Estimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia

dc.contributor.advisorVargas Jiménez, Carlos Alberto
dc.contributor.authorGómez Alba, Sebastián Alejandro
dc.contributor.cvlacGómez Alba, Sebastián [GÓMEZ ALBA, SEBASTIÁN]spa
dc.contributor.googlescholarGómez Alba, Sebastián [Sebastian Gomez Alba]spa
dc.contributor.orcidGómez Alba, Sebastián [0000000206162663]spa
dc.contributor.scopusGómez Alba, Sebastián [56862335600]spa
dc.coverage.countryColombia
dc.date.accessioned2023-10-12T15:33:19Z
dc.date.available2023-10-12T15:33:19Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, fotografías, mapas, planosspa
dc.description.abstractLa información producto del monitoreo sismológico de campos de hidrocarburos se ha convertido en una herramienta y fuente de información importante para determinar bajo qué circunstancias las operaciones de explotación de campos de hidrocarburos inciden en la alteración del estado natural de los parámetros elásticos de las rocas y el flujo de fluidos al interior de los yacimientos. En Colombia no ha existido una política que demande el monitoreo sismológico de campos de hidrocarburos, y el poco que ha podido ser realizado aún no ha sido ni procesado ni analizado en su totalidad. En este contexto hay un rezago respecto a la adquisición de data, análisis y apropiación de conocimiento sobre el subsuelo del país, y por ende un bajo entendimiento de los fenómenos físicos resultado de operaciones industriales. Esta tesis se convierte en un primer paso para llenar este vacío, al hacer uso de la información disponible de los terremotos registrados desde 1993 hasta 2018 por el Servicio Geológico Colombiano (SGC), para proponer un modelo geodinámico de la esquina NW de Sur América, el primer modelo a tomografía de anisotropía sísmica para la corteza de Colombia, la primera valoración de los posibles mecanismos de activación de sismicidad antropogénica producto de la inyección de agua en yacimientos disposal en el campo de mayor producción de crudo pesado del país, y finalmente la caracterización de estructuras disipadoras de energía sísmica en yacimientos de hidrocarburos. En el Capítulo 1 se describe en detalle el problema, su planteamiento, la justificación y la motivación de esta disertación. Igualmente se exponen los principios y antecedentes fundamentales bajo los cuales se ha venido construyendo el fundamento teórico asociado a la sismicidad antropogénica. En el Capítulo 2 se hace un estudio de sismicidad regional de la esquina NW de Sur América para estimar tomografías de velocidad de Vp y Vs de la corteza y el manto superior, distribución de anomalías Vp/Vs en al manto superior y el mapeo de vectores de anisotropía azimutal de onda P de la corteza. Este Capítulo ha sido sometido en la revista Seismological Research Letters (SRL). En el Capítulo 3 se analiza la causalidad entre la producción de crudo pesado y sismicidad registrada en inmediaciones de un campo de la Cuenca de los Llanos Orientales de Colombia. Se utilizó la información reportada de los eventos para calcular mecanismos focales y determinar el tipo de fallamiento. Se estimó la energía radiada de los eventos de mayor magnitud para caracterizar los procesos de ruptura y determinar las propiedades de las fracturas generadas, incluidas la orientación, trayectoria y velocidad. Este Capítulo fue publicado en la revista Journal of South American Earth Sciences. En el Capítulo 4 se determinó que la secuencia de eventos en el Campo de estudio (Capitulo 3) era el resultado de la liberación de la energía elástica almacenada en el yacimiento debido a la acción continua del trabajo ejercido por la inyección de agua en yacimientos disposal. Un análisis hidromecánico permitió determinar que la eficiencia energética del ciclo de inyección es baja en comparación con otras operaciones de inyección documentadas, permitiendo que la inyección a largo plazo de grandes volúmenes no haya dado lugar a eventos más importantes. Este Capítulo fue publicado en la revista Geophysical Journal International. En el capítulo 5, se hace una recopilación de los resultados más importantes de este trabajo en forma de conclusiones y se plantean algunas futuras recomendaciones de trabajo e investigación.spa
dc.description.abstractThe information achieved by the seismological monitoring of hydrocarbon fields has become an important tool and source of information to determine under what circumstances the operations of exploitation of hydrocarbon fields affect the alteration of the natural state of the elastic parameters of the rocks and the fluid flow into the reservoirs. In Colombia there has not been a policy that requires seismological monitoring of hydrocarbon fields, and the little that has been done has not yet been processed or fully analyzed. In this context, there is a gap regarding the acquisition of data, analysis and appropriation of knowledge about the subsoil of the country, and therefore a low understanding of the physical phenomena resulting from industrial operations. This thesis is a first step to fill this gap, by making use of the information available from the earthquakes recorded from 1993 to 2018 by the Colombian Geological Service (SGC). To propose a geodynamic model of the NW corner of South America, the first seismic anisotropy tomography model for the crust of Colombia, the first assessment of the possible activation mechanisms of anthropogenic seismicity as a result of the injection of water into disposal reservoirs in the field with the highest production of heavy crude oil in the country, and finally the characterization of seismic energy dissipative structures in hydrocarbon reservoirs. Chapter 1 describes the problem in detail, its approach, the justification, and the motivation for this dissertation. Likewise, the fundamental principles and theorical background under which anthropogenic seismicity has been built are exposed. In Chapter 2 a regional seismicity study of the NW corner of South America is made to estimate velocity tomography of Vp and Vs of the crust and upper mantle, distribution of Vp / Vs anomalies in the upper mantle, and mapping of P wave azimuthal anisotropy vectors of the crust. This Chapter has been submitted in the Seismological Research Letters (SRL) journal. In Chapter 3 the causality between heavy crude production and seismicity recorded in the vicinity of a field in the Llanos Orientales Basin of Colombia is analyzed. The information reported from the events was used to calculate focal mechanisms and determine the type of failure. The radiated energy of the highest magnitude events was estimated to characterize the rupture processes and determine the properties of the generated fractures, including orientation, trajectory, and velocity. This Chapter was published in the South American Earth Sciences Journal. In Chapter 4, there is a description of the sequence of events in the oil field under study (Chapter 3) as the result of the release of the elastic energy stored in the reservoir due to the continuous action of the work exerted by the injection of water in disposal reservoirs. A hydromechanical analysis determined that the energy efficiency of the injection cycle is low compared to other documented injection operations, allowing the long-term injection of large volumes not to have led to more larger events. This Chapter was published in the Geophysical Journal International. In Chapter 5, a compilation of the most important results of this work is made in the form of conclusions and some future work and research recommendations are proposed.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Geocienciasspa
dc.format.extentvii, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84799
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Geocienciasspa
dc.relation.referencesAbercrombie, R.E. (1995). J. Geophys. Res. 100, 24015-24036.spa
dc.relation.referencesAdamek, S., Frohlich, C., and Pennington, W.D. (1988). Seismicity of the Caribbean-Nazca boundary: Constraints on microplate tectonics of the Panama region. Journal of Geophysical Research 93: doi: 10.1029/88JB01269. ISSN: 0148-0227.spa
dc.relation.referencesAke J, Mahrer K, O’Connell D, Block L. 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull. Seismol. Soc. Am. 95:664–83spa
dc.relation.referencesAki, K., 1965. Maximum likelihood estimate of b in the formula log N = a - b M and its confidence limits, Bull. seism. Soc. Am., 43, 237–239.spa
dc.relation.referencesAlessandro, A., Danet, A., Grecu, B., 2012. Location performance and detection magnitude threshold of the Romanian national seismic network. Pure Appl. Geophys. 169 (2012), 2149e2164. http://dx.doi.org/10.1007/s00024-012-0475-7spa
dc.relation.referencesAlghannam, M., Juanes, R., 2020. Understanding rate effects in injection-induced earthquakes. Nature communications 11, 1–6spa
dc.relation.referencesAlt RC, Zoback MD. 2016. In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am. 107:216–28spa
dc.relation.referencesAspden, J.A., McCourt, W.J., 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14, 415e418.spa
dc.relation.referencesAspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales. Cuenca de los Llanos Orientales, Colombia. In: VI Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 9, pp. 4e10spa
dc.relation.referencesAtkinson GM, Eaton DW, Ghofrani H, Walker D, Cheadle B, et al. 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 87:631–47spa
dc.relation.referencesAtkinson, G.M., 2015. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bulletin of the Seismological Society of America 105, 981–992.spa
dc.relation.referencesAtkinson, G.M., 2020. The intensity of ground motions from induced earthquakes with implications for damage potential. Bulletin of the Seismological Society of America 110, 2366–2379.spa
dc.relation.referencesAtkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R. & Liu, Y., 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin, Seismol. Res. Lett., 87, 631–647.spa
dc.relation.referencesAtkinson, G.M., Wald, D., Worden, C.B., Quitoriano, V., 2018. The intensity signature of induced seismicity. Bulletin of the Seismological Society of America 108, 1080–1086.spa
dc.relation.referencesBaisch, S., Koch, C., Muntendam-Bos, A., 2019. Traffic light systems: To what extent can induced seismicity be controlled? Seismological Research Letters 90, 1145–1154.spa
dc.relation.referencesBao, X. & Eaton, D.W., 2016. Fault activation by hydraulic fracturing in western Canada, Science, 354(6318), 1046–1409spa
dc.relation.referencesBarnhart WD, Benz HM, Hayes GP, Rubinstein JL, Bergman E. 2014. Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin. J. Geophys. Res. 119:7923–33spa
dc.relation.referencesBarrera, D., Pardo, A., Vargas, C.A., Martínez, J., 2007. Petroleum geology of Colombian basins. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.spa
dc.relation.referencesBarros, L, Cappa, F., Guglielmi, Y., Duboeuf, L. & Grasso, J.R., 2019. Energy of injection-induced seismicity predicted from in-situ experiments, Scientific Reports, 9, 10.1038/s41598-019-41306-x.spa
dc.relation.referencesBayer, B., Kind, R., Hoffmann, M., Yuan, X., Meier, T., 2012. Tracking unilateral earthquake rupture by P-wave polarization analysis. Geophys. J. Int. 188, 1141e1153.spa
dc.relation.referencesBen-Avraham, Z., Nur, A., 1987. Effects of collisions at trenches on oceanic ridges and passive margins. In: Monger, J.W.H., Francheteau, J. (Eds.), Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin: American Geophysical Union, Geodynamics Series, vol. 18, pp. 9e18.spa
dc.relation.referencesBender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped data, Bull. seism. Soc. Am., 73, 831–851.spa
dc.relation.referencesBernal-Olaya, R., Mann, P., & Escalona, A. (2015). Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under- to overfilled forearc basin. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 345–398). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531943M1083645spa
dc.relation.referencesBernal-Olaya, R., Mann, P., & Vargas, C. A. (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 247–270). Tulsa, OK: Association of Petroleum Geologists. https://doi.org/10.1306/13531939M1083642spa
dc.relation.referencesBird, P & Kagan, Y, 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings, Bull. seism. Soc. Am., 94 (6), 2380–2399.spa
dc.relation.referencesBlock, L.V., Wood, C.K., Yeck, W.L. & King, V.M., 2014. The 24 January 2013 ML earthquake near Paradox, Colorado, and its relation to deep well injection, Seismol. Res. Lett., 85(3), 609–624.spa
dc.relation.referencesBokelmann, G., 1995. P-wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International 120, 145–162.spa
dc.relation.referencesBommer, J.J., Crowley, H., Pinho, R., 2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology 19, 623–646.spa
dc.relation.referencesBommer, J.J., Dost, B., Edwards, B., Staord, P.J., van Elk, J., Doornhof, D., Ntinalexis, M., 2016. Developing an application-specific ground-motion model for induced seismicity. Bulletin of the Seismological Society of America 106, 158–173.spa
dc.relation.referencesBommer, J.J., Stafford, P.J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., Kruiver, P., van Elk, J., Doornhof, D., Ntinalexis, M., 2017. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, the Netherlands. Earthquake Spectra 33, 481–498.spa
dc.relation.referencesBoroumand, N. & Eaton, D.W., 2012 Comparing energy calculation: hydraulic fracture and Microseismic monitoring, in Proceedings of the Geo-Convention: Vision, Calgary, Canada, 14–18 May 2012.spa
dc.relation.referencesBossu, R., et al. (1996). Bull. Seismol. Soc. Am. 86, 959-971.spa
dc.relation.referencesBouchon, M., 1981. A Simple Method to calculate Green's functions in Elastic Layered Media, Bull. Seismol. Soc. Am. 71, 959e971.spa
dc.relation.referencesBourne, S., Oates, S., Van Elk, J., 2018. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophysical Journal International 213, 1693–1700.spa
dc.relation.referencesBourne, S.J., Oates, S.J., 2017. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Netherlands Journal of Geosciences 96, s175–s182.spa
dc.relation.referencesBrace, W. F. y D. L. Kohlstedt (1980), Limits on lithospheric stress impossed by laboratory experiments, Journal of Geophysical Research, 85, 6248-6252.spa
dc.relation.referencesBrantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N. & Schubnel, A. Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44, 607–610, doi:10.1130/G37932.1 (2016).spa
dc.relation.referencesBroccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., Giardini, D., 2017. Hierarchical Bayesian modeling of fluid-induced seismicity. Geophysical Research Letters 44, 11–357.spa
dc.relation.referencesBrooks, E.M., Stein, S., Spencer, B.D., Salditch, L., Petersen, M.D., McNamara, D.E., 2018. Assessing earthquake hazard map performance for natural and induced seismicity in the central and eastern United States. Seismological Research Letters 89, 118–126.spa
dc.relation.referencesBrudy, M., et al. (1997). J. Geophys. Res. 102, 18453-18475.spa
dc.relation.referencesBürgl, H., 1961. Sedimentación cíclica en el geosinclinal Cretáceo de la Cordillera Oriental de Colombia. Servicio Geológico Nacional, p. 60. Informe No. 1347.spa
dc.relation.referencesBurke, K., 1988. Tectonic evolution of the Caribbean. Annu. Rev. Earth Planet. Sci. 16, 201e230.spa
dc.relation.referencesButler, K., Schamel, S., 1988. Structure along the eastern margin of the Central cordillera, upper Magdalena Valley, Colombia. J. S. Am. Earth Sci. 1, 109e120.spa
dc.relation.referencesBydlon, S.A., Gupta, A., Dunham, E.M., 2017. Using simulated ground motions to constrain near source ground-motion prediction equations in areas experiencing induced seismicity. Bulletin of the Seismological Society of America 107, 2078–2093.spa
dc.relation.referencesBydlon, S.A., Withers, K.B., Dunham, E.M., 2019. Combining Dynamic Rupture Simulations with Ground-Motion Data to Characterize Seismic Hazard from Mw 3 to 5.8 Earthquakes in Oklahoma and Kansas. Bulletin of the Seismological Society of America 109, 652–671.spa
dc.relation.referencesByerlee, J. D. (1978), Friction of rocks, Pure and Applied Geophysics, 116, 615-626.spa
dc.relation.referencesCasero, P., Salel, J.F., Rosato, A., 1997. Multidisciplinary correlative evidences for pholyphase geological evolution of the foot-hills of the Cordillera oriental. In: VI Simposio Bolivariano- Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 1, pp. 100e118.spa
dc.relation.referencesCediel, F., Shaw, R.P. & Cáceres, C., 2003. Tectonic assembly of the northern Andean block, in the circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG Mem., 79, 1–34.spa
dc.relation.referencesCesca, S. et al., 2014. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys. J. Int., 182(2), 941–953.spa
dc.relation.referencesChan, A.W. & Zoback, M.D., 2007. The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone, Journal of Coastal Research, 23, 771-786.spa
dc.relation.referencesChang, K.W., Yoon, H., Martinez, M.J., 2018. Seismicity rate surge on faults after shut-in: Poroelastic response to fluid injection. Bulletin of the Seismological Society of America 108, 1889–1904.spa
dc.relation.referencesChang, Ying & Warren, Linda & Prieto, German. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America. 107. 1-15. 10.1785/0120170127.spa
dc.relation.referencesChen, R., Xue, X., Park, J., Datta-Gupta, A., King, M.J., 2020. New insights into the mechanisms of seismicity in the Azle area, North Texas. Geophysics 85, EN1–EN15.spa
dc.relation.referencesChen, X. et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks, Sci. Rep., 7. doi:10.1038/s41598-017-04992-z.spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccena, C., Speranza, F., Deccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochem. Geophys. Geosyst.17, 16–27. http://dx.doi.org/10.1002/2015GC006048.spa
dc.relation.referencesConnolly JAD. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102:18149–73spa
dc.relation.referencesCooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A., Taborda, A., 1995a. Basin development and tectonic history of the Llanos basin, Eastern Cordillera and middle Magdalena Valley, Colombia. AAPG Bull. 79 (10), 1421e1443.spa
dc.relation.referencesCooper, M.A., Addison, F.T., Alvarez, R., Hayward, A.B., Howe, S., Pulham, A.J., Taborda, A., 1995b. Basin development and tectonic history of the Llanos basin, Colombia. In: Tankard, A.J., Suárez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: AAPG Memoir 62, pp. 659e665.spa
dc.relation.referencesCornet, F.H., 2016. Seismic and aseismic motions generated by fluid injections, Geomech. Ener. Environ., 5, 42–54.spa
dc.relation.referencesCortés, M., Angelier, J., 2005. Current state of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics403, 29–58. http://dx.doi.org/10.1016/j.tecto.2005.03.020.spa
dc.relation.referencesCoutant, O., 1989. Numerical Study of the diffraction of elastic waves by fluid-filled cracks. J. Geophys. Res. 94, 17805e17818.spa
dc.relation.referencesCremen, G., Gupta, A., Baker, J., 2017. Evaluation of ground motion intensities from induced earthquakes using “Did You Feel It?” data, in: 16th World Conf. on Earthquake Engineering.spa
dc.relation.referencesCremen, G., Werner, M.J., Baptie, B., 2020. A new procedure for evaluating ground-motion models, with application to hydraulic-fracture-induced seismicity in the United Kingdom. Bulletin of the Seismological Society of America 110, 2380–2397.spa
dc.relation.referencesDasilva, A., Gómez, Y., Villa, M.A., Yoris, F., Morales, D., 2014. Oil distribution in the carbonera formation, Arenas Basales unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos basin, Colombia. In: Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference & Exhibition, Cartagena, Colombia, September 8-11, 2013.spa
dc.relation.referencesDavies, R., Foulger, G., Bindley, A. & Styles, P., 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Mar. Petrol. Geol., 45, 171–185spa
dc.relation.referencesDavis SD, Frohlich C. 1993. Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismol. Res. Lett. 64:207–24spa
dc.relation.referencesDavis SD, Pennington WD. 1989. Induced seismic deformation in the Cogdell oil field of west Texas. Bull. Seismol. Soc. Am. 79:1477–95spa
dc.relation.referencesDe Barros, L., Guglielmi, Y.D., Cappa, F. & Duboeuf, L., 2018. Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments, Comptes Rendus Geoscience, 350 (8), 464–475.spa
dc.relation.referencesDempsey, D., Suckale, J., 2017. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophysical Research Letters 44, 7773–7782.spa
dc.relation.referencesDengo, C., and M. Covey (1993), Structure of the eastern cordillera of Colombia: Implications for trap styles and regional tectonics, AAPG Bull., 77, 1315–1315.spa
dc.relation.referencesDieterich, J.H., Richards-Dinger, K.B. & Kroll, K.A., 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQ Sim, Seismol. Res. Lett., 86(4), 1102–1109.spa
dc.relation.referencesDodge DA, Beroza GC, Ellsworth WL. 1996. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. 101:22371–92spa
dc.relation.referencesDost, B., Ruigrok, E., Spetzler, J., 2017. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences 96, s235–s245.spa
dc.relation.referencesDuque-Caro, H., 1991. Contributions to the geology of the Pacific and Caribbean coastal areas of northwestern Colombia and South America: Princeton University, PhD. thesis, 132 p.spa
dc.relation.referencesEaton, D.W. & Igonin, N., 2018. What controls the maximum magnitude of injection-induced earthquakes? Leading Edge, 37(2), 135–140.spa
dc.relation.referencesEberhart-Phillips, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times, Bull. Seismol. Soc. Am. 76, 1025–1052.spa
dc.relation.referencesEllsworth, W., 2013. Injection-induced earthquakes, Science, 341, 1225942.spa
dc.relation.referencesEllsworth, W.L., Llenos, A.L., McGarr, A.F., Michael, A.J., Rubinstein, J.L., Mueller, C.S., Petersen, M.D., Calais, E., 2015. Increasing seismicity in the US midcontinent: Implications for earthquake hazard. The Leading Edge 34, 618–626.spa
dc.relation.referencesEspurt, N., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset (2008), Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling, Tectonics, 27, TC3011, doi:10.1029/2007TC002175.spa
dc.relation.referencesEtayo-Serna, F., 1979. Zonation of the Cretaceous of Central Colombia by ammonites, vol. 2. Publicación Especial INGEOMINAS, pp. 1e186spa
dc.relation.referencesFabre, A., 1983. La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario, Segunda parte: Esquema de Evolución Tectónica. Geol. NorAndina 8, 49e61.spa
dc.relation.referencesFarhadi, A., Pezeshk, S., Khoshnevis, N., 2018. Assessing the Applicability of Ground-Motion Models for Induced Seismicity Application in Central and Eastern North America. Bulletin of the Seismological Society of America 108, 2265–2277.spa
dc.relation.referencesFarris, D. W., Jaramillo, C., Bayona, G., Restrepo-moreno, S. A., Montes, C., Cardona, A., Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010.spa
dc.relation.referencesFaul, U.H., Jackson, I., 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett.234 (1–2), 119–134. http://dx.doi.org/10.1016/j.epsl.2005.02.008.spa
dc.relation.referencesFlinch, J. F. (2003). Structural evolution of the Sinu-Lower Magdalena area (northern Colombia). AAPG Memoir, 79(1), 776–796.spa
dc.relation.referencesFolesky, J.T., 2013. Rupture Propagation Imaging at Microseismic Scale. Berlin Freie University, Berlin.spa
dc.relation.referencesFouch, M., Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors 158, 292–320.spa
dc.relation.referencesFreymuller, J., Kellogg, J., Vega, V., 1993. Plate motions in the North Andean region. J. Geophys. Res. 98 (21), 21853e21863.spa
dc.relation.referencesFrohlich C, Walter JI, Gale JF. 2015. Analysis of transportable array (USArray) data shows earthquakes are scarce near injection wells in the Williston Basin, 2008–2011. Seismol. Res. Lett. 86:492–99spa
dc.relation.referencesFrohlich, C. & Davis, S., 1993. Teleseismic b-values: or, much ado about 1.0, J. geophys. Res., 98, 631–644.spa
dc.relation.referencesFrohlich, C., 2012. Two-year survey comparing earthquake activity and injection-well locations in Barnett Shale, Texas, Proc. Natl Acad. Sci. USA, 109, 13934–13938spa
dc.relation.referencesGailler, A., P. Charvis, and E. R. Flueh (2007), Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth Planet. Sci. Lett., 260, 444–464.spa
dc.relation.referencesGalis, M., Ampuero, J.P., Mai, P.M. & Cappa, F., 2017. Induced seismicity provides insight into why earthquake ruptures stop, Sci. Adv., 3(12)spa
dc.relation.referencesGhofrani, H., Atkinson, G.M., Schultz, R., Assatourians, K., 2019. Short-term hindcasts of seismic hazard in the western Canada sedimentary basin caused by induced and natural earthquakes. Seismological Research Letters 90, 1420–1435.spa
dc.relation.referencesGobel T. 2015. A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: ¨ implications for crustal stresses. Lead. Edge 34:640–48spa
dc.relation.referencesGodano, C. & Pingue, F., 2002. Is the seismic moment-frequency relation universal? Geophys. J. Int., 142, 193–198, 10.1046/j.1365-246x.2000.00149.spa
dc.relation.referencesGoebel THW, Hosseini SM, Cappa F, Hauksson E, Ampuero JP, et al. 2016. Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophys. Res. Lett. 43:1092–99spa
dc.relation.referencesGoebels, T.H.W, Weingartenb, M., Chenc, X., Haffenerc, J. & Brodskya, E.E., 2017. The 2016 Fair view Oklahoma earthquakes: Evidence for long range poroelastic stress triggering at >40 km from fluid disposal wells, Earth planet. Sci. Lett., 472, 50–61.spa
dc.relation.referencesGoertz-Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. & Will, R., 2017. Characterization of induced seismicity patterns derived from internal structure in event clusters, J. geophys. Res., 122, 3875–3894.spa
dc.relation.referencesGómez, E.T., Jordan, R.W., Allmendinger, Cardozo, N., 2005. Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of northern Andes. Geol. Soc. Am. Bull. 117, 1272e1292.spa
dc.relation.referencesGómez, Y., Yoris, F., Rodríguez, J., Portillo, F., Araujo, Y., Pacific Rubiales Energy, 2010.spa
dc.relation.referencesGómez-Alba, S., Fajardo-Zarate, C.E. & Vargas, C.A., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. S. Am. Earth Sci., 71, 320–332spa
dc.relation.referencesGono, V., Olson, J.E., Gale, J.F., et al., 2015. Understanding the correlation between induced seismicity and wastewater injection in the Fort Worth basin, in: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.spa
dc.relation.referencesGrasso, J.R., 1992. Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pure and Applied Geophysics, 139, 507-534.spa
dc.relation.referencesGraterol, V. & Rey, C.A., 2009. Mediciones Aero gravimétricas y magnetométricas en los Llanos Orientales de Colombia, X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia.spa
dc.relation.referencesGrigoli, F. et al., 2018. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360(6392), 1003–1006.spa
dc.relation.referencesGrigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020a. Earthquakes induced by wastewater injection, part I: Model development and hindcasting. Bulletin of the Seismological Society of America 110, 2466–2482.spa
dc.relation.referencesGrigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020b. Earthquakes induced by wastewater injection, part II: Statistical evaluation of causal factors and seismicity rate forecasting. Bulletin of the Seismological Society of America 110, 2483–2497.spa
dc.relation.referencesGupta, A., Baker, J.W., 2017. Estimating spatially varying event rates with a change point using Bayesian statistics: Application to induced seismicity. Structural safety 65, 1–11.spa
dc.relation.referencesGupta, A., Baker, J.W., 2019. A framework for time-varying induced seismicity risk assessment, with application in Oklahoma. Bulletin of Earthquake Engineering 17, 4475–4493.spa
dc.relation.referencesGutscher, M. A., W. Spakman, H. Bijward, and E. R. Engdahl (2000), Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 19, 814–833.spa
dc.relation.referencesGutscher, M., J. Malavieille, S. Lallemand, and J. Collot (1999), Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision, Earth Planet. Sci. Lett., 168, 255–270.spa
dc.relation.referencesHacker BR. 1997. Diagenesis and fault valve seismicity of crustal faults. J. Geophys. Res. 102:24459–67spa
dc.relation.referencesHacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, B12030, doi:10.1029/2001JB001129 (2003).spa
dc.relation.referencesHaddad, M., Eichhubl, P., et al., 2020. Poroelastic Modeling of Basement Fault Reactivation Caused by Saltwater Disposal Near Venus, Johnson County, Texas, in: 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.spa
dc.relation.referencesHammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res.105 (B5), 10,975–10,986. http://dx.doi.org/10.1029/2000JB900041.spa
dc.relation.referencesHavskov, J., Ottemoller, L., 2000. SEISAN. The earthquake analysis software. Institute of solid Earth Physics. University of Bergen, Bergen, Norway, p. 250.spa
dc.relation.referencesHealy, J., Rubey, W., Griggs, D. & Raleigh, C., 1968. The Denver earthquakes, Science, 161, 1301–1310.spa
dc.relation.referencesHeidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Muller B. 2010. Global crustal stress pattern based ¨ on the World Stress Map database release 2008. Tectonophysics 482:3–15spa
dc.relation.referencesHeidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback. 2018, The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744,484-498. http://doi.org/10.1016/j.tecto.2018.07.007spa
dc.relation.referencesHeidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2009. The World Stress Map Based on the Database Release 2008, Equatorial Scale 1:46,000,000, Commission for the Geological Map of the World, Paris. http://dx.doi.org/10.1594/GFZ.WSM.Map2009.spa
dc.relation.referencesHennings, P.H., Lund Snee, J.E., Osmond, J.L., DeShon, H.R., Dommisse, R., Horne, E., Lemons, C., Zoback, M.D., 2019. Injection-induced seismicity and fault-slip potential in the Fort Worth Basin, Texas. Bulletin of the Seismological Society of America 109, 1615–1634.spa
dc.relation.referencesHerrmann, R.B., Park, S.-K., Wang, C.-Y., 1981. The Denver earthquakes of 1967e1968. Bull. Seismol. Soc. Am. 71, 731e745.spa
dc.relation.referencesHettner, A., 1892. Die kordillere von Bogota: Ergzh zu Petermanns Mitteilungen Bd. 22. Erganzungsheft 104, 1e131.spa
dc.relation.referencesHickman SH, Healy JH, ZobackMD. 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, Auburn, New York. J. Geophys. Res. 90:5497–512spa
dc.relation.referencesHitzman, M.W. et al., 2012. Induced Seismicity Potential in Energy Technologies, The National Academies Press, Washington D.C.spa
dc.relation.referencesHolland AA. 2013a. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull. Seismol. Soc. Am. 103:1784–92spa
dc.relation.referencesHolland AA. 2013b. Optimal fault orientations within Oklahoma. Seismol. Res. Lett. 84:876–90spa
dc.relation.referencesHornbach MJ, Jones M, Scales M, DeShon HR, Magnani MB, et al. 2016. Ellenburger wastewater injection and seismicity in North Texas. Phys. Earth Planet. Inter. 261:54–68spa
dc.relation.referencesHorton, S., 2012. Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismological Research Letters 83, 250–260.spa
dc.relation.referencesHouston, H. 4.13 - Deep Earthquakes. In: Schubert, G. (ed). Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp 329–354 (2015).spa
dc.relation.referencesHsieh PA, Bredehoeft JD. 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J. Geophys. Res. 86:903–20spa
dc.relation.referencesHuang Y, Beroza GC, Ellsworth WL. 2016. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence. J. Geophys. Res. 121:6597–607spa
dc.relation.referencesHuang, Y., Ellsworth, W.L., Beroza, G.C., 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science advances 3, e1700772.spa
dc.relation.referencesHubach, E., 1957. Contribución a las unidades estratigráficas de Colombia, (enumeración regional, de más reciente a más antiguas). Servicio Geológico Nacional, p. 165. Informe no. 1212.spa
dc.relation.referencesIdárraga-García, J., Kendall, J.-M., & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323.spa
dc.relation.referencesIshii, M., Shearer, P., Houston, H., Vidale, J., 2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. JGR 112.spa
dc.relation.referencesJadamec, M.A., Billen, M.I., 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature465 (7296), 338–341. http://dx.doi.org/10.1038/nature09053.spa
dc.relation.referencesJung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293(5534), 1460–1463.spa
dc.relation.referencesJung, H., Green, H. W. & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549, doi:10.1038/nature02412 (2004).spa
dc.relation.referencesKagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. geophys. Res., 102, 2835–2852, doi:10.1029/96JB03386.spa
dc.relation.referencesKagan, Y.Y., 1999. Universality of the seismic moment-frequency relation, Pure appl. Geophys., 15, 537–573.spa
dc.relation.referencesKanamori, H., 1977. The energy release in great earthquakes, J. geophys. Res., 82 (20), 2981–2987.spa
dc.relation.referencesKang, J.Q., Zhu, J.B., Zhao, J., 2019. A review of mechanisms of induced earthquakes: from a view of rock mechanics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5, 171–196.spa
dc.relation.referencesKao, H., Shan, S.-J., 2004. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. GJI 157, 589e594.spa
dc.relation.referencesKarato, S., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett.20 (15), 1623–1626. http://dx.doi.org/10.1029/93GL01767.spa
dc.relation.referencesKawakatsu, H. & Watada, S. Seismic Evidence for Deep-Water. Science 316, 1468–1471, doi:10.1126/science.1140855 (2007).spa
dc.relation.referencesKeleman, P.B., Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature446, 787–790.spa
dc.relation.referencesKellogg, J., Vega, V., 1995. Tectonic development of Panama, Costa Rica, and Colombian Andes: constraints from global positioning system geodetic studies and gravity. Spec. Pap. Geol. Soc. Am. 295, 75e90.spa
dc.relation.referencesKeranen KM, Savage HM, Abers GA, Cochran ES. 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 41:699–702spa
dc.relation.referencesKeranen, K.M., Weingarten, M., 2018. Induced seismicity. Annual Review of Earth and Planetary Sciences 46, 149–174.spa
dc.relation.referencesKeranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A. & Ge, S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451.spa
dc.relation.referencesKhosravikia, F., Clayton, P., Nagy, Z., 2019. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters 90, 604–613.spa
dc.relation.referencesKikuchi, M., Kanamori, H., 1991. Inversion of complex body waves III. Bull. Seismol. Soc. Am. 81, 2335e2350.spa
dc.relation.referencesKim, K.H., Ree, J.H., Kim, Y.H., Kim, S., Kang, S.Y. & Seo, W., 2018. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360(6392), 1007–1009.spa
dc.relation.referencesKim, W.Y., 2013. Induced seismicity associated with fluid injection into deep well in Youngstown, Ohio, J. geophys. Res., 18, 3506–3518.spa
dc.relation.referencesKing VM, Block LV, Yeck WL, Wood CK, Derouin SA. 2014. Geological structure of the Paradox Valley Region, Colorado, and relationship to seismicity induced by deep well injection. J. Geophys. Res. 119:4955– 78spa
dc.relation.referencesKirby, S.H., Stein, S., Okal, E., Rubie, D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys.34, 261–306.spa
dc.relation.referencesKneller, E.A., van Keken, P.E., Karato, S.-I., Park, J., 2005. B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett.429, 781–797. http://dx.doi.org/10.1016/j.epsl.2005.06.049.spa
dc.relation.referencesKohlstedt, D. L., B. Evans y S. J. Mackwell (1995), Strength of the lithosphere: Constraints imposed by laboratory experiments, Journal of Geophysical Research, 100, 17587-17602.spa
dc.relation.referencesKorhonen, J.V. & Fairhead, J. & Hamoudi, M. & Hemant, K. & Lesur, V. & Mandea, Mioara & Maus, Steffany & Purucker, M. & Ravat, Dhananjay & Sazonova, T. & Erwan, Thebault & Ccgm, Cgmw. (2007). Magnetic Anomaly Map of the World 1:50M (Release: July 2007).spa
dc.relation.referencesKoulakov I. (2009), LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bulletin of the Seismological Society of America, 99(1), 194-214, doi: 10.1785/0120080013.spa
dc.relation.referencesKoulakov, I., A. Jakovlev, and B. G. Luehr (2009b), Anisotropic structure beneath central Java from local earthquake tomography, Geochem. Geophys. Geosyst., 10 Q02011, doi:10.1029/2008GC002109.spa
dc.relation.referencesKoulakov, I., and S. Sobolev (2006). Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data, Geophys. J. Int. 164, no. 1 218–235.spa
dc.relation.referencesKrüger, F., Ohrnberger, M., 2005. Tracking the rupture of the Mw ¼ 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435, 937e941.spa
dc.relation.referencesLambert C. 2017. Structural controls on fluid migration and seismic variability in northern Oklahoma. Master’s Thesis, Dep. Earth Atmos. Sci., Cornell Univ., Ithaca, NYspa
dc.relation.referencesLangenbruch, C., Shapiro, S.A., 2015. Quantitative analysis of rock stress heterogeneity: Implications for the seismogenesis of fluid-injection-induced seismicity. Geophysics 80, WC73–WC88.spa
dc.relation.referencesLangenbruch, C., Weingarten, M., Zoback, M.D., 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature communications 9, 3946.spa
dc.relation.referencesLangenbruch, C., Zoback, M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science advances 2, e1601542.spa
dc.relation.referencesLara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V López-Martínez, M. (2013). Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America Journal of South American Earth Sciences, 45, 24–41. https://doi.org/10.1016/j.jsames.2012.12.006spa
dc.relation.referencesLengliné, O., Boubacar, M. & Schmittbuhl, J., 2017. Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France, Geophys. J. Int., 208(3), 1704–1715.spa
dc.relation.referencesLiener, B.R., Havskov, J., 1995. A computer program for locating earthquakes locally, regionally and globally. Seismol. Res. Lett. 66, 26e36. http://dx.doi.org/10.1785/gssrl.66.5.26.spa
dc.relation.referencesLiu E, Crampin S, Queen JH. 1991. Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma. Geophys. J. Int. 107:449–63spa
dc.relation.referencesLlenos AL, Michael AJ. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bull. Seismol. Soc. Am. 103:285spa
dc.relation.referencesLui, S.K., Huang, Y., 2019. Do injection-induced earthquakes rupture away from injection wells due to fluid pressure change? Bulletin of the Seismological Society of America 109, 358–371.spa
dc.relation.referencesLund, B., Slunga, R., 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J. Geophys. Res. 104, 14 947e14 964.spa
dc.relation.referencesMajer EL, Baria R, Stark M, Oates S, Bommer J, et al. 2007. Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222spa
dc.relation.referencesMalin, P.E., et al. (1988). Bull. Seismol. Soc. Am. 78, 401-420.spa
dc.relation.referencesManga M, Wang CY, Shirzaei M. 2016. Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake. Geophys. Res. Lett. 43:11588–94spa
dc.relation.referencesMaxwell, S., Zhang, F., Damjanac, B., 2015. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing. The Leading Edge 34, 678–683.spa
dc.relation.referencesMaxwell, S.C., Rutledge, J., Jones, R., & Fehler, M., 2010, Petroleum reservoir characterization using downhole microseismic monitoring, Geophysics, 75, 75A129-75A137.spa
dc.relation.referencesMcCourt, W.J., Aspden, J.A., Brook, M., 1984. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J. Geol. Soc. Lond. 141, 831e845.spa
dc.relation.referencesMcGarr, A. & Barbour, A.J., 2018. Injection-induced moment released can also be aseismic, Geophys. Res. Lett., 45(11)5344–5311.spa
dc.relation.referencesMcGarr, A. (1992). Pure Appl. Geophys. 139, 781-800.spa
dc.relation.referencesMcGarr, A. and D. Simpson (1997). In: "Rock bursts and Seismicity in Mines," pp. 385-396, Balkema.spa
dc.relation.referencesMcGarr, A., 1976. Seismic moments and volume changes, J. geophys. Res., 81(1):1487–1494.spa
dc.relation.referencesMcGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection, J. geophys. Res., 119, 1008–1019.spa
dc.relation.referencesMcGarr, A., Simpson, D., Seeber, L., 2002. Case histories of induced and triggered seismicity. In: Lee, W., Kanamori, H., Jennings, P., Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology Academic Press, London, pp. 647e664. Chapter 40.spa
dc.relation.referencesMcNamara, D. et al., 2015. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma, Lead. Edge, 34(6), 628–639.spa
dc.relation.referencesMegard, F., 1987. Cordillera Andes and Marginal Andes: A Review of Andean Geology North of the Arica Elbow (18 Deg. S), in J. W. H.spa
dc.relation.referencesMichael, A.J., 1984. Determination of stress from slip data: faults and folds. J. Geophys. Res. 89, 11 517e11 526.spa
dc.relation.referencesMichael, A.J., 1987. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res. 92 (B1), 357e368.spa
dc.relation.referencesMignan, A., 2016. Static behaviour of induced seismicity. Nonlinear Processes in Geophysics 23, 107–113.spa
dc.relation.referencesMignan, A., Broccardo, M., Wiemer, S., Giardini, D., 2017. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific reports 7, 1–10.spa
dc.relation.referencesMishra, O. P. & Zhao, D. P. Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett. 31, L09610, doi: 10.1029/2004GL019489 (2004).spa
dc.relation.referencesMiyazawa, M., Venkataraman, A., Snieder, R., & Payne, M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics, 73, 015-021.spa
dc.relation.referencesMogi, K., 1967. Regional variation in magnitude - frequency relation of earthquake, Bull. Earthq. Res. Inst., 45, 313–325.spa
dc.relation.referencesMolina, Indira & Velasquez, Juan & Rubinstein, Justin & Garcia, Alexander & DIONICIO, VIVIANA. (2020). Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia. Geophysical Journal International. 223. 777-791. 10.1093/gji/ggaa326.spa
dc.relation.referencesMontes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería Basins. Journal of South American Earth Sciences, 29(4), 832–848. https://doi.org/10.1016/j.jsames.2009.07.010spa
dc.relation.referencesMontgomery, S., 1992. Petroleum potential of upper and middle Magdalena basins, Colombia, part 2: plate tectonics, reservoirs, source rocks, and field histories. Pet. Front. 9, 67.spa
dc.relation.referencesMora, A., et al., 2010. The eastern foothills of the eastern cordillera of Colombia: an example of multiple factors controlling structural styles and active tectonics, Bull. Geol. Soc. Am., 122 (11–12), 1846–1864.spa
dc.relation.referencesMora-Bohórquez, J. A., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., & Serna, L. (2017). Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central Andes against the Caribbean basin. Journal of South American Earth Sciences, 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001spa
dc.relation.referencesMousavi, S.M., Beroza, G.C., Hoover, S.M., 2018. Variabilities in probabilistic seismic hazard maps for natural and induced seismicity in the central and eastern United States. The Leading Edge 37, 141a1–141a9.spa
dc.relation.referencesMukuhira, Y., Asanuma, H., Niitsuma, H. & Haring, M.O., 2013. Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel, Switzerland, Geothermics, 45, 1–17.spa
dc.relation.referencesNicholson, C., Roeloffs, E., Wesson, R.L., 1992. Triggered earthquakes and deep well activities. Pure Appl. Geophys. 139, 561e578.spa
dc.relation.referencesNovakovic, M., Atkinson, G.M., Assatourians, K., 2018. Empirically calibrated ground-motion prediction equation for Oklahoma. Bulletin of the Seismological Society of America 108, 2444– 2461.spa
dc.relation.referencesOjeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575–593. https://doi.org/10.1023/A:1012053206408spa
dc.relation.referencesPardo, A., Barrero, D., Vargas, C.A., Martínez, J., 2007. Sedimentary Basins of Colombia: Geological Framework. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.spa
dc.relation.referencesPardo-Casas, F., Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6, 233e248.spa
dc.relation.referencesPennington, W. D. (1981), Subduction of the eastern Panama basin and seismotectonics of northwestern South America, J. Geophys. Res., 86(B11), 10753-10770, doi: 10.1029/JB086iB11p10753.spa
dc.relation.referencesPetersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Llenos, A.L., Ellsworth, W.L., Michael, A.J., Rubinstein, J.L., McGarr, A.F., Rukstales, K.S., 2016. Seismic-hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States. Seismological Research Letters 87, 1327–1341.spa
dc.relation.referencesPetersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Rubinstein, J.L., Llenos, A.L., Michael, A.J., Ellsworth, W.L., McGarr, A.F., Holland, A.A., et al., 2015. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: Results of 2014 workshop and sensitivity studies.spa
dc.relation.referencesPetersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Shumway, A.M., McNamara, D.E., Rennolet, S.B., Moschetti, M.P., Thompson, E.M., Yeck, W.L., 2018. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas. Earthquake Spectra 34, 1–20.spa
dc.relation.referencesPilger Jr., R.H., 1984. Cenozoic plate kinematics subduction and magmatism: south American Andes. J. Geol. Soc. Lond. 141, 793e802.spa
dc.relation.referencesPorritt, R. W., T. W. Becker, and G. Monsalve (2014), Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia, Geophys. Res. Lett., 41, 8775-8783, doi: 10.1002/2014GL061958.spa
dc.relation.referencesPoveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123, 1459–1485. https://doi.org/10.1002/2017JB014688spa
dc.relation.referencesPoveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120, 2408–2425. https://doi.org/10.1002/2014JB011304spa
dc.relation.referencesPrieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A., Florez, M., 2012. Earthquake nests as natural laboratories for the study of intermediate-depth earth-quake mechanics. Tectonophysics 570–571, 42–56. http://dx.doi.org/10.1016/j.tecto.2012.07.019.spa
dc.relation.referencesRaleigh CB, Healy JH, Bredehoeft JD. 1976. An experiment in earthquake control at Rangely, Colorado. Science 191:1230–37spa
dc.relation.referencesRubinstein JL, Ellsworth WL, McGarr A, Benz HM. 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado. Bull. Seismol. Soc. Am. 104:2162–81spa
dc.relation.referencesRubinstein, J.L. & Babaie Mahani, A., 2015. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhaced Oil Recovery, and Induced Seismicity, Seismol. Res. Lett., 86, 1060–1067, 10.1785/0220150067.spa
dc.relation.referencesRubinstein, J.L., Ellsworth, W.L., Dougherty, S.L., 2018. The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America 108, 674–689.spa
dc.relation.referencesRubinstein, J.L., Ellsworth, W.L., McGarr, A., Benz, H.M., 2014. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bulletin of the Seismological Society of America 104, 2162–2181.spa
dc.relation.referencesRutledge, J.T. & Phillips, W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas, Geophysics, 68, 441-452.spa
dc.relation.referencesSaffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86spa
dc.relation.referencesSalazar, J. M., and C. A. Vargas (2015). Fractal dimension and seismotectonic deformation rates along an inter-plate setting: Seismic regime along the Caribbean plate boundary zone, in Petroleum Geology and Potential of the Colombian Caribbean Margin, C. Bartolini and P. Mann (Editors), AAPG Memoir 108, Chapt. 11, 271–294, ISBN13: 978-0-89181-388-0.spa
dc.relation.referencesSanchez, J., & Mann, P. (2015). Integrated structural and basinal analysis of the Cesar-Rancheria Basin, Colombia: Implications for its tectonic history and petroleum systems. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 431–470). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531945M1083648spa
dc.relation.referencesSarkar, S., 2008. Reservoir monitoring using induced seismicity at a petroleum field in Oman: PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, US.spa
dc.relation.referencesSavage HM, Keranen KM, Schaff D, Dieck C. 2017a. Possible precursory signals in damage zone foreshocks. Geophys. Res. Lett. 44:5411–17spa
dc.relation.referencesSavvaidis, A., Lomax, A., Breton, C., 2020. Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America 110, 2225–2241.spa
dc.relation.referencesScanlon, B.R., Weingarten, M.B., Murray, K.E., Reedy, R.C., 2019. Managing basin-scale fluid budgets to reduce injection-induced seismicity from the recent US shale oil revolution. Seismological Research Letters 90, 171–182.spa
dc.relation.referencesSchoenball, M., Ellsworth, W.L., 2017. A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas. Journal of Geophysical Research: Solid Earth 122, 10–189.spa
dc.relation.referencesSchultz, R., Atkinson, G., Eaton, D.W., Gu, Y.J. & Kao, H., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play, Science, 359(6373), 304–308.spa
dc.relation.referencesSchultz, R., Beroza, G., Ellsworth, W., Baker, J., 2020. Risk-Informed Recommendations for Managing Hydraulic Fracturing–Induced Seismicity via Traffic Light Protocols. Bulletin of the Seismological Society of America 110, 2411–2422.spa
dc.relation.referencesSchultz, R., Quitoriano, V., Wald, D.J., Beroza, G.C., 2021. Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 8755293020988025.spa
dc.relation.referencesSella, G., Dixon, T.H., Mao, A., 2002. REVEL: a model of recent plate velocities from space geodesy. J. Geophys. Res.107 (B4). http://dx.doi.org/10.1029/2000JB000033. 2081.spa
dc.relation.referencesShapiro, S.A., Dinske, C., Langenbruch, C. & Wenzel, F., 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations, Leading Edge, 29(3), 304–309.spa
dc.relation.referencesShapiro, S.A., Huenges, E. & Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site, Geophys. J. Int., 131(2), F15–F18.spa
dc.relation.referencesShapiro, S.A., Rothert, E., Rath, V. & Rindschwentner, J., 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67, 212–220.spa
dc.relation.referencesShelly DR, Moran SC, Thelen WA. 2013. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophys. Res. Lett. 40:1506–12spa
dc.relation.referencesSibson RH. 2000. Fluid involvement in normal faulting. J. Geodyn. 29:469–99spa
dc.relation.referencesSkoumal RJ, Brudzinski MR, Currie BS. 2015a. Distinguishing induced seismicity from natural seismicity in Ohio: demonstrating the utility of waveform template matching. J. Geophys. Res. 120:6284–96spa
dc.relation.referencesSkoumal RJ, Brudzinski MR, Currie BS. 2015b. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull. Seismol. Soc. Am. 105:189–97spa
dc.relation.referencesSkoumal RJ, Brudzinski MR, Currie BS. 2016. An efficient repeating signal detector to investigate earthquake swarms. J. Geophys. Res. 121:5880–97spa
dc.relation.referencesSkoumal, R.J., Barbour, A.J., Brudzinski, M.R., Langenkamp, T., Kaven, J.O., 2020. Induced seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth 125, e2019JB018558.spa
dc.relation.referencesSmalley PC, Muggeridge AH. 2010. Reservoir compartmentalization: Get it before it gets you. Geol. Soc. Lond. Spec. Publ. 347:25–41spa
dc.relation.referencesSnee, J.E.L., Zoback, M.D., 2018. State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity. The Leading Edge 37, 127–134.spa
dc.relation.referencesSokos, E.N., Zahradnik, J., August 2008. ISOLA a Fortran code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comp. Geosci 34 (8), 967e977. http://dx.doi.org/10.1016/j.cageo.2007.07.005. ISSN 0098-3004.spa
dc.relation.referencesSpottiswoode, S.M. and A. McGarr (1975). Bull. Seismol. Soc. Am. 65, 93-112.spa
dc.relation.referencesSuckale, J., 2010. Induced seismicity in hydrocarbon fields, Chapter 2 in advances in Geophysics, 51.spa
dc.relation.referencesSumy DF, Cochran ES, Keranen KM, Wei M, Abers GA. 2014. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. 119:1904–23spa
dc.relation.referencesSumy DF, Neighbors CJ, Cochran ES, Keranen KM. 2017. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake. J. Geophys. Res. 122:3813–34spa
dc.relation.referencesSyracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050spa
dc.relation.referencesTaboada, A., L.A. Rivera, A. Fuenzalida, A. Cisternas, H. Philip, H. Bijwaard, J. Olaya, and C. Rivera, 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics. v.19, no. 5, p. 787-813.spa
dc.relation.referencesTakei, Y., 2002. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J. Geophys. Res.107 (B2), 2043. http://dx.doi.org/10.1029/2001JB000522.spa
dc.relation.referencesTownend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:399–402spa
dc.relation.referencesTrenkamp, R., J. Kellogg, J. Freymueller and H. Mora, (2002). Wide plate margin, southern Central America and northwestern South America, CASA GPS observations, Journal of South American Earth Sciences 15, 157-171, Elsevier.spa
dc.relation.referencesTrugman, D.T., Savvaidis, A., 2021. Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Lettersspa
dc.relation.referencesTsapanos, T., 1990. b-Value of two tectonic parts in the circum-Pacific belt, Pure appl. Geophys, 143, 229–242, doi: 10.1007/BF00876999.spa
dc.relation.referencesvan der Elst NJ, Savage HM, Keranen KM, Abers GA. 2013. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science 341:164–67spa
dc.relation.referencesvan der Elst, N.J., Page, M.T., Weiser, D.A., Goebel, T.H.W. & Hosseini, S.M., 2016. Induced earthquake magnitudes are as large as (statistically) expected, J. geophys. Res., 121, 4575–4590.spa
dc.relation.referencesvan der Hilst, R., Mann, P., 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology22, 451–454.spa
dc.relation.referencesvan der Sluis, A., and H. A. van der Vorst (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, in Seismic Tomography, G. Nolet (Editor), Reidel, Dordrecht, 49–83.spa
dc.relation.referencesvan Elk, J., Doornhof, D., Bommer, J.J., Bourne, S.J., Oates, S.J., Pinho, R., Crowley, H., 2017. Hazard and risk assessments for induced seismicity in Groningen. Netherlands Journal of Geosciences 96, s259–s269spa
dc.relation.referencesvan Thienen-Visser, K., Breunese, J., 2015. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge 34, 664–671.spa
dc.relation.referencesVargas, C.A. & Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with northwestern South America Bull, Seismol. Soc. Am., 103(3) 2025–2046.spa
dc.relation.referencesVavrycuk, V., 2014. Seismology iterative joint inversion for stress and fault orientations from focal mechanisms. GJI Geophys. J. Int. 199, 69e77 (Praha, Czech Republic).spa
dc.relation.referencesVerdon, J.P., Bommer, J.J., 2020. Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 1–26.spa
dc.relation.referencesWalker, K., Shearer, P., 2009. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging. J. Geophys. Res. 114.spa
dc.relation.referencesWalsh, F.R., Zoback, M.D., 2015. Oklahoma’s recent earthquakes and saltwater disposal. Science advances 1, e1500195.spa
dc.relation.referencesWalters, R.J., Zoback, M.D., Baker, J.W., Beroza, G.C., 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters 86, 1110–1118.spa
dc.relation.referencesWang, R., Gu, Y.J., Schultz, R., Chen, Y., 2018. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters 45, 8966–8975.spa
dc.relation.referencesWang, Z., Carpenter, N.S., Zhang, L., Woolery, E.W., 2017. Assessing potential ground-motion hazards from induced earthquakes. Natural Hazards Review 18, 04017018spa
dc.relation.referencesWeatherley DK, Henley RW. 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci. 6:294spa
dc.relation.referencesWech, A., Kenneth, W., Creager, C., Houston, H. & Vidale, J., 2010. An earthquake like magnitude–frequency distribution of slow slip in Northern Cascadia, Geophys. Res. Lett., 37, L22310, doi:10.1029/2010GL044881.spa
dc.relation.referencesWeingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL. 2015. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348:1336–40spa
dc.relation.referencesWesnousky, S.G., 1999. Crustal deformation processes and the stability of the Gutenberg-Richter relationship. Bull. seism. Soc. Am., 89 (4),1131–1137.spa
dc.relation.referencesWhite, J.A. & Foxall, W., 2016. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges, Int. J. Greenhouse Gas Control, 49, 413–424.spa
dc.relation.referencesWibberley CA, Gonzalez-Dunia J, Billon O. 2017. Faults as barriers or channels to production-related flow: insights from case studies. Pet. Geosci. 23:134–47spa
dc.relation.referencesWiemer, S. & Wyss, M., 2000. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seism. Soc. Am., 90, 859–869.spa
dc.relation.referencesWu, Q., Chapman, M., Chen, X., 2018. Stress-Drop Variations of Induced Earthquakes in Oklahoma Stress-Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the Seismological Society of America 108, 1107–1123.spa
dc.relation.referencesYeck WL, Weingarten M, Benz HM, McNamara DE, Bergman EA, et al. 2016. Far-field pressurization likely caused one of the largest injections induced earthquakes by reactivating a large preexisting basement fault structure. Geophys. Res. Lett. 43:10198–207spa
dc.relation.referencesYoris, F., Lugo, J., 2009. Características de la trampa estratigráfica de Carbonera basal en el Sureste de Llanos Orientales. In: X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia, Julio, 2009.spa
dc.relation.referencesZakharova NV, Goldberg DS. 2014. In situ stress analysis in the northern Newark Basin: implications for induced seismicity from CO2 injection. J. Geophys. Res. 119:2362–74spa
dc.relation.referencesZang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E. & Bruhn, D., 2014. Analysis of induced seismicity in geothermal reservoirs—an overview, Geothermics, 52, 6–21.spa
dc.relation.referencesZang, A., Yoon, J.S., Stephansson, O. & Heidbach, O., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity, Geophys. J. Int., 195(2), 1282–1287.spa
dc.relation.referencesZarifi, Z., J. Havskov, and A. Hanyga (2007), An insight into the Bucaramanga nest, Tectonophysics, 443, 93–105.spa
dc.relation.referencesZhang Y, Person M, Rupp J, Ellett K, Celia MA, et al. 2013. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater 51:525–38spa
dc.relation.referencesZhang, Z., Schwartz, S., 1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system. Journal of Geophysical Research 99, 9651–9661.spa
dc.relation.referencesZoback, M.D. and J.H. Healy (1984). Ann. Geophys. 2, 689-698.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.lembHidrocarburos
dc.subject.lembHydrocarbons
dc.subject.lembSismología
dc.subject.lembSeismology
dc.subject.lembIngeniería sísmica
dc.subject.lembEarthquake engineering
dc.subject.proposalSismicidad Inducidaspa
dc.subject.proposalInduced Seismicityeng
dc.subject.proposalInyección de aguaspa
dc.subject.proposalWater injectioneng
dc.subject.proposalTomografiaspa
dc.subject.proposalTomographyeng
dc.subject.proposalAnisotropia Sisimicaspa
dc.subject.proposal>Seismic Anisotropyeng
dc.subject.proposalCampo de esfuerzosspa
dc.subject.proposalStress Fieldeng
dc.titleEstimación de imágenes de anomalías de velocidad, dispersores y campo de esfuerzos locales a partir del análisis de sismicidad generada en yacimientos de hidrocarburos en Colombia
dc.title.translatedImaging of velocity and attenuation anomalies, local stresses fields, based on the analysis of anthropogenic seismicity generated in hydrocarbon reservoirs in Colombia
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020719973.2022.pdf
Tamaño:
10.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Geociencias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: