Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia

dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.authorRoncancio Duque, Néstor Javier
dc.contributor.cvlacRoncancio Duque, Nestor Javierspa
dc.contributor.googlescholarRoncancio Duque, Nestorspa
dc.contributor.orcid0000-0001-8575-8272spa
dc.contributor.researchgroupBiodiversidad y Conservaciónspa
dc.contributor.researchgroupBioinformáticaspa
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestrespa
dc.contributor.scopus57200223135spa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2024-07-05T19:36:04Z
dc.date.available2024-07-05T19:36:04Z
dc.date.issued2024-06-27
dc.descriptionIlustraciones, tablaseng
dc.description.abstractConcerning the gut microbiota, the hypothesis posits that increased microbial diversity contributes significantly to enhanced functionality across various associated processes. The intestinal microbiota exhibits high susceptibility to diverse forms of stress, and the impact of such stressors can be profound, affecting both its composition and function. A comprehensive understanding of how distinct forms of stress influence the intestinal microbiota is imperative for the developing strategies aimed at preserving gastrointestinal health and, consequently, the overall well-being of individuals. Conversely, parasites constitute integral components within natural processes that could determine population regulation and maintain ecosystem balance. However, both natural and anthropogenic changes can disrupt these ecological processes. Among infectious diseases, those induced by protozoa are prominent contributors to human morbidity and mortality. The environmental changes exacerbate interactions among wildlife, domestic animals, and humans, thereby intensifying transmission rates between species. Thus, the objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa. The study identified several new species within the six assessed host species. A predominant proportion of phyla Ascomycota, Pseudomonadota, Basidiomicota, and Apicomplexa were observed, reflecting a healthy intestinal microbiota and a potential predominance of certain negative elements. Comparisons between canines and equines, as well as between tapirs and bears among terrestrial mammals, indicated greater similarity in both gut microbiota and protozoa. In primates, the red howler monkey exhibited closer proximity to bovines and equines than to other primates. The findings indicated that a higher proportion of natural vegetation coverage correlated with increased similarity in gut microbiota among wild and domestic mammals. Additionally, higher proportions of natural vegetation coverage, presence of water bodies, number of forest patches, and irregularities in forest shapes were associated with greater diversity (both richness and evenness) in gut microbiota and intestinal protozoa across different scales. (Texto tomado de la fuente)eng
dc.description.abstractCon relación a la microbiota intestinal, la hipótesis postula que un aumento en la diversidad microbiana contribuye significativamente a una mejor funcionalidad en varios procesos asociados con ella. La microbiota intestinal muestra una alta susceptibilidad a diversas formas de estrés, y el impacto de tales factores estresantes puede ser profundo, afectando tanto su composición como su función. Una comprensión integral de cómo distintas formas de estrés afectan a la microbiota intestinal es imperativa para el desarrollo de estrategias destinadas a preservar la salud gastrointestinal y, por ende, el bienestar general de los individuos. Por otro lado, los parásitos constituyen componentes integrales dentro de procesos naturales que podrían determinar la regulación poblacional y mantienen el equilibrio del ecosistema. Sin embargo, tanto los cambios naturales como los antropogénicos pueden perturbar estos procesos ecológicos. Entre las enfermedades infecciosas, aquellas inducidas por protozoos son contribuyentes destacados a la morbilidad y mortalidad humanas. Los cambios ambientales exacerban las interacciones entre la vida silvestre, los animales domésticos y los humanos, intensificando así las tasas de transmisión entre especies. Por tanto, el objetivo de este estudio fue investigar las asociaciones, incluyendo relaciones y similitudes, de la estructura del paisaje, influenciada por actividades humanas, la diversidad de la microbiota intestinal y la abundancia de protozoarios gastrointestinales entre mamíferos silvestres y domésticos en Colombia. La determinación taxonómica se hizo mediante metabarcoding con cebadores dirigidos al gen rRNA 18S y secuenciación Nanopore, con un enfoque principal en la detección de protozoos. Se recopilaron un total de 148 muestras de seis mamíferos silvestres y tres mamíferos domésticos en 29 paisajes focales en Colombia. También se empleó la microscopía para validar algunos agentes. Para describir epidemiológicamente las muestras, se estimaron la riqueza de taxones en la microbiota intestinal, así como la prevalencia, intensidad media y abundancia media de los protozoarios. Se utilizaron regresiones Beta y Poisson bayesianas para evaluar la relación entre las métricas del paisaje y la disimilitud, la diversidad de la microbiota intestinal y de protozoarios, y la abundancia de protozoarios específicos. El estudio identificó varias especies no reportadas previamente en las seis especies silvestres hospedadoras evaluadas. Se observó una proporción predominante de los phylum Ascomycota, Pseudomonadota, Basidiomicota y Apicomplexa, reflejando por un lado una microbiota intestinal saludable, aunque también la posible predominancia de ciertos elementos negativos. Las comparaciones entre caninos y equinos, así como entre tapires y osos entre los mamíferos terrestres, indicaron una mayor similitud tanto en la microbiota intestinal como en los protozoarios. En primates, el mono aullador rojo mostró una proximidad más cercana a los bovinos y equinos que a otros primates. Los hallazgos indicaron que una mayor proporción de cobertura vegetal natural estaba relacionada con una mayor similitud en la microbiota intestinal entre mamíferos silvestres y domésticos. Además, mayores proporciones de cobertura vegetal natural, presencia de cuerpos de agua, número de parches de bosque e irregularidades en la forma de los bosques se asociaron con una mayor diversidad (tanto en riqueza como en equidad) en la microbiota intestinal y de protozoarios intestinales a diferentes escalas.spa
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.methodsThe objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa.spa
dc.format.extentxvi, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86409
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentDoctorado en Ciencias Agrariasspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesAguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-Sspa
dc.relation.referencesAguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Pressspa
dc.relation.referencesArtois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_1spa
dc.relation.referencesChapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.spa
dc.relation.referencesCharlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009spa
dc.relation.referencesClayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).spa
dc.relation.referencesDelahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.spa
dc.relation.referencesJenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002spa
dc.relation.referencesNunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.spa
dc.relation.referencesRashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282spa
dc.relation.referencesRodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305spa
dc.relation.referencesRondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546spa
dc.relation.referencesSmith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460spa
dc.relation.referencesSolórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0spa
dc.relation.referencesUribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822spa
dc.relation.referencesWisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64spa
dc.relation.referencesBard, S. M., & Cain III, J. W. (2019). Pathogen prevalance in American black bears (Ursus americanus amblyceps) of the Jemez Mountains, New Mexico, USA. Journal of Wildlife Diseases, 55(4), 745–754.spa
dc.relation.referencesBaruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.spa
dc.relation.referencesBorka-Vitális, L., Domokos, C., Földvári, G., & Majoros, G. (2017). Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus, 28(1), 20–30.spa
dc.relation.referencesBrena, P., Gauthier, D., Humeau, A., Baurier, F., Dej, F., Lemberger, K., Chollet, J.-Y., & Decors, A. (2018). How Can Computer Tools Improve Early Warnings for Wildlife Diseases? In How Information Systems Can Help in Alarm/Alert Detection (pp. 241–256). Elsevier.spa
dc.relation.referencesBronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.spa
dc.relation.referencesChica Cardenas, L. A. (2021). Estimating the andean bear diet through DNA metabarcoding and its relationships to the gut microbiome [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/58061spa
dc.relation.referencesColwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1311), 101–118.spa
dc.relation.referencesCruz Hurtado, S. S. M., & Muñoz Huamaní, M. (2016). Identificación de parásitos gastrointestinales de carnívoros en cautiverio criados en el centro recreacional municipal del Cerrito de la Libertad de Huancayo.spa
dc.relation.referencesDiamond, J. (2016). Sociedades comparadas: Un pequeño libro sobre grandes temas. Debate.spa
dc.relation.referencesDubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278spa
dc.relation.referencesElbroch, L. M., Lendrum, P. E., Allen, M. L., & Wittmer, H. U. (2015). Nowhere to hide: Pumas, black bears, and competition refuges. Behavioral Ecology, 26(1), 247–254spa
dc.relation.referencesFigueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus, 26(1), 21–27. https://doi.org/10.2192/URSUS-D-14-00034.1spa
dc.relation.referencesFrancis, E. K., & Šlapeta, J. (2022). A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. International Journal for Parasitology, 52(6), 331–342. https://doi.org/10.1016/j.ijpara.2022.01.002spa
dc.relation.referencesGarcía Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.spa
dc.relation.referencesGilbert, B. (1989). Behavioral plasticity and bear-human conflicts. 1–8.spa
dc.relation.referencesGoldstein, I., Paisley, S., Wallace, R., Jorgenson, J. P., Cuesta, F., & Castellanos, A. (2006). Andean bear–livestock conflicts: A review. Ursus, 17(1), 8–15.spa
dc.relation.referencesGoldstein, I. R. (2002). Andean bear-cattle interactions and tree nest use in Bolivia and Venezuela. Ursus, 369–372.spa
dc.relation.referencesHan, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007spa
dc.relation.referencesIshibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.spa
dc.relation.referencesJorgenson, J. P., & Sandoval-A, S. (2005). Andean bear management needs and interactions with humans in Colombia. Ursus, 16(1), 108–116.spa
dc.relation.referencesKattan, G., Hernández, O. L., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., Restrepo, H., & Cuesta, F. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx, 38(2), 155–163.spa
dc.relation.referencesKindschuh, S. R., Cain III, J. W., Daniel, D., & Peyton, M. A. (2016). Efficacy of GPS cluster analysis for predicting carnivory sites of a wide‐ranging omnivore: The American black bear. Ecosphere, 7(10), e01513.spa
dc.relation.referencesKing, J. S., Jenkins, D. J., Ellis, J. T., Fleming, P., Windsor, P. A., & Šlapeta, J. (2011). Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. The Veterinary Journal, 188(1), 24–33.spa
dc.relation.referencesLesmerises, R., Rebouillat, L., Dussault, C., & St-Laurent, M.-H. (2015). Linking GPS telemetry surveys and scat analyses helps explain variability in black bear foraging strategies. PLoS One, 10(7), e0129857.spa
dc.relation.referencesLongmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.spa
dc.relation.referencesMackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79.spa
dc.relation.referencesMata, A. P., Pérez, H. G., & Parra, J. G. (2016). Morphological molecular description of Baylisascaris venezuelensis, n. Sp. From a natural infection in the South American spectacled bear Tremarctos ornatus Cuvier, 1825 in Venezuela. Neotrop Helminthol, 10, 85–103.spa
dc.relation.referencesMcCullough, D. R. (1982). Behavior, bears, and humans. Wildlife Society Bulletin, 27–33spa
dc.relation.referencesMonsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.spa
dc.relation.referencesNavarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.spa
dc.relation.referencesOniki-Willis, Y., & Willis, E. O. (2018). Tick (Acarina) diversity from South American birds and mammals. Atualidades Ornitológicas, 206.spa
dc.relation.referencesPalmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology (Durham), 72(4), 1512–1513.spa
dc.relation.referencesParra-Romero, A., Zamudio-López, J., Camargo-Cárdenas, J. E., Palacios-Medina, C. R., Torres, L., Castro, E., Espíndola, J., Meneses, H., Vera-Villamizar, L., Moreno-Gutiérrez, S., López-Velandia, O., Saenz, F., Rodríguez, M., Franco, N., Clavijo-Ríos, C., Rivera-Torres, C., López-Orjuela, H., Pachón-Bejarano, G., Jimenez-Palomo, G., … Márquez, R. (2019). Ocupación del oso andino (Tremarctos ornatus) en la región centro-norte de la Cordillera Oriental de Colombia. PNN de Colombia, CAR Cundinamarca, Corpoboyacá, Corporinoquía, Corpochivor, Cormacarena, Corpoguavio, ABCA y WCS.spa
dc.relation.referencesPatz, J., Githeko, A., McCarty, J., Hussein, S., Confalonieri, U., & De Wet, N. (2003). Climate change and infectious diseases. Climate Change and Human Health: Risks and Responses, 2, 103–132.spa
dc.relation.referencesPeña-Quistial, M. G., Benavides-Montaño, J. A., Duque, N. J. R., & Benavides-Montaño, G. A. (2020). Prevalence and associated risk factors of Intestinal parasites in rural high-mountain communities of the Valle del Cauca—Colombia. PLoS Neglected Tropical Diseases, 14(10), e0008734.spa
dc.relation.referencesPeyton, B. (1999). Spectacled bear conservation action plan. Bears: Status Survey and Conservation Action Plan, 157–164.spa
dc.relation.referencesQuintero, L. R., Pulido-Villamarín, A., Parra-Romero, Á., Castañeda-Salazar, R., Pérez-Torres, J., & Vela-Vargas, I. M. (2023). Andean bear gastrointestinal parasites in Chingaza Massif, Colombia. Ursus, 2023(34e4). https://doi.org/10.2192/URSUS-D21-00020.1spa
dc.relation.referencesSasmal, I., Gould, N. P., Schuler, K. L., Chang, Y.-F., Thachil, A., Strules, J., Olfenbuttel, C., Datta, S., & DePerno, C. S. (2019). Leptospirosis in urban and suburban american black bears (ursus americanus) in western north carolina, usa. Journal of Wildlife Diseases, 55(1), 74–83.spa
dc.relation.referencesSchwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905.spa
dc.relation.referencesSemblante, G. U., Phan, H. V., Hai, F. I., Xu, Z.-Q., Price, W. E., & Nghiem, L. D. (2017). The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Science of The Total Environment, 607–608, 558–567. https://doi.org/10.1016/j.scitotenv.2017.06.253spa
dc.relation.referencesShaheen, M. N. F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4). https://doi.org/10.1002/rmv.2326spa
dc.relation.referencesSmith, K. F., Acevedo‐Whitehouse, K., & Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation, 12(1), 1–12.spa
dc.relation.referencesSmith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.spa
dc.relation.referencesStensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189spa
dc.relation.referencesStephenson, N., Higley, J. M., Sajecki, J. L., Chomel, B. B., Brown, R. N., & Foley, J. E. (2015). Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne and Zoonotic Diseases, 15(2), 116–123.spa
dc.relation.referencesUjvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.spa
dc.relation.referencesVelez-Liendo, X., & García-Rangel, S. (2018). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017: E.T22066A123792952. https://www.iucnredlist.org/species/22066/123792952spa
dc.relation.referencesWestmoreland, L. S., Stoskopf, M. K., & Maggi, R. G. (2016). Prevalence of Anaplasma phagocytophilum in North Carolina eastern black bears (Ursus americanus). Journal of Wildlife Diseases, 52(4), 968–970.spa
dc.relation.referencesWisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64.spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesWu, J., Han, J.-Q., Shi, L.-Q., Zou, Y., Li, Z., Yang, J.-F., Huang, C.-Q., & Zou, F.-C. (2018). Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic black bear (Ursus thibetanus) in Yunnan Province, Southwestern China. Parasitology Research, 117(4), 1139–1145.spa
dc.relation.referencesWultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540spa
dc.relation.referencesZárate Rodríguez, P. T., Collazos-Escobar, L. F., & Benavides-Montaño, J. A. (2022). Endoparasites Infecting Domestic Animals and Spectacled Bears (Tremarctos ornatus) in the Rural High Mountains of Colombia. Veterinary Sciences, 9(10), 537. https://doi.org/10.3390/vetsci9100537spa
dc.relation.referencesZhang, L., Yang, X., Wu, H., Gu, X., Hu, Y., & Wei, F. (2011). The parasites of giant pandas: Individual-based measurement in wild animals. Journal of Wildlife Diseases, 47(1), 164–171spa
dc.relation.referencesAcosta Z, M., Tantaleán V, M., & Serrano-Martínez, E. (2015). Identificación de Parásitos Gastrointestinales por Coproscopía en Carnívoros Silvestres del Zoológico Parque de las Leyendas, Lima, Perú . In Revista de Investigaciones Veterinarias del Perú (Vol. 26, pp. 282–290). scielospa
dc.relation.referencesAntil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7spa
dc.relation.referencesAristizabal-Duque, S., Orozco Jimenez, L., Zapata Escobar, C., & Palacio-Baena, J. (2018). Conservation genetics of otters: Review about the use of noninvasive samples. Therya, 9, 85–93. https://doi.org/10.12933/therya-18-515spa
dc.relation.referencesArnemo, J. M., Ahlqvist, P., Andersen, R., Berntsen, F., Ericsson, G., Odden, J., Brunberg, S., Segerström, P., & Swenson, J. E. (2006). Risk of capture-related mortality in large free-ranging mammals: Experiences from Scandinavia. Wildlife Biology, 12(1), 109–113. https://doi.org/10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2spa
dc.relation.referencesBudel, J. C. C., Hess, M. K., Bilton, T. P., Henry, H., Dodds, K. G., Janssen, P. H., McEwan, J. C., & Rowe, S. J. (2022). Low-cost sam-ple preservation methods for high-throughput processing of rumen microbiomes. Animal Microbiome, 4(1), 39. https://doi.org/10.1186/s42523-022-00190-zspa
dc.relation.referencesBurnham, C. M., McKenney, E. A., Heugten, K. A., Minter, L. J., & Trivedi, S. (2023). Effect of fecal preservation method on captive southern white rhinoceros gut microbiome. Wildlife Society Bulletin, 47(2), e1436. https://doi.org/10.1002/wsb.1436spa
dc.relation.referencesCamacho-Sanchez, M., Burraco, P., Gomez-Mestre, I., & Leonard, J. A. (2013). Preservation of RNA and DNA from mammal sam-ples under field conditions. Molecular Ecology Resources, 13(4), 663–673. https://doi.org/10.1111/1755-0998.12108spa
dc.relation.referencesChoo, J., Leong, L., & Rogers, G. (2015). Sample storage conditions signficantly influence faecal microbiome profiles. Scientific Reports, 5, 16350. https://doi.org/10.1038/srep16350spa
dc.relation.referencesFox, J., Marquez, M., & Bouchet-Valat, M. (2023). Rcmdr: R Commander. R Package Version 2.9-0.spa
dc.relation.referencesFrantzen, M. A., Silk, J. B., Ferguson, J. W., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428. https://doi.org/10.1046/j.1365-294x.1998.00449.xspa
dc.relation.referencesFreed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1.spa
dc.relation.referencesGill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.), 312(5778), 1355–1359. https://doi.org/10.1126/science.1124234spa
dc.relation.referencesGonzales, F. N., Neira-Llerena, J., Llerena, G., & Zeballos, H. (2016). Small vertebrates in the spectacled bear_s diet (Tremarctos ornatus Cuvier, 1825) in the north of Peru . In Revista Peruana de Biología (Vol. 23, pp. 61–66). scielospa
dc.relation.referencesGorzelak, M. A., Gill, S. K., Tasnim, N., Ahmadi-Vand, Z., Jay, M., & Gibson, D. L. (2015). Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLOS ONE, 10(8), e0134802.spa
dc.relation.referencesIker, B. C., Bright, K. R., Pepper, I. L., Gerba, C. P., & Kitajima, M. (2013). Evaluation of commercial kits for the extraction and puri-fication of viral nucleic acids from environmental and fecal samples. Journal of Virological Methods, 191(1), 24–30. https://doi.org/10.1016/j.jviromet.2013.03.011spa
dc.relation.referencesJedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. The Auk, 134(1), 116–127. https://doi.org/10.1642/AUK-16-103.1spa
dc.relation.referencesJin, S. S., Amnon, A., L., M. J., R., A. K., Zech, X. Z., Greg, H., & Rob, K. (2016). Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems, 1(3), 10.1128/msystems.00021-16. https://doi.org/10.1128/msystems.00021-16spa
dc.relation.referencesKrogsgaard, L. R., Andersen, L. O. ’Brien, Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syn-drome. Clinical and Translational Gastroenterology, 9(6), 161. https://doi.org/10.1038/s41424-018-0027-2spa
dc.relation.referencesKumar, G., & Bhadury, P. (2022). Effect of different fixatives on yield of DNA from human fecal samples. IOP SciNotes, 3(2), 24002. https://doi.org/10.1088/2633-1357/ac6d2espa
dc.relation.referencesLongmire, J., Maltbie, M., & Baker, R. J. (1997). Use of ‘Lysis Buffer’ in DNA isolation and its implication for museum collections /.spa
dc.relation.referencesMatysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255. https://doi.org/10.1016/j.tifs.2016.05.011spa
dc.relation.referencesMenu, E., Mary, C., Toga, I., Raoult, D., Ranque, S., & Bittar, F. (2018). Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Research Notes, 11(1), 206. https://doi.org/10.1186/s13104-018-3300-2spa
dc.relation.referencesMorgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Mi-crobiological Methods, 66(2), 183–193. https://doi.org/10.1016/j.mimet.2006.02.017spa
dc.relation.referencesMorgan, L. R., Marsh, K. J., Tolleson, D. R., & Youngentob, K. N. (2021). The Application of NIRS to Determine Animal Physiolog-ical Traits for Wildlife Management and Conservation. In Remote Sensing (Vol. 13, Issue 18). https://doi.org/10.3390/rs13183699spa
dc.relation.referencesNgcamphalala, P. I., Lamb, J., & Mukaratirwa, S. (2019). Molecular identification of hookworm isolates from stray dogs, humans and selected wildlife from South Africa. Journal of Helminthology, 94, e39. https://doi.org/10.1017/S0022149X19000130spa
dc.relation.referencesPabón, J., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2001). La atmósfera, eltiempo y el clima. In P. Leyva (Ed.), El medio ambiente en Colombia. (pp. 35–91). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM.spa
dc.relation.referencesPapaiakovou, M., Pilotte, N., Baumer, B., Grant, J., Asbjornsdottir, K., Schaer, F., Hu, Y., Aroian, R., Walson, J., & Williams, S. A. (2018). A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases, 12(1), e0006130. https://doi.org/10.1371/journal.pntd.0006130spa
dc.relation.referencesPlimpton, L. D., Henger, C. S., Munshi-South, J., Tufts, D., Kross, S., & Diuk-Wasser, M. (2021). Use of molecular scatology to assess the diet of feral cats living in urban colonies. Journal of Urban Ecology, 7(1), juab022. https://doi.org/10.1093/jue/juab022spa
dc.relation.referencesRondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122546spa
dc.relation.referencesSeutin, G., White, B., & Boag, P. (1991). Seutin G, White BN, Boag PT.. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69: 82-90. Canadian Journal of Zoology, 69, 82–90. https://doi.org/10.1139/z91-013spa
dc.relation.referencesvan der Reis, A. L., Beckley, L. E., Olivar, M. P., & Jeffs, A. G. (2023). Nanopore short-read sequencing: A quick, cost-effective and accurate method for DNA metabarcoding. Environmental DNA, 5(2), 282–296. https://doi.org/10.1002/edn3.374spa
dc.relation.referencesVillamizar, X., Higuera, A., Herrera, G., Vasquez-A, L. R., Buitron, L., Muñoz, L. M., Gonzalez-C, F. E., Lopez, M. C., Giraldo, J. C., & Ramírez, J. D. (2019). Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. BMC Infectious Diseases, 19(1), 190. https://doi.org/10.1186/s12879-019-3810-0spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesWood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Bi-ology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46spa
dc.relation.referencesWu, C., Chen, T., Xu, W., Zhang, T., Pei, Y., Yang, Y., Zhang, F., Guo, H., Wang, Q., Wang, L., & Zhao, B. (2021). The maintenance of microbial community in human fecal samples by a cost effective preservation buffer. Scientific Reports, 11(1), 13453. https://doi.org/10.1038/s41598-021-92869-7spa
dc.relation.referencesWultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540spa
dc.relation.referencesYu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347spa
dc.relation.referencesArce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8spa
dc.relation.referencesAron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.05spa
dc.relation.referencesArshad, M. A., Hassan, F., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883–895. https://doi.org/10.1016/j.aninu.2021.03.004spa
dc.relation.referencesAvramenko, R. W., Redman, E. M., Lewis, R., Yazwinski, T. A., Wasmuth, J. D., & Gilleard, J. S. (2015). Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLOS ONE, 10(12), e0143559. https://doi.org/10.1371/journal.pone.0143559spa
dc.relation.referencesBard, S. M., & Cain, J. W. (2019). PATHOGEN PREVALANCE IN AMERICAN BLACK BEARS (URSUS AMERICANUS AMBLYCEPS) OF THE JEMEZ MOUNTAINS, NEW MEXICO, USA. Journal of Wildlife Diseases, 55(4), 745. https://doi.org/10.7589/2018-12-286spa
dc.relation.referencesBelvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046spa
dc.relation.referencesBerrilli, F., Di Cave, D., Cavallero, S., & D’Amelio, S. (2012). Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00141spa
dc.relation.referencesBlum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287spa
dc.relation.referencesBonDurant, R. H. (1997). Pathogenesis, Diagnosis, and Management of Trichomoniasis in Cattle. Veterinary Clinics of North America: Food Animal Practice, 13(2), 345–361. https://doi.org/10.1016/S0749-0720(15)30346-7spa
dc.relation.referencesBroom, D. M. (2019). Animal welfare complementing or conflicting with other sustainability issues. Applied Animal Behaviour Science, 219, 104829. https://doi.org/10.1016/j.applanim.2019.06.010spa
dc.relation.referencesBroom, D. M., Galindo, F. A., & Murgueitio, E. (2013). Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132025. https://doi.org/10.1098/rspb.2013.2025spa
dc.relation.referencesBuret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4spa
dc.relation.referencesCalo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12spa
dc.relation.referencesChen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093spa
dc.relation.referencesCollántes-Fernández, E., Fort, M. C., Ortega-Mora, L. M., & Schares, G. (2018). Trichomonas. In M. Florin-Christensen & L. Schnittger (Eds.), Parasitic Protozoa of Farm Animals and Pets (pp. 313–388). Springer International Publishing. https://doi.org/10.1007/978-3-319-70132-5_14spa
dc.relation.referencesDa Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149spa
dc.relation.referencesDanneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043spa
dc.relation.referencesDe Passillé, A., & Rushen, J. (2005). Food safety and environmental issues in animal welfare. Revue Scientifique et Technique-Office International Des Épizooties, 24(2), 757spa
dc.relation.referencesde Thoisy, B., Michel, J.-C., Vogel, I., & Vié, J.-C. (2000). A SURVEY OF HEMOPARASITE INFECTIONS IN FREE-RANGING MAMMALS AND REPTILES IN FRENCH GUIANA. Journal of Parasitology, 86(5), 1035–1040. https://doi.org/10.1645/0022-3395(2000)086[1035:ASOHII]2.0.CO;2spa
dc.relation.referencesDworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51spa
dc.relation.referencesEcheverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940spa
dc.relation.referencesEriksson, M., & Lindstrom, B. (2008). A salutogenic interpretation of the Ottawa Charter. Health Promotion International, 23(2), 190–199. https://doi.org/10.1093/heapro/dan014spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.spa
dc.relation.referencesFisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947spa
dc.relation.referencesFox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’.spa
dc.relation.referencesFrankish, C. J., Green, L. W., Ratner, P. A., Chomik, T., & Larsen, C. (1996). Health impact assessment as a tool for population health promotion and public policy. A Report Submitted to the Health Promotion Division of Health Canada. Institute of Health Promotion Research, University of British Columbia.spa
dc.relation.referencesFreed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpynspa
dc.relation.referencesGerace, E., Presti, V. D. M. L., & Biondo, C. (2019). Cryptosporidium infection: Epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119–123. https://doi.org/10.1556/1886.2019.00019spa
dc.relation.referencesHatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8spa
dc.relation.referencesHe, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833spa
dc.relation.referencesIDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapasspa
dc.relation.referencesIkawa, K., Aoki, M., Ichikawa, M., & Itagaki, T. (2011). The first detection of Babesia species DNA from Japanese black bears (Ursus thibetanus japonicus) in Japan. Parasitology International, 60(2), 220–222. https://doi.org/10.1016/j.parint.2011.02.005spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi (Igac). (2023). Datos abiertos Igac.spa
dc.relation.referencesJackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9spa
dc.relation.referencesJakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.spa
dc.relation.referencesJinnai, M., Kawabuchi-Kurata, T., Tsuji, M., Nakajima, R., Hirata, H., Fujisawa, K., Shiraki, H., Asakawa, M., Nasuno, T., & Ishihara, C. (2010). Molecular evidence of the multiple genotype infection of a wild Hokkaido brown bear (Ursus arctos yesoensis) by Babesia sp. UR1. Veterinary Parasitology, 173(1–2), 128–133. https://doi.org/10.1016/j.vetpar.2010.06.018spa
dc.relation.referencesKohl, K. D. (2012). Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5), 591–602. https://doi.org/10.1007/s00360-012-0645-zspa
dc.relation.referencesKohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.spa
dc.relation.referencesKrogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2spa
dc.relation.referencesLaha, R., Das, M., & Sen, A. (2015). Morphology, epidemiology, and phylogeny of Babesia: An overview. Tropical Parasitology, 5(2), 94.spa
dc.relation.referencesLange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360spa
dc.relation.referencesLantz, E. L., Lonsdorf, E. V., Heintz, M. R., Murray, C. M., Lipende, I., Travis, D. A., & Santymire, R. M. (2018). Non‐invasive quantification of immunoglobulin A in chimpanzees ( Pan troglodytes schweinfurthii ) at Gombe National Park, Tanzania. American Journal of Primatology, 80(1), e22558. https://doi.org/10.1002/ajp.22558spa
dc.relation.referencesLausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5spa
dc.relation.referencesLeung, J. M., Graham, A. L., & Knowles, S. C. L. (2018). Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Frontiers in Microbiology, 9, 843. https://doi.org/10.3389/fmicb.2018.00843spa
dc.relation.referencesLi, X., Nguyen, T., Xiao, C., Levy, A., Akagi, Y., Silkie, S., & Atwill, E. R. (2020). Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms, 8(6), 914. https://doi.org/10.3390/microorganisms8060914spa
dc.relation.referencesLimon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002spa
dc.relation.referencesLongmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.spa
dc.relation.referencesLovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409spa
dc.relation.referencesLuo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880spa
dc.relation.referencesMancera, K. F., Zarza, H., de Buen, L. L., García, A. A. C., Palacios, F. M., & Galindo, F. (2018). Integrating links between tree coverage and cattle welfare in silvopastoral systems evaluation. Agronomy for Sustainable Development, 38(2), 19. https://doi.org/10.1007/s13593-018-0497-3spa
dc.relation.referencesMans, B. J., Pienaar, R., & Latif, A. A. (2015). A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife, 4(1), 104–118. https://doi.org/10.1016/j.ijppaw.2014.12.006spa
dc.relation.referencesMcCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.spa
dc.relation.referencesMiralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity. Food & Agriculture Org.spa
dc.relation.referencesNavarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175spa
dc.relation.referencesO’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.spa
dc.relation.referencesOlias, P., Schade, B., & Mehlhorn, H. (2011). Molecular pathology, taxonomy and epidemiology of Besnoitia species (Protozoa: Sarcocystidae). Infection, Genetics and Evolution, 11(7), 1564–1576. https://doi.org/10.1016/j.meegid.2011.08.006spa
dc.relation.referencesOstfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009spa
dc.relation.referencesParajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707spa
dc.relation.referencesPark, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.spa
dc.relation.referencesPerry, R. W., Thill, R. E., & Leslie Jr, D. M. (2007). Selection of roosting habitat by forest bats in a diverse forested landscape. Forest Ecology and Management, 238(1–3), 156–166.spa
dc.relation.referencesPeterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.spa
dc.relation.referencesPfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007spa
dc.relation.referencesPhillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148spa
dc.relation.referencesRashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282spa
dc.relation.referencesRizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403spa
dc.relation.referencesRoncancio-Duque, N., García-Ariza, J. E., Rivera-Franco, N., Gonzalez-Ríos, A. M., & López-Alvarez, D. (2024). Comparison of DNA quantity and quality from fecal samples of mammals transported in ethanol or lysis buffer. One Health, 18, 100731. https://doi.org/10.1016/j.onehlt.2024.100731spa
dc.relation.referencesRodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305spa
dc.relation.referencesRondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546spa
dc.relation.referencesRulli, M. C., D’Odorico, P., Galli, N., & Hayman, D. T. S. (2021). Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2(6), 409–416. https://doi.org/10.1038/s43016-021-00285-xspa
dc.relation.referencesRyan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350spa
dc.relation.referencesSánchez-Romero, R., Balvanera, P., Castillo, A., Mora, F., García-Barrios, L. E., & González-Esquivel, C. E. (2021). Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. Forest Ecology and Management, 479, 118506. https://doi.org/10.1016/j.foreco.2020.118506spa
dc.relation.referencesSauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052spa
dc.relation.referencesSkinner, D., Mitcham, J. R., Starkey, L. A., Noden, B. H., Fairbanks, W. S., & Little, S. E. (2017). PREVALENCE OF BABESIA SPP., EHRLICHIA SPP., AND TICK INFESTATIONS IN OKLAHOMA BLACK BEARS ( URSUS AMERICANUS ). Journal of Wildlife Diseases, 53(4), 781–787. https://doi.org/10.7589/2017-02-029spa
dc.relation.referencesSokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan.spa
dc.relation.referencesSolórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0spa
dc.relation.referencesSong, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858spa
dc.relation.referencesStensvold, C. R., & van der Giezen, M. (2018). Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends in Parasitology, 34(5), 369–377. https://doi.org/10.1016/j.pt.2018.02.004spa
dc.relation.referencesvan der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842spa
dc.relation.referencesWilliams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-wspa
dc.relation.referencesWorsley, S. F., Davies, C. S., Mannarelli, M.-E., Hutchings, M. I., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2021). Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Animal Microbiome, 3(1), 84. https://doi.org/10.1186/s42523-021-00149-6spa
dc.relation.referencesYabsley, M. J., Murphy, S. M., & Cunningham, M. W. (2006). Molecular Detection and Characterization of Cytauxzoon felis and a Babesia Species in Cougars from Florida. Journal of Wildlife Diseases, 42(2), 366–374. https://doi.org/10.7589/0090-3558-42.2.366spa
dc.relation.referencesYoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587spa
dc.relation.referencesAcevedo-Whitehouse, K., & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3429–3438. https://doi.org/10.1098/rstb.2009.0128spa
dc.relation.referencesAguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S7spa
dc.relation.referencesAguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press.spa
dc.relation.referencesArce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8spa
dc.relation.referencesAron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.057spa
dc.relation.referencesArtois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_10spa
dc.relation.referencesBarrett, L. G., Thrall, P. H., Burdon, J. J., & Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology & Evolution, 23(12), 678–685. https://doi.org/10.1016/j.tree.2008.06.017spa
dc.relation.referencesBaruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.spa
dc.relation.referencesBecker, D. J., Streicker, D. G., & Altizer, S. (2015). Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta‐analysis. Ecology Letters, 18(5), 483–495. https://doi.org/10.1111/ele.12428spa
dc.relation.referencesBegon, M., & Townsend, C. R. (2021). Ecology: From individuals to ecosystems. John Wiley & Sonsspa
dc.relation.referencesBelvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046spa
dc.relation.referencesBiek, R., & Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology, 19(17), 3515–3531. https://doi.org/10.1111/j.1365-294X.2010.04679.xspa
dc.relation.referencesBlum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287spa
dc.relation.referencesBonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput‐Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.xspa
dc.relation.referencesBorcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R (Vol. 2). Springer.spa
dc.relation.referencesBronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.spa
dc.relation.referencesBuret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4spa
dc.relation.referencesBustamante-Manrique, S. (2023). Efeito da restrição de hábitat no comportamento de bugios (Alouatta spp.).spa
dc.relation.referencesBustamante-Manrique, S., Botero-Henao, N., Castaño, J. H., & Link, A. (2021). Activity budget, home range and diet of the Colombian night monkey (Aotus lemurinus) in peri-urban forest fragments. Primates, 62(3), 529–536. https://doi.org/10.1007/s10329-021-00895-wspa
dc.relation.referencesCalo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12spa
dc.relation.referencesChapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.spa
dc.relation.referencesCharlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009spa
dc.relation.referencesChen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093spa
dc.relation.referencesClayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).spa
dc.relation.referencesDa Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149spa
dc.relation.referencesDanneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043spa
dc.relation.referencesDaszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science, 287(5452), 443–449. https://doi.org/10.1126/science.287.5452.443spa
dc.relation.referencesDeem, S. L. (2015). Conservation medicine to one health: The role of zoologic veterinarians. In Fowler’s Zoo and Wild Animal Medicine, Volume 8 (pp. 698–703). Elsevier.spa
dc.relation.referencesDelahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.spa
dc.relation.referencesDubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278.spa
dc.relation.referencesDworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51spa
dc.relation.referencesEcheverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940spa
dc.relation.referencesFahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.xspa
dc.relation.referencesFehlmann, G., O’riain, M. J., FÜrtbauer, I., & King, A. J. (2020). Behavioral Causes, Ecological Consequences, and Management Challenges Associated with Wildlife Foraging in Human-Modified Landscapes. BioScience, biaa129. https://doi.org/10.1093/biosci/biaa129spa
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.spa
dc.relation.referencesFisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947spa
dc.relation.referencesFletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric Protozoa in the Developed World: A Public Health Perspective. Clinical Microbiology Reviews, 25(3), 420–449. https://doi.org/10.1128/CMR.05038-11spa
dc.relation.referencesFountain‐Jones, N. M., Craft, M. E., Funk, W. C., Kozakiewicz, C., Trumbo, D. R., Boydston, E. E., Lyren, L. M., Crooks, K., Lee, J. S., VandeWoude, S., & Carver, S. (2017). Urban landscapes can change virus gene flow and evolution in a fragmentation‐sensitive carnivore. Molecular Ecology, 26(22), 6487–6498. https://doi.org/10.1111/mec.14375spa
dc.relation.referencesFox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’spa
dc.relation.referencesFreed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpynspa
dc.relation.referencesGale, P., Drew, T., Phipps, L. P., David, G., & Wooldridge, M. (2009). The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of Applied Microbiology, 106(5), 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.xspa
dc.relation.referencesGarcía Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.spa
dc.relation.referencesGiraldo, P., Gómez-Posada, C., Martínez, J., & Kattan, G. (2007). Resource Use and Seed Dispersal by Red Howler Monkeys ( Alouatta seniculus ) in a Colombian Andean Forest. Neotropical Primates, 14(2), 55–64. https://doi.org/10.1896/044.014.0202spa
dc.relation.referencesHatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8spa
dc.relation.referencesHe, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833spa
dc.relation.referencesIDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapasspa
dc.relation.referencesIDEAM (Instituto de Hidrología, M. y E. A. de C. (2017). Resultados Monitoreo de la deforestación 2017.spa
dc.relation.referencesImam, T. (2011). The complexities in the classification of protozoa: A challenge to parasitologists. Bayero Journal of Pure and Applied Sciences, 2(2), 159–164. https://doi.org/10.4314/bajopas.v2i2.63805spa
dc.relation.referencesIshibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.spa
dc.relation.referencesJackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9spa
dc.relation.referencesJakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.spa
dc.relation.referencesJenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002spa
dc.relation.referencesJensen, S. K., Aars, J., Lydersen, C., Kovacs, K. M., & Åsbakk, K. (2010). The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: Evidence for a marine transmission pathway? Polar Biology, 33(5), 599–606. https://doi.org/10.1007/s00300-009-0735-xspa
dc.relation.referencesJin, Y., Wu, S., Zeng, Z., & Fu, Z. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9. https://doi.org/10.1016/j.envpol.2016.11.045spa
dc.relation.referencesKeesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652. https://doi.org/10.1038/nature09575spa
dc.relation.referencesKlain, V., Mentz, M. B., Bustamante-Manrique, S., & Bicca-Marques, J. C. (2023). Landscape structure has a weak influence on the parasite richness of an arboreal folivorous–frugivorous primate in anthropogenic landscapes. Landscape Ecology, 38(5), 1237–1247. https://doi.org/10.1007/s10980-023-01603-3spa
dc.relation.referencesKohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.spa
dc.relation.referencesKowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.). (2015). Howler monkeys: Behavior, ecology and conservation. Springer.spa
dc.relation.referencesKrogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2spa
dc.relation.referencesLange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360spa
dc.relation.referencesLausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5spa
dc.relation.referencesLeeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862spa
dc.relation.referencesLimon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002spa
dc.relation.referencesLongmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collectionsspa
dc.relation.referencesLovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409spa
dc.relation.referencesLu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature Protocols, 17(12), 2815–2839. https://doi.org/10.1038/s41596-022-00738-yspa
dc.relation.referencesLuo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880spa
dc.relation.referencesMackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79spa
dc.relation.referencesMartínez-Mota, R., Pozo-Montuy, G., Bonilla Sánchez, Y. M., & Gillespie, T. R. (2018). Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya, 9(2), 161–169. https://doi.org/10.12933/therya-18-572spa
dc.relation.referencesMazmanian, S. K., & Lee, Y. K. (2014). Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 44(1), 1. https://doi.org/10.4167/jbv.2014.44.1.1spa
dc.relation.referencesMcCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.spa
dc.relation.referencesMcKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., & Knight, R. (2017). The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 57(4), 690–704. https://doi.org/10.1093/icb/icx090spa
dc.relation.referencesMiller, S., Zieger, U., Ganser, C., Satterlee, S. A., Bankovich, B., Amadi, V., Hariharan, H., Stone, D., & Wisely, S. M. (2015). INFLUENCE OF LAND USE AND CLIMATE ON SALMONELLA CARRIER STATUS IN THE SMALL INDIAN MONGOOSE ( HERPESTES AUROPUNCTATUS ) IN GRENADA, WEST INDIES. Journal of Wildlife Diseases, 51(1), 60–68. https://doi.org/10.7589/2014-02-046spa
dc.relation.referencesMolina Benavides, R. A., Campos Gaona, R., Sánchez Guerrero, H., Giraldo Patiño, L., & Atzori, A. S. (2019). Sustainable Feedbacks of Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems, 7(4), 52. https://doi.org/10.3390/systems7040052spa
dc.relation.referencesMonsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.spa
dc.relation.referencesMontilla, S. O., Mopán-Chilito, A. M., Murcia, L. N. S., Triana, J. D. M., Ruiz, O. M. C., Montoya-Cepeda, J., Gutierrez-Barreto, D. A., Holguín-Vivas, J. A., Agámez, C. J., Pérez-Grisales, L. J., Cruz-Moncada, M., Corredor-Durango, N. J., Díaz, E. A. C., Cardona-Cardona, A. H., Franco-Pérez, E., Rivera-Ospina, A. M., & Link, A. (2021). Activity Patterns, Diet and Home Range of Night Monkeys (Aotus griseimembra and Aotus lemurinus) in Tropical Lowland and Mountain Forests of Central Colombia. International Journal of Primatology, 42(1), 130–153. https://doi.org/10.1007/s10764-020-00192-1spa
dc.relation.referencesMuehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130(4), 546–550. https://doi.org/10.1002/ajpa.20391spa
dc.relation.referencesNourani, L., Zakeri, S., & Dinparast Djadid, N. (2020). Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas—A review. Infection, Genetics and Evolution, 81, 104244. https://doi.org/10.1016/j.meegid.2020.104244spa
dc.relation.referencesNunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.spa
dc.relation.referencesO’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.spa
dc.relation.referencesOstfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009spa
dc.relation.referencesOttman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104spa
dc.relation.referencesPalma, A. C., Vélez, A., Gómez‐Posada, C., López, H., Zárate, D. A., & Stevenson, P. R. (2011). Use of space, activity patterns, and foraging behavior of red howler monkeys ( Alouatta seniculus ) in an Andean forest fragment in Colombia. American Journal of Primatology, 73(10), 1062–1071. https://doi.org/10.1002/ajp.20973spa
dc.relation.referencesPang, K.-L., Hassett, B. T., Shaumi, A., Guo, S.-Y., Sakayaroj, J., Chiang, M. W.-L., Yang, C.-H., & Jones, E. B. G. (2021). Pathogenic fungi of marine animals: A taxonomic perspective. Fungal Biology Reviews, 38, 92–106. https://doi.org/10.1016/j.fbr.2021.03.008spa
dc.relation.referencesParajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707spa
dc.relation.referencesPark, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.spa
dc.relation.referencesPeterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.spa
dc.relation.referencesPfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007spa
dc.relation.referencesPhillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148spa
dc.relation.referencesQin, W., Song, P., Lin, G., Huang, Y., Wang, L., Zhou, X., Li, S., & Zhang, T. (2020). Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 11, 125. https://doi.org/10.3389/fmicb.2020.00125spa
dc.relation.referencesRashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282spa
dc.relation.referencesRinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014spa
dc.relation.referencesRizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403spa
dc.relation.referencesRodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305spa
dc.relation.referencesRoncancio Duque, N. J. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273. https://doi.org/10.15446/caldasia.v43n2.84845spa
dc.relation.referencesRoncancio Duque, N. J., Rojas Días, V., Ríos Franco, C. A., Gómez-Posada, C., Gutiérrez-Chacón, C., Giraldo, P., Velasco, J. A., & Franco, P. (2012). Plan de conservación y manejo del tití gris (Saguinus leucopus). 45.spa
dc.relation.referencesRondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546spa
dc.relation.referencesRondón, S., León, C., Link, A., & González, C. (2019). Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malaria Journal, 18(1), 1–10.spa
dc.relation.referencesRowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8spa
dc.relation.referencesRyan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350spa
dc.relation.referencesSauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052spa
dc.relation.referencesSchurer, J., Mosites, E., Li, C., Meschke, S., & Rabinowitz, P. (2016). Community-based surveillance of zoonotic parasites in a ‘One Health’ world: A systematic review. One Health, 2, 166–174. https://doi.org/10.1016/j.onehlt.2016.11.002spa
dc.relation.referencesSchwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905spa
dc.relation.referencesSeabolt, M. H., Konstantinidis, K. T., & Roellig, D. M. (2021). Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Applied and Environmental Microbiology, 87(6), e02275-20. https://doi.org/10.1128/AEM.02275-20spa
dc.relation.referencesSimon, A., Rousseau, A. N., Savary, S., Bigras-Poulin, M., & Ogden, N. H. (2013). Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. Journal of Environmental Management, 127, 150–161. https://doi.org/10.1016/j.jenvman.2013.04.031spa
dc.relation.referencesSmith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460spa
dc.relation.referencesSmith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.spa
dc.relation.referencesSokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillanspa
dc.relation.referencesSolórzano-García, B., Gasca-Pineda, J., Poulin, R., & Pérez-Ponce de León, G. (2017). Lack of genetic structure in pinworm populations from New World primates in forest fragments. International Journal for Parasitology, 47(14), 941–950. https://doi.org/10.1016/j.ijpara.2017.06.008spa
dc.relation.referencesSolórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0spa
dc.relation.referencesSolórzano-García, B., White, J. M., & Shedden, A. (2023). Parasitism in heterogeneous landscapes: Association between conserved habitats and gastrointestinal parasites in populations of wild mammals. Acta Tropica, 237, 106751. https://doi.org/10.1016/j.actatropica.2022.106751spa
dc.relation.referencesSong, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858spa
dc.relation.referencesSpiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2018). OpenBUGS version 3.0. 2spa
dc.relation.referencesStensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189spa
dc.relation.referencesThompson, R. C. A. (2013). Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology, 43(12–13), 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007spa
dc.relation.referencesUjvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.spa
dc.relation.referencesUribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822spa
dc.relation.referencesvan der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842spa
dc.relation.referencesVan Voorhis, W. C., Hulverson, M. A., Choi, R., Huang, W., Arnold, S. L. M., Schaefer, D. A., Betzer, D. P., Vidadala, R. S. R., Lee, S., Whitman, G. R., Barrett, L. K., Maly, D. J., Riggs, M. W., Fan, E., Kennedy, T. J., Tzipori, S., Doggett, J. S., Winzer, P., Anghel, N., … Ojo, K. K. (2021). One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Veterinary Parasitology, 289, 109336. https://doi.org/10.1016/j.vetpar.2020.109336spa
dc.relation.referencesVanWormer, E., Miller, M. A., Conrad, P. A., Grigg, M. E., Rejmanek, D., Carpenter, T. E., & Mazet, J. A. K. (2014). Using Molecular Epidemiology to Track Toxoplasma gondii from Terrestrial Carnivores to Marine Hosts: Implications for Public Health and Conservation. PLoS Neglected Tropical Diseases, 8(5), e2852. https://doi.org/10.1371/journal.pntd.0002852spa
dc.relation.referencesVijay, A., & Valdes, A. M. (2022). Role of the gut microbiome in chronic diseases: A narrative review. European Journal of Clinical Nutrition, 76(4), 489–501. https://doi.org/10.1038/s41430-021-00991-6spa
dc.relation.referencesWilliams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-wspa
dc.relation.referencesWisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64spa
dc.relation.referencesWood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0spa
dc.relation.referencesXiao, L., & Fayer, R. (2008). Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38(11), 1239–1255. https://doi.org/10.1016/j.ijpara.2008.03.006spa
dc.relation.referencesYoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocFlora microbiana
dc.subject.agrovocMicrobial flora
dc.subject.agrovocFlora intestinal
dc.subject.agrovocIntestinal flora
dc.subject.agrovocInteracción biológica
dc.subject.agrovocBiological interaction
dc.subject.agrovocPoblación animal
dc.subject.agrovocAnimal population
dc.subject.agrovocEcología de las poblaciones
dc.subject.agrovocPopulation ecology
dc.subject.agrovocRelación interespecífica
dc.subject.agrovocInterspecific relationships
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalCattleeng
dc.subject.proposalDissimilarity indexeng
dc.subject.proposalFragmentationeng
dc.subject.proposalGut microbiotaeng
dc.subject.proposalLandscape epidemiologyeng
dc.subject.proposalWildlifeeng
dc.subject.proposalGanadospa
dc.subject.proposalIndice de dissimilaridadspa
dc.subject.proposalFragmentaciónspa
dc.subject.proposalMicrobiota intestinalspa
dc.subject.proposalProtozoariosspa
dc.subject.proposalProtozoaeng
dc.subject.proposalVida silvestrespa
dc.titleEffect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombiaeng
dc.title.translatedEfecto de la estructura del paisaje sobre la diversidad de la microbiota y protozoarios intestinales enre los mamíferos silvestres y domésticos en algunas regiones de Colombiaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameAndean Bear Conservation Alliance (ABCA), the Cleveland Metroparks Zoo Wildlife Conservation Programspa
oaire.fundernameRewildspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75093305.2024.pdf
Tamaño:
2.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: