Desarrollo de un producto alimenticio probiótico y antioxidante a partir de la inmovilización de Lactobacillus rhamnosus sobre cáscara de café
dc.contributor.advisor | Rojano, Benjamín Alberto | |
dc.contributor.advisor | Alzate Arbeláez, Andrés Felipe | |
dc.contributor.author | Rosales Delgado, Stephania | |
dc.contributor.googlescholar | Stephania Rosales Delgado | spa |
dc.contributor.orcid | Rosales Delgado, Stephania [0000-0002-9229-8427] | spa |
dc.contributor.researchgroup | Química de Los Productos Naturales y Los Alimentos | spa |
dc.date.accessioned | 2024-11-12T14:22:45Z | |
dc.date.available | 2024-11-12T14:22:45Z | |
dc.date.issued | 2021-11-11 | |
dc.description | ilustraciones, fotografías | spa |
dc.description.abstract | En el cuerpo humano habitan alrededor de cien billones de bacterias, las cuales en conjunto dan forma a un auténtico ecosistema, el cual ejerce importantes y diversas funciones. Las alteraciones de esta comunidad microbiana y la respuesta adversa del hospedero a estos cambios se le ha denominado disbiosis, la cual se ha asociado con afecciones como asma, enfermedades inflamatorias crónicas, obesidad entre otras. Debido a la importancia del mantenimiento de la microbiota intestinal la industria alimentaria ha puesto en el mercado alimentos con probióticos (microorganismos vivos que, cuando son administrados en cantidades adecuadas, confieren beneficios para la salud del huésped), Una de las principales limitaciones en este tipo de alimentos es la susceptibilidad de las cepas probióticas a las condiciones intestinales humanas. Una estrategia para contrarrestar esta limitación es la formación de biopelículas que sirven de nicho para los microorganismo y proveen protección para las células frente a los cambios fisiológicos y en procesos industriales incrementan la productividad y eficiencia. Este proyecto tuvo como objetivo desarrollar un alimento nutracéutico con propiedades antioxidantes y probióticas mediante la inmovilización de la cepa probiótica Lactobacillus rhamnosus sobre cáscara de café liofilizada y pulverizada. El aporte nutraceútico antioxidante fue aportado por el material de inmovilización, la cáscara de café, siendo esta un subproducto del beneficio del café del cual se tienen antecedentes como fuente de compuestos bioactivos, utilizarlo como matriz de inmovilización representa una propuesta novedosa y ambientalmente sustentable. (Tomado de la fuente) | spa |
dc.description.abstract | In the human body, around one hundred billion bacteria inhabit altogether forming an authentic ecosystem with important and diverse functions. The alterations of this microbial community and the host's adverse response to these changes have been called dysbiosis, which has been related to asthma, chronic inflammatory diseases, obesity, among others. Due to the importance of maintaining the intestinal microbiota, the food industry has marketed foodstuff containing probiotics (live microorganisms that, when administered in adequate quantities, confer benefits for the host's health). One of the main limitations is the susceptibility of probiotic strains to human intestinal conditions. A strategy to counteract this limitation is by forming biofilms functioning as a niche for microorganisms and providing protection to the cells from physiological changes. In industrial processes, biofilms increase productivity and efficiency, as well. This investigation aims to develop a nutraceutical food with antioxidant and probiotic properties by immobilizing the probiotic strain Lactobacillus rhamnosus on the freeze-dried and powdered coffee peel. The nutraceutical antioxidant contribution was contributed by the coffee peel, which is a by-product of coffee processing. The latter has been reported as a source of bioactive compounds, so using it as an immobilization matrix represents a novel and environmentally sustainable proposal. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biotecnología | spa |
dc.description.researcharea | Procesos Biotecnológicos | spa |
dc.format.extent | 110 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87169 | |
dc.language.iso | spa | spa |
dc.language.iso | eng | eng |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Ameca, G. M., Cerrilla, M. E. O., Córdoba, P. Z., Cruz, A. D., Hernández, M. S., & Haro, J. H. (2018). Chemical composition and antioxidant capacity of coffee pulp. Ciencia e Agrotecnologia, 42(3), 307–313. https://doi.org/10.1590/1413-70542018423000818 | spa |
dc.relation.references | Andrade, K. S., Gonalvez, R. T., Maraschin, M., Ribeiro-Do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. https://doi.org/10.1016/j.talanta.2011.11.031 | spa |
dc.relation.references | Arenas Nemogá, S. A. (2019). Extracción de compuestos fenólicos mediante el uso de disolventes orgánicos a partir del subproducto obtenido en la elaboración de aceite de oliva virgen (alperujo). | spa |
dc.relation.references | Avila-Nava, A., Medina-Vera, I., Rodríguez-Hernández, P., Guevara-Cruz, M., Heredia-G Canton, P. K., Tovar, A. R., & Torres, N. (2021). Oxalate Content and Antioxidant Activity of Different Ethnic Foods. Journal of Renal Nutrition, 31(1), 73–79. https://doi.org/10.1053/j.jrn.2020.04.006 | spa |
dc.relation.references | Ballesteros, A. (2020). Cómo obtener antioxidantes de los residuos del café. | spa |
dc.relation.references | Barlow, S., Chesson, A., Collins, J. D., Dybing, E., Flynn, A., Fruijtier-, C., Hardy, A., Knaap, A., Kuiper, H., Neindre, P. Le, Schans, J., Silano, V., Skerfving, S., & Vannier, P. (2007). Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. EFSA Journal, 5(12), 1–16. https://doi.org/10.2903/j.efsa.2007.587 | spa |
dc.relation.references | Barrio Merino, A. (2006). Probióticos, prebióticos y simbióticos. Definición, funciones y aplicación clínica en pediatría. Revista Pediatría de Atención Primaria, 8(Supl 1), 99–118. | spa |
dc.relation.references | Bengtson, P., & Bengtsson, G. (2005). Bacterial immobilization and remineralization of N at different growth rates and N concentrations. FEMS Microbiology Ecology, 54(1), 13–19. https://doi.org/10.1016/j.femsec.2005.02.006 | spa |
dc.relation.references | Brewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x | spa |
dc.relation.references | Bronstein, D. E., Cotliar, J., Votava-Smith, J. K., Powell, M. Z., Miller, M. J., & Cherry, J. D. (2005). Recurrent papular urticaria after varicella immunization in a fifteen-month-old girl. Pediatric Infectious Disease Journal, 24(3), 269–270. https://doi.org/10.1097/01.inf.0000154330.47509.42 | spa |
dc.relation.references | Capurso, L. (2019). Thirty Years of Lactobacillus rhamnosus GG A Review. In Journal of Clinical Gastroenterology (Vol. 53, Issue March). https://doi.org/10.1097/MCG.0000000000001170 | spa |
dc.relation.references | Castrillón, M. L. (2018). Análisis sector alimentos y bebidas, como fuente de nuevas industrias basadas en el capital natural de Colombia Fase II. Corporacion Biointropic, II, 1–41. | spa |
dc.relation.references | Coronado H., M., Vega Y León, S., Gutiérrez T., R., Marcela, V. F., & Radilla V., C. (2015). Antioxidantes: Perspectiva actual para la salud humana. Revista Chilena de Nutricion, 42(2), 206–212. https://doi.org/10.4067/S0717-75182015000200014 | spa |
dc.relation.references | Cosenza, L., Nocerino, R., Di Scala, C., Di Costanzo, M., Amoroso, A., Leone, L., Paparo, L., Pezzella, C., Aitoro, R., & Berni Canani, R. (2015). Bugs for atopy: The Lactobacillus rhamnosus GG strategy for food allergy prevention and treatment in children. Beneficial Microbes, 6(2), 225–232. https://doi.org/10.3920/BM2014.0158 | spa |
dc.relation.references | Covarrubias, H. S. A. (2011). Inmovilización de microorganismos en esferas de alginato como protección contra condiciones adversas en un tratamiento de agua residual. Tesis Maestría. | spa |
dc.relation.references | Cozzolino, A., Vergalito, F., Tremonte, P., Iorizzo, M., Lombardi, S. J., Sorrentino, E., Luongo, D., Coppola, R., Di Marco, R., & Succi, M. (2020). Preliminary evaluation of the safety and probiotic potential of akkermansia muciniphila DSM 22959 in comparison with lactobacillus rhamnosus GG. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020189 | spa |
dc.relation.references | Cruz Pacheco, K. (2007). Inmovilización de Lactobacillus delbrueckii como vector probiótico. 106. | spa |
dc.relation.references | Cunningham, M., Azcarate-peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., & Sinderen, D. Van. (2021). Trends in Microbiology Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, xx(xx), 1–19. https://doi.org/10.1016/j.tim.2021.01.003 | spa |
dc.relation.references | Deepika, G., Green, R. J., Frazier, R. A., & Charalampopoulos, D. (2009). Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. Journal of Applied Microbiology, 107(4), 1230–1240. https://doi.org/10.1111/j.1365-2672.2009.04306.x | spa |
dc.relation.references | Diaz Ferrer, J., Parra, V., Bendaño, T., Montes, P., & Solorzano, P. (2012). [Probiotic supplement (Lactobacillus acidophilus and bulgaricus) utility in the treatment of irritable bowel syndrome]. Revista de Gastroenterología Del Perú : Órgano Oficial de La Sociedad de Gastroenterología Del Perú, 32(4), 387–393. | spa |
dc.relation.references | Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, 5(4), 324–331. https://doi.org/10.1016/j.imr.2016.09.001 | spa |
dc.relation.references | Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028 | spa |
dc.relation.references | FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. 1–11. | spa |
dc.relation.references | Galego, J. (2019). Lactobacillus rhamnosus GG (LGG), 30 años de beneficios y evidencia. Lactobacillus Rhamnosus GG (LGG), 30 Años de Beneficios y Evidencia, 1. https://elfarmaceutico.es/index.php/la-revista/secciones-de-la-revista-el-farmaceutico/item/10312-lactobacillus-rhamnosus-gg-lgg-30-anos-de-beneficios-y-evidencia#.YJzlS7czapo | spa |
dc.relation.references | Gatej, S. M., Bright, R., Weyrich, L. S., Marino, V., Christophersen, C. T., Gibson, R. J., Gully, N., Zilm, P., & Bartold, P. M. (2020). Probiotic Lactobacillus Rhamnosus GG Protects Against P. Gingivalis And F. Nucleatum Gut Dysbiosis. Journal of the International Academy of Periodontology, 22(2), 18–27. | spa |
dc.relation.references | Goktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., & Sagdic, O. (2021). Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. Lwt, 153(September 2021), 112489. https://doi.org/10.1016/j.lwt.2021.112489 | spa |
dc.relation.references | Gomes da Cruz, A., Buriti, F. C. A., Batista de Souza, C. H., Fonseca Faria, J. A., & Isay Saad, S. M. (2009). Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology, 20(8), 344–354. https://doi.org/10.1016/j.tifs.2009.05.001 | spa |
dc.relation.references | Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? British Journal of Nutrition, 93(6), 783–786. https://doi.org/10.1079/bjn20051428 | spa |
dc.relation.references | Hajji, T., Mansouri, S., Vecino-Bello, X., Cruz-Freire, J. M., Rezgui, S., & Ferchichi, A. (2018). Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity in vitro. Journal of Cereal Science, 81, 83–90. https://doi.org/10.1016/j.jcs.2018.03.008 | spa |
dc.relation.references | Halliwell, B., Aeschbach, R., Löliger, J., & Aruoma, O. I. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601–617. https://doi.org/10.1016/0278-6915(95)00024-V | spa |
dc.relation.references | Halloran, K., & Underwood, M. A. (2019). Probiotic mechanisms of action. Early Human Development, 135, 58–65. https://doi.org/10.1016/j.earlhumdev.2019.05.010 | spa |
dc.relation.references | Hojsak, I., Abdović, S., Szajewska, H., Milošević, M., Krznarić, Ž., & Kolaček, S. (2010). Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections. Pediatrics, 125(5). https://doi.org/10.1542/peds.2009-2568 | spa |
dc.relation.references | Icaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterologia de Mexico, 78(4), 240–248. https://doi.org/10.1016/j.rgmx.2013.04.004 | spa |
dc.relation.references | International Coffee Organization, I. (2021). Coffee Market Report. September, 1–10. | spa |
dc.relation.references | Jones, D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology - Cell Physiology, 295(4). https://doi.org/10.1152/ajpcell.00283.2008 | spa |
dc.relation.references | Katan, M. B. (2012). Why the European food safety Authority was right to reject health claims for probiotics. Beneficial Microbes, 3(2), 85–89. https://doi.org/10.3920/BM2012.0008 | spa |
dc.relation.references | Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables - The millennium’s health. International Journal of Food Science and Technology, 36(7), 703–725. https://doi.org/10.1046/j.1365-2621.2001.00513.x | spa |
dc.relation.references | Keweloh, H., Heipieper, H. J., & Rehm, H. J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology, 31(4), 383–389. https://doi.org/10.1007/BF00257609 | spa |
dc.relation.references | Michelini, E., & Roda, A. (2012). Staying alive: New perspectives on cell immobilization for biosensing purposes. Analytical and Bioanalytical Chemistry, 402(5), 1785–1797. https://doi.org/10.1007/s00216-011-5364-x | spa |
dc.relation.references | Moy, Y. S., & Chou, C. C. (2010). Changes in the contents of sugars and organic acids during the ripening and storage of sufu, a traditional oriental fermented product of soybean cubes. Journal of Agricultural and Food Chemistry, 58(24), 12790–12793. https://doi.org/10.1021/jf1033653 | spa |
dc.relation.references | Nabavi, S., Rafraf, M., Somi, M. H., Homayouni-Rad, A., & Asghari-Jafarabadi, M. (2014). Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. Journal of Dairy Science, 97(12), 7386–7393. https://doi.org/10.3168/jds.2014-8500 | spa |
dc.relation.references | Oliveira, L. S., & Franca, A. S. (2014). An Overview of the Potential Uses for Coffee Husks. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00031-0 | spa |
dc.relation.references | Olveira, G., & González-molero, I. (2016). Endocrinología y Nutrición Actualización de probióticos , prebióticos y simbióticos. 63(9), 482–494. | spa |
dc.relation.references | Orive, G., Ponce, S., Hernández, R. M., Gascón, A. R., Igartua, M., & Pedraz, J. L. (2002). Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials, 23(18), 3825–3831. https://doi.org/10.1016/S0142- | spa |
dc.relation.references | Pahumunto, N., Piwat, S., Chanvitan, S., Ongwande, W., Uraipan, S., & Teanpaisan, R. (2020). Fermented milk containing a potential probiotic Lactobacillus rhamnosus SD11 with maltitol reduces Streptococcus mutans: A double-blind, randomized, controlled study. Journal of Dental Sciences, 15(4), 403–410. https://doi.org/10.1016/j.jds.2020.03.003 | spa |
dc.relation.references | Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8665–8670. https://doi.org/10.1073/pnas.0903485106 | spa |
dc.relation.references | Rodríguez R., Y. A., Rojas G., A. F., & Rodríguez B., S. (2016). Encapsulación De Probióticos Para Aplicaciones Alimenticias. Biosalud, 15(2), 106–115. https://doi.org/10.17151/biosa.2016.15.2.10 | spa |
dc.relation.references | Sanders, M. (2009). How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Functional Food Reviews, 1(1), 3–12. https://doi.org/10.2310/6180.2009.00002 | spa |
dc.relation.references | Santacroce, R., Martinotti, G., Cinosi, E., Lupi, M., Acciavatti, T., Marini, S., & Di Giannantonio, M. (2014). P.6.b.013 Alcohol, coffee and energy drink consumption patterns in a sample of Italian adolescents and young adults. European Neuropsychopharmacology, 24, S670–S671. https://doi.org/10.1016/s0924-977x(14)71080-6 | spa |
dc.relation.references | Serp, D., Cantana, E., Heinzen, C., Von Stockar, U., & Marison, I. W. (2000). Characterizetion of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnology and Bioengineering, 70(1), 41–53. https://doi.org/10.1002/1097-0290(20001005)70:1<41::aid-bit6>3.0.co;2-u | spa |
dc.relation.references | Serra, L., & Aranceta, J. (2002). Guía de alimentos funcionales. Sociedad Española Nutrición Comunitaria. Instituto Omega 3. Confederaciñon de Consumidores y Usuarios., 2–14. | spa |
dc.relation.references | Shahidi, F. (2000). Antioxidants in food and food antioxidants. Nahrung - Food, 44(3), 158–163. https://doi.org/10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-L | spa |
dc.relation.references | Storz, G., & Imlay, J. A. (1999). Oxidative stress Gisela Storz * and James A Imlay ? Current Opinion in Microbiology, 188–194. | spa |
dc.relation.references | Tharmaraj, N., & Shah, N. P. (2003). Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. Journal of Dairy Science, 86(7), 2288–2296. https://doi.org/10.3168/jds.S0022-0302(03)73821-1 | spa |
dc.relation.references | Torres Castillo, N. E., Ochoa Sierra, J. S., Oyervides-Muñoz, M. A., Sosa-Hernández, J. E., Iqbal, H. M. N., Parra-Saldívar, R., & Melchor-Martínez, E. M. (2021). Exploring the potential of coffee husk as caffeine bio-adsorbent – A mini-review. Case Studies in Chemical and Environmental Engineering, 3(November 2020), 100070. https://doi.org/10.1016/j.cscee.2020.100070 | spa |
dc.relation.references | Tóth, I. V., Segundo, M. A., & Rangel, A. O. S. S. (2008). Advances in Flow Injection Analysis and Related Techniques. Comprehensive Analytical Chemistry, 54, 513–558. http://www.sciencedirect.com/science/article/pii/S0166526X08006181 | spa |
dc.relation.references | Valencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10. | spa |
dc.relation.references | Verdenelli, M. C., Ghelfi, F., Silvi, S., Orpianesi, C., Cecchini, C., & Cresci, A. (2009). Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. European Journal of Nutrition, 48(6), 355–363. https://doi.org/10.1007/s00394-009-0021-2 | spa |
dc.relation.references | Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458. https://doi.org/10.2146/ajhp090168 | spa |
dc.relation.references | Zavala, A., Maria, R., Hidalgo, S., Barrios, M., Teresa, R., Rodriguez, H., & Teresa, M. (2015). Generalidades de los probióticos. Archivos Venezolanos de Puericultura y Pediatría, 78(4), 123–128. | spa |
dc.relation.references | Zur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization. Molecules, 21(7). https://doi.org/10.3390/molecules21070958 | spa |
dc.relation.references | Amendola, D., Faveri, D. M. De, & Spigno, G. (2010). Grape marc phenolics : Extraction kinetics , quality and stability of extracts. Journal of Food Engineering, 97(3), 384–392. https://doi.org/10.1016/j.jfoodeng.2009.10.033 | spa |
dc.relation.references | Ascencion, M., Ramirez-Coronel, Marnet, N., Kolli, V. S. K., Roussos, S., Guyot, S., & Augur, C. (2004). Characterization and Estimation of Proanthocyanidins and Other Phenolics in Coffee Pulp ( Coffea arabica ) by Thiolysis−High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 52(5), 1344–1349. https://doi.org/10.1021/jf035208t | spa |
dc.relation.references | Baelo, C. U., Carmen, M., Medianero, G., Tormo, R. P., & López, Á. B. (n.d.). Algunos principios activos del café, del té y del cacao 1. 16–19. | spa |
dc.relation.references | Bakker, R. R. C. (2013). Availability of lignocellulosic feedstocks for lactic acid production. Food & Biobased Research Wageningen UR, Report 139. | spa |
dc.relation.references | Bosso, A., Cassino, C., Motta, S., Panero, L., Tsolakis, C., & Guaita, M. (2020). Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods (Basel, Switzerland), 9(10), 1451. https://doi.org/10.3390/foods9101451 | spa |
dc.relation.references | Cacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. 59, 379–389. https://doi.org/10.1016/S0260-8774(02)00497-1 | spa |
dc.relation.references | Chethan, S., & Malleshi, N. G. (2007). Food Chemistry Finger millet polyphenols : Optimization of extraction and the effect of pH on their stability. 105, 862–870. https://doi.org/10.1016/j.foodchem.2007.02.012 | spa |
dc.relation.references | Chung, K., Wong, T. Y., Wei, C., Huang, Y., Lin, Y., Chung, K., Wong, T. Y., Wei, C., & Huang, Y. (2010). Tannins and Human Health : A Review Tannins and Human Health : A Review. 8398. https://doi.org/10.1080/10408699891274273 | spa |
dc.relation.references | Corrales-Bernal, Andrea; Vergara, A. I., Rojano, B., Yahia, E., & Maldonado, M. E. (2015). Características nutricionales y antioxidantes de la uchuva colombiana (Physalys peruviana L.) en tres estadios de su maduración - ProQuest Central - ProQuest. | spa |
dc.relation.references | Cortes Meza, S., Ortiz, A., & Ramirez, L. S. (2017). Determinación de antioxidante en subproductos de café producido y comercializado en Risaralda (Colombia). Pereira: Universidad Tecnológica de Pereira, 1–8. http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/7597/63373C828.pdf?sequence=1 | spa |
dc.relation.references | Dabbour, I. R., Al-lsmail, K. M., Takrui, H. R., & Azzeh, F. S. (2014). Chemical characteristics and antioxidant content properties of cold pressed seed oil of wild milk thistle plant grown in Jordan. Pakistan Journal of Nutrition, 13(2), 67–78. https://doi.org/10.3923/pjn.2014.67.78 | spa |
dc.relation.references | Díaz, F. O., Ormaza, A. M., & Rojano, B. A. (2018). Efecto de la tostión del café sobre el perfil de taza, contenido de compuestos antioxidantes y la actividad antioxidante. Información Tecnológica, 29(3), 31–42. https://doi.org/10.4067/s0718-07642018000300187 | spa |
dc.relation.references | Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008 | spa |
dc.relation.references | Friedman, M., & Jürgens, H. S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101–2110. https://doi.org/10.1021/jf990489j | spa |
dc.relation.references | Giao, M., Gonzales, M., Rivero, M., Pereira, C., Pintado, M., & Malcata, X. (2007). Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. 2647(April), 2638–2647. https://doi.org/10.1002/jsfa | spa |
dc.relation.references | Griffin, S. P., & Bhagooli, R. (2004). Measuring antioxidant potential in corals using the FRAP assay. Journal of Experimental Marine Biology and Ecology, 302(2), 201–211. https://doi.org/10.1016/j.jembe.2003.10.008 | spa |
dc.relation.references | Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., & Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cáscara beverage. Food Chemistry, 221, 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067 | spa |
dc.relation.references | Herrera, F. (2016). Obtención De Antioxidantes a Partir Del Epicarpio De Café Empleando Fluidos Presurizados. | spa |
dc.relation.references | Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c | spa |
dc.relation.references | Kelebek, H., Selli, S., Canbas, A., & Cabaroglu, T. (2009). HPLC determination of organic acids , sugars , phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv . Kozan. Microchemical Journal, 91(2), 187–192. https://doi.org/10.1016/j.microc.2008.10.008 | spa |
dc.relation.references | Kovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing., 110, 104–119. https://doi.org/10.1016/j.fbp.2018.05.002 | spa |
dc.relation.references | Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269–1278. https://doi.org/10.1093/jaoac/88.5.1269 | spa |
dc.relation.references | Ludwig, I. A., Sanchez, L., Cid, C., Caemmerer, B., Kroh, L. W., & De Peña, M. P. (2012). Extraction of coffee antioxidants: Impact of brewing time and method. Food Research International, 48(1), 57–64. https://doi.org/10.1016/j.foodres.2012.02.023 | spa |
dc.relation.references | Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20(2), 125–132. https://doi.org/10.1016/j.jfca.2006.04.010 | spa |
dc.relation.references | McCusker, R. R., Fuehrlein, B., Goldberger, B. A., Gold, M. S., & Cone, E. J. (2006). Caffeine content of decaffeinated coffee. Journal of Analytical Toxicology, 30(8), 611–613. https://doi.org/10.1093/jat/30.8.611 | spa |
dc.relation.references | Moon, J. K., Hyui Yoo, S. U. N., & Shibamoto, T. (2009). Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. Journal of Agricultural and Food Chemistry, 57(12), 5365–5369. https://doi.org/10.1021/jf900012b | spa |
dc.relation.references | Naranjo, M., Vélez, I. L. T., Benjamín, I. I., & Iii, A. R. (2011). Actividad antioxidante de café colombiano de diferentes calidades Antioxidant activity of different grades of Colombian coffee. 16(2), 164–173. | spa |
dc.relation.references | Pleissner, D., Neu, A. K., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167–173. https://doi.org/10.1016/j.biortech.2016.06.078 | spa |
dc.relation.references | Prata, E. R. B. A., & Oliveira, L. S. (2007). Fresh coffee husks as potential sources of anthocyanins. LWT - Food Science and Technology, 40(9), 1555–1560. https://doi.org/10.1016/j.lwt.2006.10.003 | spa |
dc.relation.references | Rodríguez-Durán, L. V., Ramírez-Coronel, M. A., Aranda-Delgado, E., Nampoothiri, K. M., Favela-Torres, E., Aguilar, C. N., & Saucedo-Castañeda, G. (2014). Soluble and bound hydroxycinnamates in coffee pulp (coffea arabica) from seven cultivars at three ripening stages. Journal of Agricultural and Food Chemistry, 62(31), 7869–7876. https://doi.org/10.1021/jf5014956 | spa |
dc.relation.references | Rojano, B. A., Acosta, K. Z., & Cortes Correa, F. B. (2012). Free radical trapping capacity of Passiflora mollissima (Kunth) L. H. Bailey (curuba). Revista Cubana de Plantas Medicinales, 17(4), 408–419. https://doi.org/1561-3011 | spa |
dc.relation.references | Shrestha, S., Rijal, S. kanta, Pokhrel, P., & Rai, K. P. (2016). A simple HPLC Method for the Determination of Caffeine Content in Tea and Coffee. Journal of Food Science and Technology Nepal, 9, 74. https://doi.org/10.3126/jfstn.v9i0.16200 | spa |
dc.relation.references | Stefanello, N., Spanevello, R. M., Passamonti, S., Porciúncula, L., Bonan, C. D., Olabiyi, A. A., Teixeira da Rocha, J. B., Assmann, C. E., Morsch, V. M., & Schetinger, M. R. C. (2019). Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 123, 298–313. https://doi.org/10.1016/j.fct.2018.10.005 | spa |
dc.relation.references | Tobón Arroyave, N. de la C. (2015). Extracción asistida por ultrasonido de compuestos fenólicos de la pulpa de café (Coffea arabica L.) variedad Castillo. | spa |
dc.relation.references | Toci, A. T., Farah, A., Pezza, H. R., & Pezza, L. (2016). Coffee Adulteration: More than Two Decades of Research. Critical Reviews in Analytical Chemistry, 46(2), 83–92. https://doi.org/10.1080/10408347.2014.966185 | spa |
dc.relation.references | Trueba, G. P. (2003). Los flavonoides: Antioxidantes o prooxidantes. Revista Cubana de Investigaciones Biomedicas, 22(1), 48–57. | spa |
dc.relation.references | Vongsangnak, W., Gua, J., Chauvatcharin, S., & Zhong, J. (2004). Towards efficient extraction of notoginseng saponins from cultured cells of Panax notoginseng. 18, 115–120. https://doi.org/10.1016/S1369-703X(03)00197-9 | spa |
dc.relation.references | Xia, Y., Khatchikian, G., & Zweier, J. L. (1996). Adenosine deaminase inhibition prevents free radical-mediated injury in the postischemic heart. The Journal of Biological Chemistry, 271(17), 10096–10102. https://doi.org/10.1074/jbc.271.17.10096 | spa |
dc.relation.references | Zapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012 | spa |
dc.relation.references | Bailón-García, E., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hódar, F. J. (2014). Microspheres of carbon xerogel: An alternative Pt-support for the selective hydrogenation of citral. Applied Catalysis A: General, 482, 318–326. https://doi.org/10.1016/j.apcata.2014.06.011 | spa |
dc.relation.references | Barrios-rodríguez, Y., Collazos-escobar, G. A., & Gutiérrez-guzmán, N. (2021). ATR-FTIR FOR CHARACTERIZING AND DIFFERENTIATING DRIED AND GROUND COFFEE CHERRY PULP OF DIFFERENT VARIETIES ( Coffea Arabica L .) This study aimed to evaluate the performance of the infrared spectrum in the range of of different varieties . The spectral da. 4430, 70–77. | spa |
dc.relation.references | Biswas, B., Sarkar, B., Rusmin, R., & Naidu, R. (2015). Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. Environment International, 85, 168–181. https://doi.org/10.1016/j.envint.2015.09.017 | spa |
dc.relation.references | Carballo, T., Gil, M. V., Gómez, X., González-Andrés, F., & Morán, A. (2008). Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 19(6), 815–830. https://doi.org/10.1007/s10532-008-9184-4 | spa |
dc.relation.references | Craig, A. P., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chemistry, 245(September 2017), 1052–1061. https://doi.org/10.1016/j.foodchem.2017.11.066 | spa |
dc.relation.references | Craig, A. P., Franca, A. S., Oliveira, L. S., Irudayaraj, J., & Ileleji, K. (2014). Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta, 128, 393–400. https://doi.org/10.1016/j.talanta.2014.05.001 | spa |
dc.relation.references | Desmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93(6), 1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.x | spa |
dc.relation.references | Dong, T. T., Gong, J. S., Gu, B. C., Zhang, Q., Li, H., Lu, Z. M., Lu, M. L., Shi, J. S., & Xu, Z. H. (2017). Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresource Technology, 244(1800), 1104–1110. https://doi.org/10.1016/j.biortech.2017.08.039 | spa |
dc.relation.references | Goldburg, W. I. (1999). Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of. A Study of Brownian Motion Using Light Scattering American Journal of Physics, 67(1999), 1093. https://doi.org/10.1119/1.19101 | spa |
dc.relation.references | Hrenovic, J., Ivankovic, T., & Tibljas, D. (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. Journal of Hazardous Materials, 166(2–3), 1377–1382. https://doi.org/10.1016/j.jhazmat.2008.12.064 | spa |
dc.relation.references | Idris, A., Man, Z., Maulud, A. S., Bustam, M. A., Mannan, H. A., & Ahmed, I. (2020). Investigation on particle properties and extent of functionalization of silica nanoparticles. Applied Surface Science, 506, 144978. https://doi.org/10.1016/j.apsusc.2019.144978 | spa |
dc.relation.references | Kandasamy, S., Muthusamy, G., Balakrishnan, S., Duraisamy, S., Thangasamy, S., Seralathan, K. K., & Chinnappan, S. (2016). Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0481-z | spa |
dc.relation.references | Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21(4), 377–397. https://doi.org/10.1016/j.fm.2003.10.005 | spa |
dc.relation.references | Kourkoutas, Y., Bosnea, L., Taboukos, S., Baras, C., Lambrou, D., & Kanellaki, M. (2006). Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces. Journal of Dairy Science, 89(5), 1439–1451. https://doi.org/10.3168/jds.S0022-0302(06)72212-3 | spa |
dc.relation.references | Kourkoutas, Y., Kanellaki, M., & Koutinas, A. A. (2006). Apple pieces as immobilization support of various microorganisms. LWT - Food Science and Technology, 39(9), 980–986. https://doi.org/10.1016/j.lwt.2006.02.024 | spa |
dc.relation.references | Li, F., Zhou, H., Fan, J., & Xiang, Q. (2020). Amine-functionalized graphitic carbon nitride decorated with small-sized Au nanoparticles for photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 570, 11–19. https://doi.org/10.1016/j.jcis.2020.02.108 | spa |
dc.relation.references | Lyman, D., Robert, B., Dell, S., Merle, S., & Murray, J. (2003). FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. Jorunal of Food Agricultural and Food Chemestry, 3268–3272. | spa |
dc.relation.references | Melgar, A., Borge, D., & Pérez, J. F. (2008). Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de partícula de 2 a 19 mm. DYNA (Colombia), 75(155), 123–131. | spa |
dc.relation.references | Mitropoulou, G., Nedovic, V., Goyal, A., & Kourkoutas, Y. (2013). Immobilization technologies in probiotic food production. Journal of Nutrition and Metabolism, 2013. https://doi.org/10.1155/2013/716861 | spa |
dc.relation.references | Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815. https://doi.org/10.1016/j.profoo.2011.09.265 | spa |
dc.relation.references | Reis, N., Franca, A. S., & Oliveira, L. S. (2013). Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT - Food Science and Technology, 50(2), 715–722. https://doi.org/10.1016/j.lwt.2012.07.016 | spa |
dc.relation.references | Renuga Devi, T. S., & Gayathri, S. (2010). FTIR And FT-Raman spectral analysis of Paclitaxel drugs. International Journal of Pharmaceutical Sciences Review and Research, 2(2), 106–110. | spa |
dc.relation.references | Ribeiro, J. S., Ferreira, M. M. C., & Salva, T. J. G. (2011). Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta, 83(5), 1352–1358. https://doi.org/10.1016/j.talanta.2010.11.001 | spa |
dc.relation.references | Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137(August), 109682. https://doi.org/10.1016/j.foodres.2020.109682 | spa |
dc.relation.references | Sekaran, G., Karthikeyan, S., Gupta, V. K., Boopathy, R., & Maharaja, P. (2013). Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater. Materials Science and Engineering C, 33(2), 735–745. https://doi.org/10.1016/j.msec.2012.10.026 | spa |
dc.relation.references | Simental Valle, D. E. (2015). Inmovilización de Lactobacillus acidophilus en mezclas de alginato, gelana y mucílago de nopal. | spa |
dc.relation.references | Tien, C., & Ramarao, B. V. (2017). On the significance and utility of the Lagergren model and the pseudo second-order model of batch adsorption. Separation Science and Technology (Philadelphia), 52(6), 975–986. https://doi.org/10.1080/01496395.2016.1274327 | spa |
dc.relation.references | Vicente, A., Dosta, P., & Teixeira, A. (2005). Process Continuous Beer Fermentation. | spa |
dc.relation.references | Yamauchi, Y., Okamoto, T., Murayama, H., Kajino, K., Nagara, akira, & Noguchi, K. (1995). Rapid maturation of beer using an immobilized yeast bioreactor. 2. Balance of total diacetyl reduction and regeneration. Journal of Biotechnology, 38(2), 109–116. https://doi.org/10.1016/0168-1656(94)00114-R | spa |
dc.relation.references | Zapata, K., Carrasco-Marín, F., Arias, J. P., Castelo-Quibén, J., Franco, C. A., Rojano, B., & Cortés, F. B. (2020). Novel biomaterial design based on Pseudomonas stutzeri–carbon xerogel microspheres for hydrocarbon removal from oil-in-saltwater emulsions: A new proposed treatment of produced water in oilfields. Journal of Water Process Engineering, 35(February), 101222. https://doi.org/10.1016/j.jwpe.2020.101222 | spa |
dc.relation.references | Zapata, K., Carrasco-Marin, F., Cortés, F. B., Franco, C. A., Lopera, S. H., & Rojano, B. A. (2019). Immobilization of p. Stutzeri on activated carbons for degradation of hydrocarbons from oil-in-saltwater emulsions. Nanomaterials, 9(4), 1–15. https://doi.org/10.3390/nano9040500 | spa |
dc.relation.references | Ait Seddik, H., Bendali, F., Cudennec, B., & Drider, D. (2017). Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults. Research in Microbiology, 168(3), 244–254. https://doi.org/10.1016/j.resmic.2016.12.003 | spa |
dc.relation.references | Alvarez, G. S., Foglia, M. L., Copello, G. J., Desimone, M. F., & Diaz, L. E. (2009). Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Applied Microbiology and Biotechnology, 82(4), 639–646. https://doi.org/10.1007/s00253-008-1783-9 | spa |
dc.relation.references | Arepally, D., Reddy, R. S., & Goswami, T. K. (2020). Studies on survivability, storage stability of encapsulated spray dried probiotic powder. Current Research in Food Science, 3(April), 235–242. https://doi.org/10.1016/j.crfs.2020.09.001 | spa |
dc.relation.references | Barrio Merino, A. (2006). Probióticos, prebióticos y simbióticos. Definición, funciones y aplicación clínica en pediatría. Revista Pediatría de Atención Primaria, 8(Supl 1), 99–118. | spa |
dc.relation.references | Ceccanti, C., Finimundy, T. C., Heleno, S. A., Pires, T. C. S. P., Calhelha, R. C., Guidi, L., Ferreira, I. C. F. R., & Barros, L. (2021). Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. Lwt, 145(March), 111335. https://doi.org/10.1016/j.lwt.2021.111335 | spa |
dc.relation.references | Coeuret, V., Gueguen, M., & Vernoux, J. P. (2004). Numbers and strains of lactobacilli in some probiotic products. International Journal of Food Microbiology, 97(2), 147–156. https://doi.org/10.1016/j.ijfoodmicro.2004.04.015 | spa |
dc.relation.references | Cotter, P. D., & Hill, C. (2003). Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453.https://doi.org/10.1128/mmbr.67.3.429-453.2003 | spa |
dc.relation.references | Cruz Pacheco, K. (2007). Inmovilización de Lactobacillus delbrueckii como vector probiótico. 106. | spa |
dc.relation.references | Desmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93(6), 1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.x | spa |
dc.relation.references | Doherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43. https://doi.org/10.1016/j.idairyj.2011.06.009 | spa |
dc.relation.references | Dong, Q. Y., Chen, M. Y., Xin, Y., Qin, X. Y., Cheng, Z., Shi, L. E., & Tang, Z. X. (2013). Alginate-based and protein-based materials for probiotics encapsulation: A review. International Journal of Food Science and Technology, 48(7), 1339–1351. https://doi.org/10.1111/ijfs.12078 | spa |
dc.relation.references | Fallingborg, J. (1999). Intraluminal pH of the human gastrointestinal tract. Danish Medical Bulletin, 46(3), 183–196. | spa |
dc.relation.references | Gobbetti, M., & Minervini, F. (2014). Lactobacillus: Lactobacillus casei. In Encyclopedia of Food Microbiology: Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00180-4 | spa |
dc.relation.references | Groboillot, A., Boadi, D. K., Poncelet, R., & Neufeld, R. J. (2008). Immobilization of Cells for Application in the Food Industry. Critical Reviews in Biotechnology, 3(1), 39–48. | spa |
dc.relation.references | Kemsawasd, V., Chaikham, P., & Rattanasena, P. (2016). Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model. Food Bioscience, 16(September), 37–43. https://doi.org/10.1016/j.fbio.2016.09.001 | spa |
dc.relation.references | Khoder, G., Al-Menhali, A. A., Al-Yassir, F., & Karam, S. M. (2016). Potential role of probiotics in the management of gastric ulcer (Review). Experimental and Therapeutic Medicine, 12(1), 3–17. https://doi.org/10.3892/etm.2016.3293 | spa |
dc.relation.references | Le-Tien, C., Millette, M., Mateescu, M. A., & Lacroix, M. (2004). Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnology and Applied Biochemistry, 39(3), 347–354. https://doi.org/10.1042/BA20030158 | spa |
dc.relation.references | Marteau, P., & Rambaud, J. C. (1993). Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiology Reviews, 12(1–3), 207–220. https://doi.org/10.1016/0168-6445(93)90064-G | spa |
dc.relation.references | Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040–1045. https://doi.org/10.1016/j.foodres.2009.04.023 | spa |
dc.relation.references | Nouri, Z., Karami, F., Neyazi, N., Modarressi, M. H., Karimi, R., Khorramizadeh, M. R., Taheri, B., & Motevaseli, E. (2016). Dual anti-metastatic and anti-proliferative activity assessment of two probiotics on HeLa and HT-29 cell lines. Cell Journal, 18(2), 127–134. https://doi.org/10.22074/cellj.2016.4307 | spa |
dc.relation.references | Pedersen, N., Andersen, N. N., Végh, Z., Jensen, L., Ankersen, D. V., Felding, M., Simonsen, M. H., Burisch, J., & Munkholm, P. (2014). Ehealth: Low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome. World Journal of Gastroenterology, 20(43), 16215–16226. https://doi.org/10.3748/wjg.v20.i43.16215 | spa |
dc.relation.references | Recine, N., Palma, E., Domenici, L., Giorgini, M., Imperiale, L., Sassu, C., Musella, A., Marchetti, C., Muzii, L., & Benedetti Panici, P. (2016). Restoring vaginal microbiota: biological control of bacterial vaginosis. A prospective case-control study using Lactobacillus rhamnosus BMX 54 as adjuvant treatment against bacterial vaginosis. Archives of Gynecology and Obstetrics, 293(1), 101–107. https://doi.org/10.1007/s00404-015-3810-2 | spa |
dc.relation.references | Sáez-Lara, M. J., Robles-Sanchez, C., Ruiz-Ojeda, F. J., Plaza-Diaz, J., & Gil, A. (2016). Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. International Journal of Molecular Sciences, 17(6), 1–15. https://doi.org/10.3390/ijms17060928 | spa |
dc.relation.references | Sanchez, M., Darimont, C., Drapeau, V., Emady-Azar, S., Lepage, M., Rezzonico, E., Ngom-Bru, C., Berger, B., Philippe, L., Ammon-Zuffrey, C., Leone, P., Chevrier, G., St-Amand, E., Marette, A., Doré, J., & Tremblay, A. (2014). Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. The British Journal of Nutrition, 111(8), 1507–1519. https://doi.org/10.1017/S0007114513003875 | spa |
dc.relation.references | Sanders, M. (2009). How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Functional Food Reviews, 1(1), 3–12. https://doi.org/10.2310/6180.2009.00002 | spa |
dc.relation.references | Segers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG - host interactions. Microbial Cell Factories, 13(Suppl 1), 1–16. https://doi.org/10.1186/1475-2859-13-S1-S7 | spa |
dc.relation.references | Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014a). Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food and Bioprocess Technology, 7(5), 1255–1268. https://doi.org/10.1007/s11947-013-1120-x | spa |
dc.relation.references | Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. D. (2014b). Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chemistry, 159, 302–308. https://doi.org/10.1016/j.foodchem.2014.03.008 | spa |
dc.relation.references | Šušković, J., Kos, B., Matošić, S., & Besendorfer, V. (2000). The effect of bile salts on survival and morphology of a potential probiotic strain Lactobacillus acidophilus M92. World Journal of Microbiology and Biotechnology, 16(7), 673–678. https://doi.org/10.1023/A:1008909505651 | spa |
dc.relation.references | Tan, D. T., Poh, P. E., & Chin, S. K. (2018). Microorganism preservation by convective air-drying—A review. Drying Technology, 36(7), 764–779. https://doi.org/10.1080/07373937.2017.1354876 | spa |
dc.relation.references | Tarifa, M. C., Piqueras, C. M., Genovese, D. B., & Brugnoni, L. I. (2021). Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions. International Journal of Biological Macromolecules, 179, 457–465. https://doi.org/10.1016/j.ijbiomac.2021.03.038 | spa |
dc.relation.references | Verdenelli, M. C., Ghelfi, F., Silvi, S., Orpianesi, C., Cecchini, C., & Cresci, A. (2009). Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. European Journal of Nutrition, 48(6), 355–363. https://doi.org/10.1007/s00394-009-0021-2 | spa |
dc.relation.references | Wickens, K. L., Barthow, C. A., Murphy, R., Abels, P. R., Maude, R. M., Stone, P. R., Mitchell, E. A., Stanley, T. V., Purdie, G. L., Kang, J. M., Hood, F. E., Rowden, J. L., Barnes, P. K., Fitzharris, P. F., & Crane, J. (2017). Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. British Journal of Nutrition, 117(6), 804–813. https://doi.org/10.1017/S0007114517000289 | spa |
dc.relation.references | Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering, 109(3), 597–602. https://doi.org/10.1016/j.jfoodeng.2011.10.017 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Probióticos | |
dc.subject.agrovoc | Flora microbiana | |
dc.subject.agrovoc | Lactobacillus rhamnosus | |
dc.subject.ddc | 580 - Plantas::582 - Plantas destacadas por características vegetativas y flores | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.lemb | Industrias alimenticias | |
dc.subject.lemb | Control de enfermedades | |
dc.subject.lemb | Café - Alimentos pulverizados | |
dc.subject.lemb | Café - Alimentos liofilizados | |
dc.subject.lemb | Residuos agrícolas | |
dc.subject.proposal | nutraceútico | spa |
dc.subject.proposal | probiótico | spa |
dc.subject.proposal | biopelícula, | spa |
dc.subject.proposal | subproducto | spa |
dc.subject.proposal | nutraceutical | eng |
dc.subject.proposal | probiotic | eng |
dc.subject.proposal | biofilm | eng |
dc.subject.proposal | by-product | eng |
dc.title | Desarrollo de un producto alimenticio probiótico y antioxidante a partir de la inmovilización de Lactobacillus rhamnosus sobre cáscara de café | |
dc.title.translated | Development of a probiotic and antioxidant food product from the immobilization of Lactobacillus rhamnosus on coffee husk | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152701514.2021.pdf
- Tamaño:
- 2.25 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: