc.relation.references | Mata, A. P., Pérez, H. G., & Parra, J. G. (2016). Morphological molecular description of Baylisascaris venezuelensis, n. Sp. From a natural infection in the South American spectacled bear Tremarctos ornatus Cuvier, 1825 in Venezuela. Neotrop Helminthol, 10, 85–103. | spa |
dc.relation.references | McCullough, D. R. (1982). Behavior, bears, and humans. Wildlife Society Bulletin, 27–33 | spa |
dc.relation.references | Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62. | spa |
dc.relation.references | Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175 | spa |
dc.relation.references | Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295. | spa |
dc.relation.references | Oniki-Willis, Y., & Willis, E. O. (2018). Tick (Acarina) diversity from South American birds and mammals. Atualidades Ornitológicas, 206. | spa |
dc.relation.references | Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology (Durham), 72(4), 1512–1513. | spa |
dc.relation.references | Parra-Romero, A., Zamudio-López, J., Camargo-Cárdenas, J. E., Palacios-Medina, C. R., Torres, L., Castro, E., Espíndola, J., Meneses, H., Vera-Villamizar, L., Moreno-Gutiérrez, S., López-Velandia, O., Saenz, F., Rodríguez, M., Franco, N., Clavijo-Ríos, C., Rivera-Torres, C., López-Orjuela, H., Pachón-Bejarano, G., Jimenez-Palomo, G., … Márquez, R. (2019). Ocupación del oso andino (Tremarctos ornatus) en la región centro-norte de la Cordillera Oriental de Colombia. PNN de Colombia, CAR Cundinamarca, Corpoboyacá, Corporinoquía, Corpochivor, Cormacarena, Corpoguavio, ABCA y WCS. | spa |
dc.relation.references | Patz, J., Githeko, A., McCarty, J., Hussein, S., Confalonieri, U., & De Wet, N. (2003). Climate change and infectious diseases. Climate Change and Human Health: Risks and Responses, 2, 103–132. | spa |
dc.relation.references | Peña-Quistial, M. G., Benavides-Montaño, J. A., Duque, N. J. R., & Benavides-Montaño, G. A. (2020). Prevalence and associated risk factors of Intestinal parasites in rural high-mountain communities of the Valle del Cauca—Colombia. PLoS Neglected Tropical Diseases, 14(10), e0008734. | spa |
dc.relation.references | Peyton, B. (1999). Spectacled bear conservation action plan. Bears: Status Survey and Conservation Action Plan, 157–164. | spa |
dc.relation.references | Quintero, L. R., Pulido-Villamarín, A., Parra-Romero, Á., Castañeda-Salazar, R., Pérez-Torres, J., & Vela-Vargas, I. M. (2023). Andean bear gastrointestinal parasites in Chingaza Massif, Colombia. Ursus, 2023(34e4). https://doi.org/10.2192/URSUS-D21-00020.1 | spa |
dc.relation.references | Sasmal, I., Gould, N. P., Schuler, K. L., Chang, Y.-F., Thachil, A., Strules, J., Olfenbuttel, C., Datta, S., & DePerno, C. S. (2019). Leptospirosis in urban and suburban american black bears (ursus americanus) in western north carolina, usa. Journal of Wildlife Diseases, 55(1), 74–83. | spa |
dc.relation.references | Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905. | spa |
dc.relation.references | Semblante, G. U., Phan, H. V., Hai, F. I., Xu, Z.-Q., Price, W. E., & Nghiem, L. D. (2017). The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Science of The Total Environment, 607–608, 558–567. https://doi.org/10.1016/j.scitotenv.2017.06.253 | spa |
dc.relation.references | Shaheen, M. N. F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4). https://doi.org/10.1002/rmv.2326 | spa |
dc.relation.references | Smith, K. F., Acevedo‐Whitehouse, K., & Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation, 12(1), 1–12. | spa |
dc.relation.references | Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357. | spa |
dc.relation.references | Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189 | spa |
dc.relation.references | Stephenson, N., Higley, J. M., Sajecki, J. L., Chomel, B. B., Brown, R. N., & Foley, J. E. (2015). Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne and Zoonotic Diseases, 15(2), 116–123. | spa |
dc.relation.references | Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186. | spa |
dc.relation.references | Velez-Liendo, X., & García-Rangel, S. (2018). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017: E.T22066A123792952. https://www.iucnredlist.org/species/22066/123792952 | spa |
dc.relation.references | Westmoreland, L. S., Stoskopf, M. K., & Maggi, R. G. (2016). Prevalence of Anaplasma phagocytophilum in North Carolina eastern black bears (Ursus americanus). Journal of Wildlife Diseases, 52(4), 968–970. | spa |
dc.relation.references | Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64. | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Wu, J., Han, J.-Q., Shi, L.-Q., Zou, Y., Li, Z., Yang, J.-F., Huang, C.-Q., & Zou, F.-C. (2018). Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic black bear (Ursus thibetanus) in Yunnan Province, Southwestern China. Parasitology Research, 117(4), 1139–1145. | spa |
dc.relation.references | Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540 | spa |
dc.relation.references | Zárate Rodríguez, P. T., Collazos-Escobar, L. F., & Benavides-Montaño, J. A. (2022). Endoparasites Infecting Domestic Animals and Spectacled Bears (Tremarctos ornatus) in the Rural High Mountains of Colombia. Veterinary Sciences, 9(10), 537. https://doi.org/10.3390/vetsci9100537 | spa |
dc.relation.references | Zhang, L., Yang, X., Wu, H., Gu, X., Hu, Y., & Wei, F. (2011). The parasites of giant pandas: Individual-based measurement in wild animals. Journal of Wildlife Diseases, 47(1), 164–171 | spa |
dc.relation.references | Acosta Z, M., Tantaleán V, M., & Serrano-Martínez, E. (2015). Identificación de Parásitos Gastrointestinales por Coproscopía en Carnívoros Silvestres del Zoológico Parque de las Leyendas, Lima, Perú . In Revista de Investigaciones Veterinarias del Perú (Vol. 26, pp. 282–290). scielo | spa |
dc.relation.references | Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7 | spa |
dc.relation.references | Aristizabal-Duque, S., Orozco Jimenez, L., Zapata Escobar, C., & Palacio-Baena, J. (2018). Conservation genetics of otters: Review about the use of noninvasive samples. Therya, 9, 85–93. https://doi.org/10.12933/therya-18-515 | spa |
dc.relation.references | Arnemo, J. M., Ahlqvist, P., Andersen, R., Berntsen, F., Ericsson, G., Odden, J., Brunberg, S., Segerström, P., & Swenson, J. E. (2006). Risk of capture-related mortality in large free-ranging mammals: Experiences from Scandinavia. Wildlife Biology, 12(1), 109–113. https://doi.org/10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2 | spa |
dc.relation.references | Budel, J. C. C., Hess, M. K., Bilton, T. P., Henry, H., Dodds, K. G., Janssen, P. H., McEwan, J. C., & Rowe, S. J. (2022). Low-cost sam-ple preservation methods for high-throughput processing of rumen microbiomes. Animal Microbiome, 4(1), 39. https://doi.org/10.1186/s42523-022-00190-z | spa |
dc.relation.references | Burnham, C. M., McKenney, E. A., Heugten, K. A., Minter, L. J., & Trivedi, S. (2023). Effect of fecal preservation method on captive southern white rhinoceros gut microbiome. Wildlife Society Bulletin, 47(2), e1436. https://doi.org/10.1002/wsb.1436 | spa |
dc.relation.references | Camacho-Sanchez, M., Burraco, P., Gomez-Mestre, I., & Leonard, J. A. (2013). Preservation of RNA and DNA from mammal sam-ples under field conditions. Molecular Ecology Resources, 13(4), 663–673. https://doi.org/10.1111/1755-0998.12108 | spa |
dc.relation.references | Choo, J., Leong, L., & Rogers, G. (2015). Sample storage conditions signficantly influence faecal microbiome profiles. Scientific Reports, 5, 16350. https://doi.org/10.1038/srep16350 | spa |
dc.relation.references | Fox, J., Marquez, M., & Bouchet-Valat, M. (2023). Rcmdr: R Commander. R Package Version 2.9-0. | spa |
dc.relation.references | Frantzen, M. A., Silk, J. B., Ferguson, J. W., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428. https://doi.org/10.1046/j.1365-294x.1998.00449.x | spa |
dc.relation.references | Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1. | spa |
dc.relation.references | Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.), 312(5778), 1355–1359. https://doi.org/10.1126/science.1124234 | spa |
dc.relation.references | Gonzales, F. N., Neira-Llerena, J., Llerena, G., & Zeballos, H. (2016). Small vertebrates in the spectacled bear_s diet (Tremarctos ornatus Cuvier, 1825) in the north of Peru . In Revista Peruana de Biología (Vol. 23, pp. 61–66). scielo | spa |
dc.relation.references | Gorzelak, M. A., Gill, S. K., Tasnim, N., Ahmadi-Vand, Z., Jay, M., & Gibson, D. L. (2015). Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLOS ONE, 10(8), e0134802. | spa |
dc.relation.references | Iker, B. C., Bright, K. R., Pepper, I. L., Gerba, C. P., & Kitajima, M. (2013). Evaluation of commercial kits for the extraction and puri-fication of viral nucleic acids from environmental and fecal samples. Journal of Virological Methods, 191(1), 24–30. https://doi.org/10.1016/j.jviromet.2013.03.011 | spa |
dc.relation.references | Jedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. The Auk, 134(1), 116–127. https://doi.org/10.1642/AUK-16-103.1 | spa |
dc.relation.references | Jin, S. S., Amnon, A., L., M. J., R., A. K., Zech, X. Z., Greg, H., & Rob, K. (2016). Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems, 1(3), 10.1128/msystems.00021-16. https://doi.org/10.1128/msystems.00021-16 | spa |
dc.relation.references | Krogsgaard, L. R., Andersen, L. O. ’Brien, Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syn-drome. Clinical and Translational Gastroenterology, 9(6), 161. https://doi.org/10.1038/s41424-018-0027-2 | spa |
dc.relation.references | Kumar, G., & Bhadury, P. (2022). Effect of different fixatives on yield of DNA from human fecal samples. IOP SciNotes, 3(2), 24002. https://doi.org/10.1088/2633-1357/ac6d2e | spa |
dc.relation.references | Longmire, J., Maltbie, M., & Baker, R. J. (1997). Use of ‘Lysis Buffer’ in DNA isolation and its implication for museum collections /. | spa |
dc.relation.references | Matysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255. https://doi.org/10.1016/j.tifs.2016.05.011 | spa |
dc.relation.references | Menu, E., Mary, C., Toga, I., Raoult, D., Ranque, S., & Bittar, F. (2018). Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Research Notes, 11(1), 206. https://doi.org/10.1186/s13104-018-3300-2 | spa |
dc.relation.references | Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Mi-crobiological Methods, 66(2), 183–193. https://doi.org/10.1016/j.mimet.2006.02.017 | spa |
dc.relation.references | Morgan, L. R., Marsh, K. J., Tolleson, D. R., & Youngentob, K. N. (2021). The Application of NIRS to Determine Animal Physiolog-ical Traits for Wildlife Management and Conservation. In Remote Sensing (Vol. 13, Issue 18). https://doi.org/10.3390/rs13183699 | spa |
dc.relation.references | Ngcamphalala, P. I., Lamb, J., & Mukaratirwa, S. (2019). Molecular identification of hookworm isolates from stray dogs, humans and selected wildlife from South Africa. Journal of Helminthology, 94, e39. https://doi.org/10.1017/S0022149X19000130 | spa |
dc.relation.references | Pabón, J., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2001). La atmósfera, eltiempo y el clima. In P. Leyva (Ed.), El medio ambiente en Colombia. (pp. 35–91). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM. | spa |
dc.relation.references | Papaiakovou, M., Pilotte, N., Baumer, B., Grant, J., Asbjornsdottir, K., Schaer, F., Hu, Y., Aroian, R., Walson, J., & Williams, S. A. (2018). A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases, 12(1), e0006130. https://doi.org/10.1371/journal.pntd.0006130 | spa |
dc.relation.references | Plimpton, L. D., Henger, C. S., Munshi-South, J., Tufts, D., Kross, S., & Diuk-Wasser, M. (2021). Use of molecular scatology to assess the diet of feral cats living in urban colonies. Journal of Urban Ecology, 7(1), juab022. https://doi.org/10.1093/jue/juab022 | spa |
dc.relation.references | Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122546 | spa |
dc.relation.references | Seutin, G., White, B., & Boag, P. (1991). Seutin G, White BN, Boag PT.. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69: 82-90. Canadian Journal of Zoology, 69, 82–90. https://doi.org/10.1139/z91-013 | spa |
dc.relation.references | van der Reis, A. L., Beckley, L. E., Olivar, M. P., & Jeffs, A. G. (2023). Nanopore short-read sequencing: A quick, cost-effective and accurate method for DNA metabarcoding. Environmental DNA, 5(2), 282–296. https://doi.org/10.1002/edn3.374 | spa |
dc.relation.references | Villamizar, X., Higuera, A., Herrera, G., Vasquez-A, L. R., Buitron, L., Muñoz, L. M., Gonzalez-C, F. E., Lopez, M. C., Giraldo, J. C., & Ramírez, J. D. (2019). Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. BMC Infectious Diseases, 19(1), 190. https://doi.org/10.1186/s12879-019-3810-0 | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Bi-ology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46 | spa |
dc.relation.references | Wu, C., Chen, T., Xu, W., Zhang, T., Pei, Y., Yang, Y., Zhang, F., Guo, H., Wang, Q., Wang, L., & Zhao, B. (2021). The maintenance of microbial community in human fecal samples by a cost effective preservation buffer. Scientific Reports, 11(1), 13453. https://doi.org/10.1038/s41598-021-92869-7 | spa |
dc.relation.references | Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540 | spa |
dc.relation.references | Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347 | spa |
dc.relation.references | Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8 | spa |
dc.relation.references | Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.05 | spa |
dc.relation.references | Arshad, M. A., Hassan, F., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883–895. https://doi.org/10.1016/j.aninu.2021.03.004 | spa |
dc.relation.references | Avramenko, R. W., Redman, E. M., Lewis, R., Yazwinski, T. A., Wasmuth, J. D., & Gilleard, J. S. (2015). Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLOS ONE, 10(12), e0143559. https://doi.org/10.1371/journal.pone.0143559 | spa |
dc.relation.references | Bard, S. M., & Cain, J. W. (2019). PATHOGEN PREVALANCE IN AMERICAN BLACK BEARS (URSUS AMERICANUS AMBLYCEPS) OF THE JEMEZ MOUNTAINS, NEW MEXICO, USA. Journal of Wildlife Diseases, 55(4), 745. https://doi.org/10.7589/2018-12-286 | spa |
dc.relation.references | Belvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046 | spa |
dc.relation.references | Berrilli, F., Di Cave, D., Cavallero, S., & D’Amelio, S. (2012). Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00141 | spa |
dc.relation.references | Blum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287 | spa |
dc.relation.references | BonDurant, R. H. (1997). Pathogenesis, Diagnosis, and Management of Trichomoniasis in Cattle. Veterinary Clinics of North America: Food Animal Practice, 13(2), 345–361. https://doi.org/10.1016/S0749-0720(15)30346-7 | spa |
dc.relation.references | Broom, D. M. (2019). Animal welfare complementing or conflicting with other sustainability issues. Applied Animal Behaviour Science, 219, 104829. https://doi.org/10.1016/j.applanim.2019.06.010 | spa |
dc.relation.references | Broom, D. M., Galindo, F. A., & Murgueitio, E. (2013). Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132025. https://doi.org/10.1098/rspb.2013.2025 | spa |
dc.relation.references | Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4 | spa |
dc.relation.references | Calo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12 | spa |
dc.relation.references | Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093 | spa |
dc.relation.references | Collántes-Fernández, E., Fort, M. C., Ortega-Mora, L. M., & Schares, G. (2018). Trichomonas. In M. Florin-Christensen & L. Schnittger (Eds.), Parasitic Protozoa of Farm Animals and Pets (pp. 313–388). Springer International Publishing. https://doi.org/10.1007/978-3-319-70132-5_14 | spa |
dc.relation.references | Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149 | spa |
dc.relation.references | Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043 | spa |
dc.relation.references | De Passillé, A., & Rushen, J. (2005). Food safety and environmental issues in animal welfare. Revue Scientifique et Technique-Office International Des Épizooties, 24(2), 757 | spa |
dc.relation.references | de Thoisy, B., Michel, J.-C., Vogel, I., & Vié, J.-C. (2000). A SURVEY OF HEMOPARASITE INFECTIONS IN FREE-RANGING MAMMALS AND REPTILES IN FRENCH GUIANA. Journal of Parasitology, 86(5), 1035–1040. https://doi.org/10.1645/0022-3395(2000)086[1035:ASOHII]2.0.CO;2 | spa |
dc.relation.references | Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51 | spa |
dc.relation.references | Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940 | spa |
dc.relation.references | Eriksson, M., & Lindstrom, B. (2008). A salutogenic interpretation of the Ottawa Charter. Health Promotion International, 23(2), 190–199. https://doi.org/10.1093/heapro/dan014 | spa |
dc.relation.references | Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. | spa |
dc.relation.references | Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947 | spa |
dc.relation.references | Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’. | spa |
dc.relation.references | Frankish, C. J., Green, L. W., Ratner, P. A., Chomik, T., & Larsen, C. (1996). Health impact assessment as a tool for population health promotion and public policy. A Report Submitted to the Health Promotion Division of Health Canada. Institute of Health Promotion Research, University of British Columbia. | spa |
dc.relation.references | Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpyn | spa |
dc.relation.references | Gerace, E., Presti, V. D. M. L., & Biondo, C. (2019). Cryptosporidium infection: Epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119–123. https://doi.org/10.1556/1886.2019.00019 | spa |
dc.relation.references | Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8 | spa |
dc.relation.references | He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833 | spa |
dc.relation.references | IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapas | spa |
dc.relation.references | Ikawa, K., Aoki, M., Ichikawa, M., & Itagaki, T. (2011). The first detection of Babesia species DNA from Japanese black bears (Ursus thibetanus japonicus) in Japan. Parasitology International, 60(2), 220–222. https://doi.org/10.1016/j.parint.2011.02.005 | spa |
dc.relation.references | Instituto Geográfico Agustín Codazzi (Igac). (2023). Datos abiertos Igac. | spa |
dc.relation.references | Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9 | spa |
dc.relation.references | Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France. | spa |
dc.relation.references | Jinnai, M., Kawabuchi-Kurata, T., Tsuji, M., Nakajima, R., Hirata, H., Fujisawa, K., Shiraki, H., Asakawa, M., Nasuno, T., & Ishihara, C. (2010). Molecular evidence of the multiple genotype infection of a wild Hokkaido brown bear (Ursus arctos yesoensis) by Babesia sp. UR1. Veterinary Parasitology, 173(1–2), 128–133. https://doi.org/10.1016/j.vetpar.2010.06.018 | spa |
dc.relation.references | Kohl, K. D. (2012). Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5), 591–602. https://doi.org/10.1007/s00360-012-0645-z | spa |
dc.relation.references | Kohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548. | spa |
dc.relation.references | Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2 | spa |
dc.relation.references | Laha, R., Das, M., & Sen, A. (2015). Morphology, epidemiology, and phylogeny of Babesia: An overview. Tropical Parasitology, 5(2), 94. | spa |
dc.relation.references | Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360 | spa |
dc.relation.references | Lantz, E. L., Lonsdorf, E. V., Heintz, M. R., Murray, C. M., Lipende, I., Travis, D. A., & Santymire, R. M. (2018). Non‐invasive quantification of immunoglobulin A in chimpanzees ( Pan troglodytes schweinfurthii ) at Gombe National Park, Tanzania. American Journal of Primatology, 80(1), e22558. https://doi.org/10.1002/ajp.22558 | spa |
dc.relation.references | Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5 | spa |
dc.relation.references | Leung, J. M., Graham, A. L., & Knowles, S. C. L. (2018). Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Frontiers in Microbiology, 9, 843. https://doi.org/10.3389/fmicb.2018.00843 | spa |
dc.relation.references | Li, X., Nguyen, T., Xiao, C., Levy, A., Akagi, Y., Silkie, S., & Atwill, E. R. (2020). Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms, 8(6), 914. https://doi.org/10.3390/microorganisms8060914 | spa |
dc.relation.references | Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002 | spa |
dc.relation.references | Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections. | spa |
dc.relation.references | Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409 | spa |
dc.relation.references | Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880 | spa |
dc.relation.references | Mancera, K. F., Zarza, H., de Buen, L. L., García, A. A. C., Palacios, F. M., & Galindo, F. (2018). Integrating links between tree coverage and cattle welfare in silvopastoral systems evaluation. Agronomy for Sustainable Development, 38(2), 19. https://doi.org/10.1007/s13593-018-0497-3 | spa |
dc.relation.references | Mans, B. J., Pienaar, R., & Latif, A. A. (2015). A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife, 4(1), 104–118. https://doi.org/10.1016/j.ijppaw.2014.12.006 | spa |
dc.relation.references | McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press. | spa |
dc.relation.references | Miralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity. Food & Agriculture Org. | spa |
dc.relation.references | Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175 | spa |
dc.relation.references | O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003 | spa |
dc.relation.references | Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295. | spa |
dc.relation.references | Olias, P., Schade, B., & Mehlhorn, H. (2011). Molecular pathology, taxonomy and epidemiology of Besnoitia species (Protozoa: Sarcocystidae). Infection, Genetics and Evolution, 11(7), 1564–1576. https://doi.org/10.1016/j.meegid.2011.08.006 | spa |
dc.relation.references | Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009 | spa |
dc.relation.references | Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707 | spa |
dc.relation.references | Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62. | spa |
dc.relation.references | Perry, R. W., Thill, R. E., & Leslie Jr, D. M. (2007). Selection of roosting habitat by forest bats in a diverse forested landscape. Forest Ecology and Management, 238(1–3), 156–166. | spa |
dc.relation.references | Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14. | spa |
dc.relation.references | Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007 | spa |
dc.relation.references | Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148 | spa |
dc.relation.references | Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282 | spa |
dc.relation.references | Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403 | spa |
dc.relation.references | Roncancio-Duque, N., García-Ariza, J. E., Rivera-Franco, N., Gonzalez-Ríos, A. M., & López-Alvarez, D. (2024). Comparison of DNA quantity and quality from fecal samples of mammals transported in ethanol or lysis buffer. One Health, 18, 100731. https://doi.org/10.1016/j.onehlt.2024.100731 | spa |
dc.relation.references | Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305 | spa |
dc.relation.references | Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546 | spa |
dc.relation.references | Rulli, M. C., D’Odorico, P., Galli, N., & Hayman, D. T. S. (2021). Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2(6), 409–416. https://doi.org/10.1038/s43016-021-00285-x | spa |
dc.relation.references | Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350 | spa |
dc.relation.references | Sánchez-Romero, R., Balvanera, P., Castillo, A., Mora, F., García-Barrios, L. E., & González-Esquivel, C. E. (2021). Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. Forest Ecology and Management, 479, 118506. https://doi.org/10.1016/j.foreco.2020.118506 | spa |
dc.relation.references | Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052 | spa |
dc.relation.references | Skinner, D., Mitcham, J. R., Starkey, L. A., Noden, B. H., Fairbanks, W. S., & Little, S. E. (2017). PREVALENCE OF BABESIA SPP., EHRLICHIA SPP., AND TICK INFESTATIONS IN OKLAHOMA BLACK BEARS ( URSUS AMERICANUS ). Journal of Wildlife Diseases, 53(4), 781–787. https://doi.org/10.7589/2017-02-029 | spa |
dc.relation.references | Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan. | spa |
dc.relation.references | Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0 | spa |
dc.relation.references | Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858 | spa |
dc.relation.references | Stensvold, C. R., & van der Giezen, M. (2018). Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends in Parasitology, 34(5), 369–377. https://doi.org/10.1016/j.pt.2018.02.004 | spa |
dc.relation.references | van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842 | spa |
dc.relation.references | Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-w | spa |
dc.relation.references | Worsley, S. F., Davies, C. S., Mannarelli, M.-E., Hutchings, M. I., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2021). Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Animal Microbiome, 3(1), 84. https://doi.org/10.1186/s42523-021-00149-6 | spa |
dc.relation.references | Yabsley, M. J., Murphy, S. M., & Cunningham, M. W. (2006). Molecular Detection and Characterization of Cytauxzoon felis and a Babesia Species in Cougars from Florida. Journal of Wildlife Diseases, 42(2), 366–374. https://doi.org/10.7589/0090-3558-42.2.366 | spa |
dc.relation.references | Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587 | spa |
dc.relation.references | Acevedo-Whitehouse, K., & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3429–3438. https://doi.org/10.1098/rstb.2009.0128 | spa |
dc.relation.references | Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S7 | spa |
dc.relation.references | Aguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press. | spa |
dc.relation.references | Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8 | spa |
dc.relation.references | Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.057 | spa |
dc.relation.references | Artois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_10 | spa |
dc.relation.references | Barrett, L. G., Thrall, P. H., Burdon, J. J., & Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology & Evolution, 23(12), 678–685. https://doi.org/10.1016/j.tree.2008.06.017 | spa |
dc.relation.references | Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122. | spa |
dc.relation.references | Becker, D. J., Streicker, D. G., & Altizer, S. (2015). Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta‐analysis. Ecology Letters, 18(5), 483–495. https://doi.org/10.1111/ele.12428 | spa |
dc.relation.references | Begon, M., & Townsend, C. R. (2021). Ecology: From individuals to ecosystems. John Wiley & Sons | spa |
dc.relation.references | Belvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046 | spa |
dc.relation.references | Biek, R., & Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology, 19(17), 3515–3531. https://doi.org/10.1111/j.1365-294X.2010.04679.x | spa |
dc.relation.references | Blum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287 | spa |
dc.relation.references | Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput‐Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x | spa |
dc.relation.references | Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R (Vol. 2). Springer. | spa |
dc.relation.references | Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836. | spa |
dc.relation.references | Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4 | spa |
dc.relation.references | Bustamante-Manrique, S. (2023). Efeito da restrição de hábitat no comportamento de bugios (Alouatta spp.). | spa |
dc.relation.references | Bustamante-Manrique, S., Botero-Henao, N., Castaño, J. H., & Link, A. (2021). Activity budget, home range and diet of the Colombian night monkey (Aotus lemurinus) in peri-urban forest fragments. Primates, 62(3), 529–536. https://doi.org/10.1007/s10329-021-00895-w | spa |
dc.relation.references | Calo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12 | spa |
dc.relation.references | Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144. | spa |
dc.relation.references | Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009 | spa |
dc.relation.references | Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093 | spa |
dc.relation.references | Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title). | spa |
dc.relation.references | Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149 | spa |
dc.relation.references | Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043 | spa |
dc.relation.references | Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science, 287(5452), 443–449. https://doi.org/10.1126/science.287.5452.443 | spa |
dc.relation.references | Deem, S. L. (2015). Conservation medicine to one health: The role of zoologic veterinarians. In Fowler’s Zoo and Wild Animal Medicine, Volume 8 (pp. 698–703). Elsevier. | spa |
dc.relation.references | Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer. | spa |
dc.relation.references | Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278. | spa |
dc.relation.references | Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51 | spa |
dc.relation.references | Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940 | spa |
dc.relation.references | Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x | spa |
dc.relation.references | Fehlmann, G., O’riain, M. J., FÜrtbauer, I., & King, A. J. (2020). Behavioral Causes, Ecological Consequences, and Management Challenges Associated with Wildlife Foraging in Human-Modified Landscapes. BioScience, biaa129. https://doi.org/10.1093/biosci/biaa129 | spa |
dc.relation.references | Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. | spa |
dc.relation.references | Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947 | spa |
dc.relation.references | Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric Protozoa in the Developed World: A Public Health Perspective. Clinical Microbiology Reviews, 25(3), 420–449. https://doi.org/10.1128/CMR.05038-11 | spa |
dc.relation.references | Fountain‐Jones, N. M., Craft, M. E., Funk, W. C., Kozakiewicz, C., Trumbo, D. R., Boydston, E. E., Lyren, L. M., Crooks, K., Lee, J. S., VandeWoude, S., & Carver, S. (2017). Urban landscapes can change virus gene flow and evolution in a fragmentation‐sensitive carnivore. Molecular Ecology, 26(22), 6487–6498. https://doi.org/10.1111/mec.14375 | spa |
dc.relation.references | Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’ | spa |
dc.relation.references | Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpyn | spa |
dc.relation.references | Gale, P., Drew, T., Phipps, L. P., David, G., & Wooldridge, M. (2009). The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of Applied Microbiology, 106(5), 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.x | spa |
dc.relation.references | García Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056. | spa |
dc.relation.references | Giraldo, P., Gómez-Posada, C., Martínez, J., & Kattan, G. (2007). Resource Use and Seed Dispersal by Red Howler Monkeys ( Alouatta seniculus ) in a Colombian Andean Forest. Neotropical Primates, 14(2), 55–64. https://doi.org/10.1896/044.014.0202 | spa |
dc.relation.references | Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8 | spa |
dc.relation.references | He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833 | spa |
dc.relation.references | IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapas | spa |
dc.relation.references | IDEAM (Instituto de Hidrología, M. y E. A. de C. (2017). Resultados Monitoreo de la deforestación 2017. | spa |
dc.relation.references | Imam, T. (2011). The complexities in the classification of protozoa: A challenge to parasitologists. Bayero Journal of Pure and Applied Sciences, 2(2), 159–164. https://doi.org/10.4314/bajopas.v2i2.63805 | spa |
dc.relation.references | Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260. | spa |
dc.relation.references | Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9 | spa |
dc.relation.references | Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France. | spa |
dc.relation.references | Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002 | spa |
dc.relation.references | Jensen, S. K., Aars, J., Lydersen, C., Kovacs, K. M., & Åsbakk, K. (2010). The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: Evidence for a marine transmission pathway? Polar Biology, 33(5), 599–606. https://doi.org/10.1007/s00300-009-0735-x | spa |
dc.relation.references | Jin, Y., Wu, S., Zeng, Z., & Fu, Z. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9. https://doi.org/10.1016/j.envpol.2016.11.045 | spa |
dc.relation.references | Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652. https://doi.org/10.1038/nature09575 | spa |
dc.relation.references | Klain, V., Mentz, M. B., Bustamante-Manrique, S., & Bicca-Marques, J. C. (2023). Landscape structure has a weak influence on the parasite richness of an arboreal folivorous–frugivorous primate in anthropogenic landscapes. Landscape Ecology, 38(5), 1237–1247. https://doi.org/10.1007/s10980-023-01603-3 | spa |
dc.relation.references | Kohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548. | spa |
dc.relation.references | Kowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.). (2015). Howler monkeys: Behavior, ecology and conservation. Springer. | spa |
dc.relation.references | Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2 | spa |
dc.relation.references | Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360 | spa |
dc.relation.references | Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5 | spa |
dc.relation.references | Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862 | spa |
dc.relation.references | Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002 | spa |
dc.relation.references | Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections | spa |
dc.relation.references | Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409 | spa |
dc.relation.references | Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature Protocols, 17(12), 2815–2839. https://doi.org/10.1038/s41596-022-00738-y | spa |
dc.relation.references | Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880 | spa |
dc.relation.references | Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79 | spa |
dc.relation.references | Martínez-Mota, R., Pozo-Montuy, G., Bonilla Sánchez, Y. M., & Gillespie, T. R. (2018). Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya, 9(2), 161–169. https://doi.org/10.12933/therya-18-572 | spa |
dc.relation.references | Mazmanian, S. K., & Lee, Y. K. (2014). Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 44(1), 1. https://doi.org/10.4167/jbv.2014.44.1.1 | spa |
dc.relation.references | McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press. | spa |
dc.relation.references | McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., & Knight, R. (2017). The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 57(4), 690–704. https://doi.org/10.1093/icb/icx090 | spa |
dc.relation.references | Miller, S., Zieger, U., Ganser, C., Satterlee, S. A., Bankovich, B., Amadi, V., Hariharan, H., Stone, D., & Wisely, S. M. (2015). INFLUENCE OF LAND USE AND CLIMATE ON SALMONELLA CARRIER STATUS IN THE SMALL INDIAN MONGOOSE ( HERPESTES AUROPUNCTATUS ) IN GRENADA, WEST INDIES. Journal of Wildlife Diseases, 51(1), 60–68. https://doi.org/10.7589/2014-02-046 | spa |
dc.relation.references | Molina Benavides, R. A., Campos Gaona, R., Sánchez Guerrero, H., Giraldo Patiño, L., & Atzori, A. S. (2019). Sustainable Feedbacks of Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems, 7(4), 52. https://doi.org/10.3390/systems7040052 | spa |
dc.relation.references | Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62. | spa |
dc.relation.references | Montilla, S. O., Mopán-Chilito, A. M., Murcia, L. N. S., Triana, J. D. M., Ruiz, O. M. C., Montoya-Cepeda, J., Gutierrez-Barreto, D. A., Holguín-Vivas, J. A., Agámez, C. J., Pérez-Grisales, L. J., Cruz-Moncada, M., Corredor-Durango, N. J., Díaz, E. A. C., Cardona-Cardona, A. H., Franco-Pérez, E., Rivera-Ospina, A. M., & Link, A. (2021). Activity Patterns, Diet and Home Range of Night Monkeys (Aotus griseimembra and Aotus lemurinus) in Tropical Lowland and Mountain Forests of Central Colombia. International Journal of Primatology, 42(1), 130–153. https://doi.org/10.1007/s10764-020-00192-1 | spa |
dc.relation.references | Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130(4), 546–550. https://doi.org/10.1002/ajpa.20391 | spa |
dc.relation.references | Nourani, L., Zakeri, S., & Dinparast Djadid, N. (2020). Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas—A review. Infection, Genetics and Evolution, 81, 104244. https://doi.org/10.1016/j.meegid.2020.104244 | spa |
dc.relation.references | Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA. | spa |
dc.relation.references | O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003 | spa |
dc.relation.references | Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295. | spa |
dc.relation.references | Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009 | spa |
dc.relation.references | Ottman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104 | spa |
dc.relation.references | Palma, A. C., Vélez, A., Gómez‐Posada, C., López, H., Zárate, D. A., & Stevenson, P. R. (2011). Use of space, activity patterns, and foraging behavior of red howler monkeys ( Alouatta seniculus ) in an Andean forest fragment in Colombia. American Journal of Primatology, 73(10), 1062–1071. https://doi.org/10.1002/ajp.20973 | spa |
dc.relation.references | Pang, K.-L., Hassett, B. T., Shaumi, A., Guo, S.-Y., Sakayaroj, J., Chiang, M. W.-L., Yang, C.-H., & Jones, E. B. G. (2021). Pathogenic fungi of marine animals: A taxonomic perspective. Fungal Biology Reviews, 38, 92–106. https://doi.org/10.1016/j.fbr.2021.03.008 | spa |
dc.relation.references | Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707 | spa |
dc.relation.references | Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62. | spa |
dc.relation.references | Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14. | spa |
dc.relation.references | Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007 | spa |
dc.relation.references | Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148 | spa |
dc.relation.references | Qin, W., Song, P., Lin, G., Huang, Y., Wang, L., Zhou, X., Li, S., & Zhang, T. (2020). Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 11, 125. https://doi.org/10.3389/fmicb.2020.00125 | spa |
dc.relation.references | Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282 | spa |
dc.relation.references | Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014 | spa |
dc.relation.references | Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403 | spa |
dc.relation.references | Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305 | spa |
dc.relation.references | Roncancio Duque, N. J. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273. https://doi.org/10.15446/caldasia.v43n2.84845 | spa |
dc.relation.references | Roncancio Duque, N. J., Rojas Días, V., Ríos Franco, C. A., Gómez-Posada, C., Gutiérrez-Chacón, C., Giraldo, P., Velasco, J. A., & Franco, P. (2012). Plan de conservación y manejo del tití gris (Saguinus leucopus). 45. | spa |
dc.relation.references | Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546 | spa |
dc.relation.references | Rondón, S., León, C., Link, A., & González, C. (2019). Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malaria Journal, 18(1), 1–10. | spa |
dc.relation.references | Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8 | spa |
dc.relation.references | Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350 | spa |
dc.relation.references | Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052 | spa |
dc.relation.references | Schurer, J., Mosites, E., Li, C., Meschke, S., & Rabinowitz, P. (2016). Community-based surveillance of zoonotic parasites in a ‘One Health’ world: A systematic review. One Health, 2, 166–174. https://doi.org/10.1016/j.onehlt.2016.11.002 | spa |
dc.relation.references | Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905 | spa |
dc.relation.references | Seabolt, M. H., Konstantinidis, K. T., & Roellig, D. M. (2021). Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Applied and Environmental Microbiology, 87(6), e02275-20. https://doi.org/10.1128/AEM.02275-20 | spa |
dc.relation.references | Simon, A., Rousseau, A. N., Savary, S., Bigras-Poulin, M., & Ogden, N. H. (2013). Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. Journal of Environmental Management, 127, 150–161. https://doi.org/10.1016/j.jenvman.2013.04.031 | spa |
dc.relation.references | Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460 | spa |
dc.relation.references | Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357. | spa |
dc.relation.references | Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan | spa |
dc.relation.references | Solórzano-García, B., Gasca-Pineda, J., Poulin, R., & Pérez-Ponce de León, G. (2017). Lack of genetic structure in pinworm populations from New World primates in forest fragments. International Journal for Parasitology, 47(14), 941–950. https://doi.org/10.1016/j.ijpara.2017.06.008 | spa |
dc.relation.references | Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0 | spa |
dc.relation.references | Solórzano-García, B., White, J. M., & Shedden, A. (2023). Parasitism in heterogeneous landscapes: Association between conserved habitats and gastrointestinal parasites in populations of wild mammals. Acta Tropica, 237, 106751. https://doi.org/10.1016/j.actatropica.2022.106751 | spa |
dc.relation.references | Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858 | spa |
dc.relation.references | Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2018). OpenBUGS version 3.0. 2 | spa |
dc.relation.references | Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189 | spa |
dc.relation.references | Thompson, R. C. A. (2013). Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology, 43(12–13), 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007 | spa |
dc.relation.references | Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186. | spa |
dc.relation.references | Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822 | spa |
dc.relation.references | van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842 | spa |
dc.relation.references | Van Voorhis, W. C., Hulverson, M. A., Choi, R., Huang, W., Arnold, S. L. M., Schaefer, D. A., Betzer, D. P., Vidadala, R. S. R., Lee, S., Whitman, G. R., Barrett, L. K., Maly, D. J., Riggs, M. W., Fan, E., Kennedy, T. J., Tzipori, S., Doggett, J. S., Winzer, P., Anghel, N., … Ojo, K. K. (2021). One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Veterinary Parasitology, 289, 109336. https://doi.org/10.1016/j.vetpar.2020.109336 | spa |
dc.relation.references | VanWormer, E., Miller, M. A., Conrad, P. A., Grigg, M. E., Rejmanek, D., Carpenter, T. E., & Mazet, J. A. K. (2014). Using Molecular Epidemiology to Track Toxoplasma gondii from Terrestrial Carnivores to Marine Hosts: Implications for Public Health and Conservation. PLoS Neglected Tropical Diseases, 8(5), e2852. https://doi.org/10.1371/journal.pntd.0002852 | spa |
dc.relation.references | Vijay, A., & Valdes, A. M. (2022). Role of the gut microbiome in chronic diseases: A narrative review. European Journal of Clinical Nutrition, 76(4), 489–501. https://doi.org/10.1038/s41430-021-00991-6 | spa |
dc.relation.references | Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-w | spa |
dc.relation.references | Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64 | spa |
dc.relation.references | Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0 | spa |
dc.relation.references | Xiao, L., & Fayer, R. (2008). Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38(11), 1239–1255. https://doi.org/10.1016/j.ijpara.2008.03.006 | spa |
dc.relation.references | Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Flora microbiana | |
dc.subject.agrovoc | Microbial flora | |
dc.subject.agrovoc | Flora intestinal | |
dc.subject.agrovoc | Intestinal flora | |
dc.subject.agrovoc | Interacción biológica | |
dc.subject.agrovoc | Biological interaction | |
dc.subject.agrovoc | Población animal | |
dc.subject.agrovoc | Animal population | |
dc.subject.agrovoc | Ecología de las poblaciones | |
dc.subject.agrovoc | Population ecology | |
dc.subject.agrovoc | Relación interespecífica | |
dc.subject.agrovoc | Interspecific relationships | |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.proposal | Cattle | eng |
dc.subject.proposal | Dissimilarity index | eng |
dc.subject.proposal | Fragmentation | eng |
dc.subject.proposal | Gut microbiota | eng |
dc.subject.proposal | Landscape epidemiology | eng |
dc.subject.proposal | Wildlife | eng |
dc.subject.proposal | Ganado | spa |
dc.subject.proposal | Indice de dissimilaridad | spa |
dc.subject.proposal | Fragmentación | spa |
dc.subject.proposal | Microbiota intestinal | spa |
dc.subject.proposal | Protozoarios | spa |
dc.subject.proposal | Protozoa | eng |
dc.subject.proposal | Vida silvestre | spa |
dc.title | Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia | eng |
dc.title.translated | Efecto de la estructura del paisaje sobre la diversidad de la microbiota y protozoarios intestinales enre los mamíferos silvestres y domésticos en algunas regiones de Colombia | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Andean Bear Conservation Alliance (ABCA), the Cleveland Metroparks Zoo Wildlife Conservation Program | spa |
oaire.fundername | Rewild | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 75093305.2024.pdf
- Tamaño:
- 2.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Doctorado en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: