Desarrollo de un producto alimenticio probiótico y antioxidante a partir de la inmovilización de Lactobacillus rhamnosus sobre cáscara de café

dc.contributor.advisorRojano, Benjamín Alberto
dc.contributor.advisorAlzate Arbeláez, Andrés Felipe
dc.contributor.authorRosales Delgado, Stephania
dc.contributor.googlescholarStephania Rosales Delgadospa
dc.contributor.orcidRosales Delgado, Stephania [0000-0002-9229-8427]spa
dc.contributor.researchgroupQuímica de Los Productos Naturales y Los Alimentosspa
dc.date.accessioned2024-11-12T14:22:45Z
dc.date.available2024-11-12T14:22:45Z
dc.date.issued2021-11-11
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractEn el cuerpo humano habitan alrededor de cien billones de bacterias, las cuales en conjunto dan forma a un auténtico ecosistema, el cual ejerce importantes y diversas funciones. Las alteraciones de esta comunidad microbiana y la respuesta adversa del hospedero a estos cambios se le ha denominado disbiosis, la cual se ha asociado con afecciones como asma, enfermedades inflamatorias crónicas, obesidad entre otras. Debido a la importancia del mantenimiento de la microbiota intestinal la industria alimentaria ha puesto en el mercado alimentos con probióticos (microorganismos vivos que, cuando son administrados en cantidades adecuadas, confieren beneficios para la salud del huésped), Una de las principales limitaciones en este tipo de alimentos es la susceptibilidad de las cepas probióticas a las condiciones intestinales humanas. Una estrategia para contrarrestar esta limitación es la formación de biopelículas que sirven de nicho para los microorganismo y proveen protección para las células frente a los cambios fisiológicos y en procesos industriales incrementan la productividad y eficiencia. Este proyecto tuvo como objetivo desarrollar un alimento nutracéutico con propiedades antioxidantes y probióticas mediante la inmovilización de la cepa probiótica Lactobacillus rhamnosus sobre cáscara de café liofilizada y pulverizada. El aporte nutraceútico antioxidante fue aportado por el material de inmovilización, la cáscara de café, siendo esta un subproducto del beneficio del café del cual se tienen antecedentes como fuente de compuestos bioactivos, utilizarlo como matriz de inmovilización representa una propuesta novedosa y ambientalmente sustentable. (Tomado de la fuente)spa
dc.description.abstractIn the human body, around one hundred billion bacteria inhabit altogether forming an authentic ecosystem with important and diverse functions. The alterations of this microbial community and the host's adverse response to these changes have been called dysbiosis, which has been related to asthma, chronic inflammatory diseases, obesity, among others. Due to the importance of maintaining the intestinal microbiota, the food industry has marketed foodstuff containing probiotics (live microorganisms that, when administered in adequate quantities, confer benefits for the host's health). One of the main limitations is the susceptibility of probiotic strains to human intestinal conditions. A strategy to counteract this limitation is by forming biofilms functioning as a niche for microorganisms and providing protection to the cells from physiological changes. In industrial processes, biofilms increase productivity and efficiency, as well. This investigation aims to develop a nutraceutical food with antioxidant and probiotic properties by immobilizing the probiotic strain Lactobacillus rhamnosus on the freeze-dried and powdered coffee peel. The nutraceutical antioxidant contribution was contributed by the coffee peel, which is a by-product of coffee processing. The latter has been reported as a source of bioactive compounds, so using it as an immobilization matrix represents a novel and environmentally sustainable proposal.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaProcesos Biotecnológicosspa
dc.format.extent110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87169
dc.language.isospaspa
dc.language.isoengeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAmeca, G. M., Cerrilla, M. E. O., Córdoba, P. Z., Cruz, A. D., Hernández, M. S., & Haro, J. H. (2018). Chemical composition and antioxidant capacity of coffee pulp. Ciencia e Agrotecnologia, 42(3), 307–313. https://doi.org/10.1590/1413-70542018423000818spa
dc.relation.referencesAndrade, K. S., Gonalvez, R. T., Maraschin, M., Ribeiro-Do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. https://doi.org/10.1016/j.talanta.2011.11.031spa
dc.relation.referencesArenas Nemogá, S. A. (2019). Extracción de compuestos fenólicos mediante el uso de disolventes orgánicos a partir del subproducto obtenido en la elaboración de aceite de oliva virgen (alperujo).spa
dc.relation.referencesAvila-Nava, A., Medina-Vera, I., Rodríguez-Hernández, P., Guevara-Cruz, M., Heredia-G Canton, P. K., Tovar, A. R., & Torres, N. (2021). Oxalate Content and Antioxidant Activity of Different Ethnic Foods. Journal of Renal Nutrition, 31(1), 73–79. https://doi.org/10.1053/j.jrn.2020.04.006spa
dc.relation.referencesBallesteros, A. (2020). Cómo obtener antioxidantes de los residuos del café.spa
dc.relation.referencesBarlow, S., Chesson, A., Collins, J. D., Dybing, E., Flynn, A., Fruijtier-, C., Hardy, A., Knaap, A., Kuiper, H., Neindre, P. Le, Schans, J., Silano, V., Skerfving, S., & Vannier, P. (2007). Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. EFSA Journal, 5(12), 1–16. https://doi.org/10.2903/j.efsa.2007.587spa
dc.relation.referencesBarrio Merino, A. (2006). Probióticos, prebióticos y simbióticos. Definición, funciones y aplicación clínica en pediatría. Revista Pediatría de Atención Primaria, 8(Supl 1), 99–118.spa
dc.relation.referencesBengtson, P., & Bengtsson, G. (2005). Bacterial immobilization and remineralization of N at different growth rates and N concentrations. FEMS Microbiology Ecology, 54(1), 13–19. https://doi.org/10.1016/j.femsec.2005.02.006spa
dc.relation.referencesBrewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.xspa
dc.relation.referencesBronstein, D. E., Cotliar, J., Votava-Smith, J. K., Powell, M. Z., Miller, M. J., & Cherry, J. D. (2005). Recurrent papular urticaria after varicella immunization in a fifteen-month-old girl. Pediatric Infectious Disease Journal, 24(3), 269–270. https://doi.org/10.1097/01.inf.0000154330.47509.42spa
dc.relation.referencesCapurso, L. (2019). Thirty Years of Lactobacillus rhamnosus GG A Review. In Journal of Clinical Gastroenterology (Vol. 53, Issue March). https://doi.org/10.1097/MCG.0000000000001170spa
dc.relation.referencesCastrillón, M. L. (2018). Análisis sector alimentos y bebidas, como fuente de nuevas industrias basadas en el capital natural de Colombia Fase II. Corporacion Biointropic, II, 1–41.spa
dc.relation.referencesCoronado H., M., Vega Y León, S., Gutiérrez T., R., Marcela, V. F., & Radilla V., C. (2015). Antioxidantes: Perspectiva actual para la salud humana. Revista Chilena de Nutricion, 42(2), 206–212. https://doi.org/10.4067/S0717-75182015000200014spa
dc.relation.referencesCosenza, L., Nocerino, R., Di Scala, C., Di Costanzo, M., Amoroso, A., Leone, L., Paparo, L., Pezzella, C., Aitoro, R., & Berni Canani, R. (2015). Bugs for atopy: The Lactobacillus rhamnosus GG strategy for food allergy prevention and treatment in children. Beneficial Microbes, 6(2), 225–232. https://doi.org/10.3920/BM2014.0158spa
dc.relation.referencesCovarrubias, H. S. A. (2011). Inmovilización de microorganismos en esferas de alginato como protección contra condiciones adversas en un tratamiento de agua residual. Tesis Maestría.spa
dc.relation.referencesCozzolino, A., Vergalito, F., Tremonte, P., Iorizzo, M., Lombardi, S. J., Sorrentino, E., Luongo, D., Coppola, R., Di Marco, R., & Succi, M. (2020). Preliminary evaluation of the safety and probiotic potential of akkermansia muciniphila DSM 22959 in comparison with lactobacillus rhamnosus GG. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020189spa
dc.relation.referencesCruz Pacheco, K. (2007). Inmovilización de Lactobacillus delbrueckii como vector probiótico. 106.spa
dc.relation.referencesCunningham, M., Azcarate-peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., & Sinderen, D. Van. (2021). Trends in Microbiology Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, xx(xx), 1–19. https://doi.org/10.1016/j.tim.2021.01.003spa
dc.relation.referencesDeepika, G., Green, R. J., Frazier, R. A., & Charalampopoulos, D. (2009). Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. Journal of Applied Microbiology, 107(4), 1230–1240. https://doi.org/10.1111/j.1365-2672.2009.04306.xspa
dc.relation.referencesDiaz Ferrer, J., Parra, V., Bendaño, T., Montes, P., & Solorzano, P. (2012). [Probiotic supplement (Lactobacillus acidophilus and bulgaricus) utility in the treatment of irritable bowel syndrome]. Revista de Gastroenterología Del Perú : Órgano Oficial de La Sociedad de Gastroenterología Del Perú, 32(4), 387–393.spa
dc.relation.referencesDuangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, 5(4), 324–331. https://doi.org/10.1016/j.imr.2016.09.001spa
dc.relation.referencesEsquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028spa
dc.relation.referencesFAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. 1–11.spa
dc.relation.referencesGalego, J. (2019). Lactobacillus rhamnosus GG (LGG), 30 años de beneficios y evidencia. Lactobacillus Rhamnosus GG (LGG), 30 Años de Beneficios y Evidencia, 1. https://elfarmaceutico.es/index.php/la-revista/secciones-de-la-revista-el-farmaceutico/item/10312-lactobacillus-rhamnosus-gg-lgg-30-anos-de-beneficios-y-evidencia#.YJzlS7czapospa
dc.relation.referencesGatej, S. M., Bright, R., Weyrich, L. S., Marino, V., Christophersen, C. T., Gibson, R. J., Gully, N., Zilm, P., & Bartold, P. M. (2020). Probiotic Lactobacillus Rhamnosus GG Protects Against P. Gingivalis And F. Nucleatum Gut Dysbiosis. Journal of the International Academy of Periodontology, 22(2), 18–27.spa
dc.relation.referencesGoktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., & Sagdic, O. (2021). Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. Lwt, 153(September 2021), 112489. https://doi.org/10.1016/j.lwt.2021.112489spa
dc.relation.referencesGomes da Cruz, A., Buriti, F. C. A., Batista de Souza, C. H., Fonseca Faria, J. A., & Isay Saad, S. M. (2009). Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology, 20(8), 344–354. https://doi.org/10.1016/j.tifs.2009.05.001spa
dc.relation.referencesGuarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B., & Morelli, L. (2005). Should yoghurt cultures be considered probiotic? British Journal of Nutrition, 93(6), 783–786. https://doi.org/10.1079/bjn20051428spa
dc.relation.referencesHajji, T., Mansouri, S., Vecino-Bello, X., Cruz-Freire, J. M., Rezgui, S., & Ferchichi, A. (2018). Identification and characterization of phenolic compounds extracted from barley husks by LC-MS and antioxidant activity in vitro. Journal of Cereal Science, 81, 83–90. https://doi.org/10.1016/j.jcs.2018.03.008spa
dc.relation.referencesHalliwell, B., Aeschbach, R., Löliger, J., & Aruoma, O. I. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601–617. https://doi.org/10.1016/0278-6915(95)00024-Vspa
dc.relation.referencesHalloran, K., & Underwood, M. A. (2019). Probiotic mechanisms of action. Early Human Development, 135, 58–65. https://doi.org/10.1016/j.earlhumdev.2019.05.010spa
dc.relation.referencesHojsak, I., Abdović, S., Szajewska, H., Milošević, M., Krznarić, Ž., & Kolaček, S. (2010). Lactobacillus GG in the prevention of nosocomial gastrointestinal and respiratory tract infections. Pediatrics, 125(5). https://doi.org/10.1542/peds.2009-2568spa
dc.relation.referencesIcaza-Chávez, M. E. (2013). Gut microbiota in health and disease. Revista de Gastroenterologia de Mexico, 78(4), 240–248. https://doi.org/10.1016/j.rgmx.2013.04.004spa
dc.relation.referencesInternational Coffee Organization, I. (2021). Coffee Market Report. September, 1–10.spa
dc.relation.referencesJones, D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology - Cell Physiology, 295(4). https://doi.org/10.1152/ajpcell.00283.2008spa
dc.relation.referencesKatan, M. B. (2012). Why the European food safety Authority was right to reject health claims for probiotics. Beneficial Microbes, 3(2), 85–89. https://doi.org/10.3920/BM2012.0008spa
dc.relation.referencesKaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables - The millennium’s health. International Journal of Food Science and Technology, 36(7), 703–725. https://doi.org/10.1046/j.1365-2621.2001.00513.xspa
dc.relation.referencesKeweloh, H., Heipieper, H. J., & Rehm, H. J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology, 31(4), 383–389. https://doi.org/10.1007/BF00257609spa
dc.relation.referencesMichelini, E., & Roda, A. (2012). Staying alive: New perspectives on cell immobilization for biosensing purposes. Analytical and Bioanalytical Chemistry, 402(5), 1785–1797. https://doi.org/10.1007/s00216-011-5364-xspa
dc.relation.referencesMoy, Y. S., & Chou, C. C. (2010). Changes in the contents of sugars and organic acids during the ripening and storage of sufu, a traditional oriental fermented product of soybean cubes. Journal of Agricultural and Food Chemistry, 58(24), 12790–12793. https://doi.org/10.1021/jf1033653spa
dc.relation.referencesNabavi, S., Rafraf, M., Somi, M. H., Homayouni-Rad, A., & Asghari-Jafarabadi, M. (2014). Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. Journal of Dairy Science, 97(12), 7386–7393. https://doi.org/10.3168/jds.2014-8500spa
dc.relation.referencesOliveira, L. S., & Franca, A. S. (2014). An Overview of the Potential Uses for Coffee Husks. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00031-0spa
dc.relation.referencesOlveira, G., & González-molero, I. (2016). Endocrinología y Nutrición Actualización de probióticos , prebióticos y simbióticos. 63(9), 482–494.spa
dc.relation.referencesOrive, G., Ponce, S., Hernández, R. M., Gascón, A. R., Igartua, M., & Pedraz, J. L. (2002). Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials, 23(18), 3825–3831. https://doi.org/10.1016/S0142-spa
dc.relation.referencesPahumunto, N., Piwat, S., Chanvitan, S., Ongwande, W., Uraipan, S., & Teanpaisan, R. (2020). Fermented milk containing a potential probiotic Lactobacillus rhamnosus SD11 with maltitol reduces Streptococcus mutans: A double-blind, randomized, controlled study. Journal of Dental Sciences, 15(4), 403–410. https://doi.org/10.1016/j.jds.2020.03.003spa
dc.relation.referencesRistow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8665–8670. https://doi.org/10.1073/pnas.0903485106spa
dc.relation.referencesRodríguez R., Y. A., Rojas G., A. F., & Rodríguez B., S. (2016). Encapsulación De Probióticos Para Aplicaciones Alimenticias. Biosalud, 15(2), 106–115. https://doi.org/10.17151/biosa.2016.15.2.10spa
dc.relation.referencesSanders, M. (2009). How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Functional Food Reviews, 1(1), 3–12. https://doi.org/10.2310/6180.2009.00002spa
dc.relation.referencesSantacroce, R., Martinotti, G., Cinosi, E., Lupi, M., Acciavatti, T., Marini, S., & Di Giannantonio, M. (2014). P.6.b.013 Alcohol, coffee and energy drink consumption patterns in a sample of Italian adolescents and young adults. European Neuropsychopharmacology, 24, S670–S671. https://doi.org/10.1016/s0924-977x(14)71080-6spa
dc.relation.referencesSerp, D., Cantana, E., Heinzen, C., Von Stockar, U., & Marison, I. W. (2000). Characterizetion of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnology and Bioengineering, 70(1), 41–53. https://doi.org/10.1002/1097-0290(20001005)70:1<41::aid-bit6>3.0.co;2-uspa
dc.relation.referencesSerra, L., & Aranceta, J. (2002). Guía de alimentos funcionales. Sociedad Española Nutrición Comunitaria. Instituto Omega 3. Confederaciñon de Consumidores y Usuarios., 2–14.spa
dc.relation.referencesShahidi, F. (2000). Antioxidants in food and food antioxidants. Nahrung - Food, 44(3), 158–163. https://doi.org/10.1002/1521-3803(20000501)44:3<158::AID-FOOD158>3.0.CO;2-Lspa
dc.relation.referencesStorz, G., & Imlay, J. A. (1999). Oxidative stress Gisela Storz * and James A Imlay ? Current Opinion in Microbiology, 188–194.spa
dc.relation.referencesTharmaraj, N., & Shah, N. P. (2003). Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. Journal of Dairy Science, 86(7), 2288–2296. https://doi.org/10.3168/jds.S0022-0302(03)73821-1spa
dc.relation.referencesTorres Castillo, N. E., Ochoa Sierra, J. S., Oyervides-Muñoz, M. A., Sosa-Hernández, J. E., Iqbal, H. M. N., Parra-Saldívar, R., & Melchor-Martínez, E. M. (2021). Exploring the potential of coffee husk as caffeine bio-adsorbent – A mini-review. Case Studies in Chemical and Environmental Engineering, 3(November 2020), 100070. https://doi.org/10.1016/j.cscee.2020.100070spa
dc.relation.referencesTóth, I. V., Segundo, M. A., & Rangel, A. O. S. S. (2008). Advances in Flow Injection Analysis and Related Techniques. Comprehensive Analytical Chemistry, 54, 513–558. http://www.sciencedirect.com/science/article/pii/S0166526X08006181spa
dc.relation.referencesValencia, N. R. (2000). Manejo de residuos en la agroindustria cafetera. Seminario Internacional Gestión Integral De Residuos Sólidos Y Peligrosos, Siglo Xxi, 1–10.spa
dc.relation.referencesVerdenelli, M. C., Ghelfi, F., Silvi, S., Orpianesi, C., Cecchini, C., & Cresci, A. (2009). Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. European Journal of Nutrition, 48(6), 355–363. https://doi.org/10.1007/s00394-009-0021-2spa
dc.relation.referencesWilliams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449–458. https://doi.org/10.2146/ajhp090168spa
dc.relation.referencesZavala, A., Maria, R., Hidalgo, S., Barrios, M., Teresa, R., Rodriguez, H., & Teresa, M. (2015). Generalidades de los probióticos. Archivos Venezolanos de Puericultura y Pediatría, 78(4), 123–128.spa
dc.relation.referencesZur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization. Molecules, 21(7). https://doi.org/10.3390/molecules21070958spa
dc.relation.referencesAmendola, D., Faveri, D. M. De, & Spigno, G. (2010). Grape marc phenolics : Extraction kinetics , quality and stability of extracts. Journal of Food Engineering, 97(3), 384–392. https://doi.org/10.1016/j.jfoodeng.2009.10.033spa
dc.relation.referencesAscencion, M., Ramirez-Coronel, Marnet, N., Kolli, V. S. K., Roussos, S., Guyot, S., & Augur, C. (2004). Characterization and Estimation of Proanthocyanidins and Other Phenolics in Coffee Pulp ( Coffea arabica ) by Thiolysis−High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 52(5), 1344–1349. https://doi.org/10.1021/jf035208tspa
dc.relation.referencesBaelo, C. U., Carmen, M., Medianero, G., Tormo, R. P., & López, Á. B. (n.d.). Algunos principios activos del café, del té y del cacao 1. 16–19.spa
dc.relation.referencesBakker, R. R. C. (2013). Availability of lignocellulosic feedstocks for lactic acid production. Food & Biobased Research Wageningen UR, Report 139.spa
dc.relation.referencesBosso, A., Cassino, C., Motta, S., Panero, L., Tsolakis, C., & Guaita, M. (2020). Polyphenolic Composition and In Vitro Antioxidant Activity of Red Grape Seeds as Byproducts of Short and Medium-Long Fermentative Macerations. Foods (Basel, Switzerland), 9(10), 1451. https://doi.org/10.3390/foods9101451spa
dc.relation.referencesCacace, J. E., & Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. 59, 379–389. https://doi.org/10.1016/S0260-8774(02)00497-1spa
dc.relation.referencesChethan, S., & Malleshi, N. G. (2007). Food Chemistry Finger millet polyphenols : Optimization of extraction and the effect of pH on their stability. 105, 862–870. https://doi.org/10.1016/j.foodchem.2007.02.012spa
dc.relation.referencesChung, K., Wong, T. Y., Wei, C., Huang, Y., Lin, Y., Chung, K., Wong, T. Y., Wei, C., & Huang, Y. (2010). Tannins and Human Health : A Review Tannins and Human Health : A Review. 8398. https://doi.org/10.1080/10408699891274273spa
dc.relation.referencesCorrales-Bernal, Andrea; Vergara, A. I., Rojano, B., Yahia, E., & Maldonado, M. E. (2015). Características nutricionales y antioxidantes de la uchuva colombiana (Physalys peruviana L.) en tres estadios de su maduración - ProQuest Central - ProQuest.spa
dc.relation.referencesCortes Meza, S., Ortiz, A., & Ramirez, L. S. (2017). Determinación de antioxidante en subproductos de café producido y comercializado en Risaralda (Colombia). Pereira: Universidad Tecnológica de Pereira, 1–8. http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/7597/63373C828.pdf?sequence=1spa
dc.relation.referencesDabbour, I. R., Al-lsmail, K. M., Takrui, H. R., & Azzeh, F. S. (2014). Chemical characteristics and antioxidant content properties of cold pressed seed oil of wild milk thistle plant grown in Jordan. Pakistan Journal of Nutrition, 13(2), 67–78. https://doi.org/10.3923/pjn.2014.67.78spa
dc.relation.referencesDíaz, F. O., Ormaza, A. M., & Rojano, B. A. (2018). Efecto de la tostión del café sobre el perfil de taza, contenido de compuestos antioxidantes y la actividad antioxidante. Información Tecnológica, 29(3), 31–42. https://doi.org/10.4067/s0718-07642018000300187spa
dc.relation.referencesFloegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008spa
dc.relation.referencesFriedman, M., & Jürgens, H. S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101–2110. https://doi.org/10.1021/jf990489jspa
dc.relation.referencesGiao, M., Gonzales, M., Rivero, M., Pereira, C., Pintado, M., & Malcata, X. (2007). Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. 2647(April), 2638–2647. https://doi.org/10.1002/jsfaspa
dc.relation.referencesGriffin, S. P., & Bhagooli, R. (2004). Measuring antioxidant potential in corals using the FRAP assay. Journal of Experimental Marine Biology and Ecology, 302(2), 201–211. https://doi.org/10.1016/j.jembe.2003.10.008spa
dc.relation.referencesHeeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., & Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cáscara beverage. Food Chemistry, 221, 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067spa
dc.relation.referencesHerrera, F. (2016). Obtención De Antioxidantes a Partir Del Epicarpio De Café Empleando Fluidos Presurizados.spa
dc.relation.referencesHuang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723cspa
dc.relation.referencesKelebek, H., Selli, S., Canbas, A., & Cabaroglu, T. (2009). HPLC determination of organic acids , sugars , phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv . Kozan. Microchemical Journal, 91(2), 187–192. https://doi.org/10.1016/j.microc.2008.10.008spa
dc.relation.referencesKovalcik, A., Obruca, S., & Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing., 110, 104–119. https://doi.org/10.1016/j.fbp.2018.05.002spa
dc.relation.referencesLee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269–1278. https://doi.org/10.1093/jaoac/88.5.1269spa
dc.relation.referencesLudwig, I. A., Sanchez, L., Cid, C., Caemmerer, B., Kroh, L. W., & De Peña, M. P. (2012). Extraction of coffee antioxidants: Impact of brewing time and method. Food Research International, 48(1), 57–64. https://doi.org/10.1016/j.foodres.2012.02.023spa
dc.relation.referencesMakris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20(2), 125–132. https://doi.org/10.1016/j.jfca.2006.04.010spa
dc.relation.referencesMcCusker, R. R., Fuehrlein, B., Goldberger, B. A., Gold, M. S., & Cone, E. J. (2006). Caffeine content of decaffeinated coffee. Journal of Analytical Toxicology, 30(8), 611–613. https://doi.org/10.1093/jat/30.8.611spa
dc.relation.referencesMoon, J. K., Hyui Yoo, S. U. N., & Shibamoto, T. (2009). Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. Journal of Agricultural and Food Chemistry, 57(12), 5365–5369. https://doi.org/10.1021/jf900012bspa
dc.relation.referencesNaranjo, M., Vélez, I. L. T., Benjamín, I. I., & Iii, A. R. (2011). Actividad antioxidante de café colombiano de diferentes calidades Antioxidant activity of different grades of Colombian coffee. 16(2), 164–173.spa
dc.relation.referencesPleissner, D., Neu, A. K., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167–173. https://doi.org/10.1016/j.biortech.2016.06.078spa
dc.relation.referencesPrata, E. R. B. A., & Oliveira, L. S. (2007). Fresh coffee husks as potential sources of anthocyanins. LWT - Food Science and Technology, 40(9), 1555–1560. https://doi.org/10.1016/j.lwt.2006.10.003spa
dc.relation.referencesRodríguez-Durán, L. V., Ramírez-Coronel, M. A., Aranda-Delgado, E., Nampoothiri, K. M., Favela-Torres, E., Aguilar, C. N., & Saucedo-Castañeda, G. (2014). Soluble and bound hydroxycinnamates in coffee pulp (coffea arabica) from seven cultivars at three ripening stages. Journal of Agricultural and Food Chemistry, 62(31), 7869–7876. https://doi.org/10.1021/jf5014956spa
dc.relation.referencesRojano, B. A., Acosta, K. Z., & Cortes Correa, F. B. (2012). Free radical trapping capacity of Passiflora mollissima (Kunth) L. H. Bailey (curuba). Revista Cubana de Plantas Medicinales, 17(4), 408–419. https://doi.org/1561-3011spa
dc.relation.referencesShrestha, S., Rijal, S. kanta, Pokhrel, P., & Rai, K. P. (2016). A simple HPLC Method for the Determination of Caffeine Content in Tea and Coffee. Journal of Food Science and Technology Nepal, 9, 74. https://doi.org/10.3126/jfstn.v9i0.16200spa
dc.relation.referencesStefanello, N., Spanevello, R. M., Passamonti, S., Porciúncula, L., Bonan, C. D., Olabiyi, A. A., Teixeira da Rocha, J. B., Assmann, C. E., Morsch, V. M., & Schetinger, M. R. C. (2019). Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 123, 298–313. https://doi.org/10.1016/j.fct.2018.10.005spa
dc.relation.referencesTobón Arroyave, N. de la C. (2015). Extracción asistida por ultrasonido de compuestos fenólicos de la pulpa de café (Coffea arabica L.) variedad Castillo.spa
dc.relation.referencesToci, A. T., Farah, A., Pezza, H. R., & Pezza, L. (2016). Coffee Adulteration: More than Two Decades of Research. Critical Reviews in Analytical Chemistry, 46(2), 83–92. https://doi.org/10.1080/10408347.2014.966185spa
dc.relation.referencesTrueba, G. P. (2003). Los flavonoides: Antioxidantes o prooxidantes. Revista Cubana de Investigaciones Biomedicas, 22(1), 48–57.spa
dc.relation.referencesVongsangnak, W., Gua, J., Chauvatcharin, S., & Zhong, J. (2004). Towards efficient extraction of notoginseng saponins from cultured cells of Panax notoginseng. 18, 115–120. https://doi.org/10.1016/S1369-703X(03)00197-9spa
dc.relation.referencesXia, Y., Khatchikian, G., & Zweier, J. L. (1996). Adenosine deaminase inhibition prevents free radical-mediated injury in the postischemic heart. The Journal of Biological Chemistry, 271(17), 10096–10102. https://doi.org/10.1074/jbc.271.17.10096spa
dc.relation.referencesZapata, K., Cortes, F. B., & Rojano, B. A. (2013). Polifenoles y Actividad Antioxidante del Fruto de Guayaba Agria (Psidium araca). Informacion Tecnologica, 24(5), 103–112. https://doi.org/10.4067/S0718-07642013000500012spa
dc.relation.referencesBailón-García, E., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hódar, F. J. (2014). Microspheres of carbon xerogel: An alternative Pt-support for the selective hydrogenation of citral. Applied Catalysis A: General, 482, 318–326. https://doi.org/10.1016/j.apcata.2014.06.011spa
dc.relation.referencesBarrios-rodríguez, Y., Collazos-escobar, G. A., & Gutiérrez-guzmán, N. (2021). ATR-FTIR FOR CHARACTERIZING AND DIFFERENTIATING DRIED AND GROUND COFFEE CHERRY PULP OF DIFFERENT VARIETIES ( Coffea Arabica L .) This study aimed to evaluate the performance of the infrared spectrum in the range of of different varieties . The spectral da. 4430, 70–77.spa
dc.relation.referencesBiswas, B., Sarkar, B., Rusmin, R., & Naidu, R. (2015). Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. Environment International, 85, 168–181. https://doi.org/10.1016/j.envint.2015.09.017spa
dc.relation.referencesCarballo, T., Gil, M. V., Gómez, X., González-Andrés, F., & Morán, A. (2008). Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 19(6), 815–830. https://doi.org/10.1007/s10532-008-9184-4spa
dc.relation.referencesCraig, A. P., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chemistry, 245(September 2017), 1052–1061. https://doi.org/10.1016/j.foodchem.2017.11.066spa
dc.relation.referencesCraig, A. P., Franca, A. S., Oliveira, L. S., Irudayaraj, J., & Ileleji, K. (2014). Application of elastic net and infrared spectroscopy in the discrimination between defective and non-defective roasted coffees. Talanta, 128, 393–400. https://doi.org/10.1016/j.talanta.2014.05.001spa
dc.relation.referencesDesmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93(6), 1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.xspa
dc.relation.referencesDong, T. T., Gong, J. S., Gu, B. C., Zhang, Q., Li, H., Lu, Z. M., Lu, M. L., Shi, J. S., & Xu, Z. H. (2017). Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresource Technology, 244(1800), 1104–1110. https://doi.org/10.1016/j.biortech.2017.08.039spa
dc.relation.referencesGoldburg, W. I. (1999). Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of. A Study of Brownian Motion Using Light Scattering American Journal of Physics, 67(1999), 1093. https://doi.org/10.1119/1.19101spa
dc.relation.referencesHrenovic, J., Ivankovic, T., & Tibljas, D. (2009). The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. Journal of Hazardous Materials, 166(2–3), 1377–1382. https://doi.org/10.1016/j.jhazmat.2008.12.064spa
dc.relation.referencesIdris, A., Man, Z., Maulud, A. S., Bustam, M. A., Mannan, H. A., & Ahmed, I. (2020). Investigation on particle properties and extent of functionalization of silica nanoparticles. Applied Surface Science, 506, 144978. https://doi.org/10.1016/j.apsusc.2019.144978spa
dc.relation.referencesKandasamy, S., Muthusamy, G., Balakrishnan, S., Duraisamy, S., Thangasamy, S., Seralathan, K. K., & Chinnappan, S. (2016). Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech, 6(2). https://doi.org/10.1007/s13205-016-0481-zspa
dc.relation.referencesKourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21(4), 377–397. https://doi.org/10.1016/j.fm.2003.10.005spa
dc.relation.referencesKourkoutas, Y., Bosnea, L., Taboukos, S., Baras, C., Lambrou, D., & Kanellaki, M. (2006). Probiotic cheese production using Lactobacillus casei cells immobilized on fruit pieces. Journal of Dairy Science, 89(5), 1439–1451. https://doi.org/10.3168/jds.S0022-0302(06)72212-3spa
dc.relation.referencesKourkoutas, Y., Kanellaki, M., & Koutinas, A. A. (2006). Apple pieces as immobilization support of various microorganisms. LWT - Food Science and Technology, 39(9), 980–986. https://doi.org/10.1016/j.lwt.2006.02.024spa
dc.relation.referencesLi, F., Zhou, H., Fan, J., & Xiang, Q. (2020). Amine-functionalized graphitic carbon nitride decorated with small-sized Au nanoparticles for photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 570, 11–19. https://doi.org/10.1016/j.jcis.2020.02.108spa
dc.relation.referencesLyman, D., Robert, B., Dell, S., Merle, S., & Murray, J. (2003). FTIR-ATR Analysis of Brewed Coffee: Effect of Roasting Conditions. Jorunal of Food Agricultural and Food Chemestry, 3268–3272.spa
dc.relation.referencesMelgar, A., Borge, D., & Pérez, J. F. (2008). Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de partícula de 2 a 19 mm. DYNA (Colombia), 75(155), 123–131.spa
dc.relation.referencesMitropoulou, G., Nedovic, V., Goyal, A., & Kourkoutas, Y. (2013). Immobilization technologies in probiotic food production. Journal of Nutrition and Metabolism, 2013. https://doi.org/10.1155/2013/716861spa
dc.relation.referencesNedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815. https://doi.org/10.1016/j.profoo.2011.09.265spa
dc.relation.referencesReis, N., Franca, A. S., & Oliveira, L. S. (2013). Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. LWT - Food Science and Technology, 50(2), 715–722. https://doi.org/10.1016/j.lwt.2012.07.016spa
dc.relation.referencesRenuga Devi, T. S., & Gayathri, S. (2010). FTIR And FT-Raman spectral analysis of Paclitaxel drugs. International Journal of Pharmaceutical Sciences Review and Research, 2(2), 106–110.spa
dc.relation.referencesRibeiro, J. S., Ferreira, M. M. C., & Salva, T. J. G. (2011). Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta, 83(5), 1352–1358. https://doi.org/10.1016/j.talanta.2010.11.001spa
dc.relation.referencesRodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Research International, 137(August), 109682. https://doi.org/10.1016/j.foodres.2020.109682spa
dc.relation.referencesSekaran, G., Karthikeyan, S., Gupta, V. K., Boopathy, R., & Maharaja, P. (2013). Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater. Materials Science and Engineering C, 33(2), 735–745. https://doi.org/10.1016/j.msec.2012.10.026spa
dc.relation.referencesSimental Valle, D. E. (2015). Inmovilización de Lactobacillus acidophilus en mezclas de alginato, gelana y mucílago de nopal.spa
dc.relation.referencesTien, C., & Ramarao, B. V. (2017). On the significance and utility of the Lagergren model and the pseudo second-order model of batch adsorption. Separation Science and Technology (Philadelphia), 52(6), 975–986. https://doi.org/10.1080/01496395.2016.1274327spa
dc.relation.referencesVicente, A., Dosta, P., & Teixeira, A. (2005). Process Continuous Beer Fermentation.spa
dc.relation.referencesYamauchi, Y., Okamoto, T., Murayama, H., Kajino, K., Nagara, akira, & Noguchi, K. (1995). Rapid maturation of beer using an immobilized yeast bioreactor. 2. Balance of total diacetyl reduction and regeneration. Journal of Biotechnology, 38(2), 109–116. https://doi.org/10.1016/0168-1656(94)00114-Rspa
dc.relation.referencesZapata, K., Carrasco-Marín, F., Arias, J. P., Castelo-Quibén, J., Franco, C. A., Rojano, B., & Cortés, F. B. (2020). Novel biomaterial design based on Pseudomonas stutzeri–carbon xerogel microspheres for hydrocarbon removal from oil-in-saltwater emulsions: A new proposed treatment of produced water in oilfields. Journal of Water Process Engineering, 35(February), 101222. https://doi.org/10.1016/j.jwpe.2020.101222spa
dc.relation.referencesZapata, K., Carrasco-Marin, F., Cortés, F. B., Franco, C. A., Lopera, S. H., & Rojano, B. A. (2019). Immobilization of p. Stutzeri on activated carbons for degradation of hydrocarbons from oil-in-saltwater emulsions. Nanomaterials, 9(4), 1–15. https://doi.org/10.3390/nano9040500spa
dc.relation.referencesAit Seddik, H., Bendali, F., Cudennec, B., & Drider, D. (2017). Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults. Research in Microbiology, 168(3), 244–254. https://doi.org/10.1016/j.resmic.2016.12.003spa
dc.relation.referencesAlvarez, G. S., Foglia, M. L., Copello, G. J., Desimone, M. F., & Diaz, L. E. (2009). Effect of various parameters on viability and growth of bacteria immobilized in sol-gel-derived silica matrices. Applied Microbiology and Biotechnology, 82(4), 639–646. https://doi.org/10.1007/s00253-008-1783-9spa
dc.relation.referencesArepally, D., Reddy, R. S., & Goswami, T. K. (2020). Studies on survivability, storage stability of encapsulated spray dried probiotic powder. Current Research in Food Science, 3(April), 235–242. https://doi.org/10.1016/j.crfs.2020.09.001spa
dc.relation.referencesBarrio Merino, A. (2006). Probióticos, prebióticos y simbióticos. Definición, funciones y aplicación clínica en pediatría. Revista Pediatría de Atención Primaria, 8(Supl 1), 99–118.spa
dc.relation.referencesCeccanti, C., Finimundy, T. C., Heleno, S. A., Pires, T. C. S. P., Calhelha, R. C., Guidi, L., Ferreira, I. C. F. R., & Barros, L. (2021). Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. Lwt, 145(March), 111335. https://doi.org/10.1016/j.lwt.2021.111335spa
dc.relation.referencesCoeuret, V., Gueguen, M., & Vernoux, J. P. (2004). Numbers and strains of lactobacilli in some probiotic products. International Journal of Food Microbiology, 97(2), 147–156. https://doi.org/10.1016/j.ijfoodmicro.2004.04.015spa
dc.relation.referencesCotter, P. D., & Hill, C. (2003). Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453.https://doi.org/10.1128/mmbr.67.3.429-453.2003spa
dc.relation.referencesCruz Pacheco, K. (2007). Inmovilización de Lactobacillus delbrueckii como vector probiótico. 106.spa
dc.relation.referencesDesmond, C., Ross, R. P., O’Callaghan, E., Fitzgerald, G., & Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. Journal of Applied Microbiology, 93(6), 1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.xspa
dc.relation.referencesDoherty, S. B., Auty, M. A., Stanton, C., Ross, R. P., Fitzgerald, G. F., & Brodkorb, A. (2012). Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. International Dairy Journal, 22(1), 31–43. https://doi.org/10.1016/j.idairyj.2011.06.009spa
dc.relation.referencesDong, Q. Y., Chen, M. Y., Xin, Y., Qin, X. Y., Cheng, Z., Shi, L. E., & Tang, Z. X. (2013). Alginate-based and protein-based materials for probiotics encapsulation: A review. International Journal of Food Science and Technology, 48(7), 1339–1351. https://doi.org/10.1111/ijfs.12078spa
dc.relation.referencesFallingborg, J. (1999). Intraluminal pH of the human gastrointestinal tract. Danish Medical Bulletin, 46(3), 183–196.spa
dc.relation.referencesGobbetti, M., & Minervini, F. (2014). Lactobacillus: Lactobacillus casei. In Encyclopedia of Food Microbiology: Second Edition (Second Edi, Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00180-4spa
dc.relation.referencesGroboillot, A., Boadi, D. K., Poncelet, R., & Neufeld, R. J. (2008). Immobilization of Cells for Application in the Food Industry. Critical Reviews in Biotechnology, 3(1), 39–48.spa
dc.relation.referencesKemsawasd, V., Chaikham, P., & Rattanasena, P. (2016). Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model. Food Bioscience, 16(September), 37–43. https://doi.org/10.1016/j.fbio.2016.09.001spa
dc.relation.referencesKhoder, G., Al-Menhali, A. A., Al-Yassir, F., & Karam, S. M. (2016). Potential role of probiotics in the management of gastric ulcer (Review). Experimental and Therapeutic Medicine, 12(1), 3–17. https://doi.org/10.3892/etm.2016.3293spa
dc.relation.referencesLe-Tien, C., Millette, M., Mateescu, M. A., & Lacroix, M. (2004). Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnology and Applied Biochemistry, 39(3), 347–354. https://doi.org/10.1042/BA20030158spa
dc.relation.referencesMarteau, P., & Rambaud, J. C. (1993). Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiology Reviews, 12(1–3), 207–220. https://doi.org/10.1016/0168-6445(93)90064-Gspa
dc.relation.referencesMokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040–1045. https://doi.org/10.1016/j.foodres.2009.04.023spa
dc.relation.referencesNouri, Z., Karami, F., Neyazi, N., Modarressi, M. H., Karimi, R., Khorramizadeh, M. R., Taheri, B., & Motevaseli, E. (2016). Dual anti-metastatic and anti-proliferative activity assessment of two probiotics on HeLa and HT-29 cell lines. Cell Journal, 18(2), 127–134. https://doi.org/10.22074/cellj.2016.4307spa
dc.relation.referencesPedersen, N., Andersen, N. N., Végh, Z., Jensen, L., Ankersen, D. V., Felding, M., Simonsen, M. H., Burisch, J., & Munkholm, P. (2014). Ehealth: Low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome. World Journal of Gastroenterology, 20(43), 16215–16226. https://doi.org/10.3748/wjg.v20.i43.16215spa
dc.relation.referencesRecine, N., Palma, E., Domenici, L., Giorgini, M., Imperiale, L., Sassu, C., Musella, A., Marchetti, C., Muzii, L., & Benedetti Panici, P. (2016). Restoring vaginal microbiota: biological control of bacterial vaginosis. A prospective case-control study using Lactobacillus rhamnosus BMX 54 as adjuvant treatment against bacterial vaginosis. Archives of Gynecology and Obstetrics, 293(1), 101–107. https://doi.org/10.1007/s00404-015-3810-2spa
dc.relation.referencesSáez-Lara, M. J., Robles-Sanchez, C., Ruiz-Ojeda, F. J., Plaza-Diaz, J., & Gil, A. (2016). Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. International Journal of Molecular Sciences, 17(6), 1–15. https://doi.org/10.3390/ijms17060928spa
dc.relation.referencesSanchez, M., Darimont, C., Drapeau, V., Emady-Azar, S., Lepage, M., Rezzonico, E., Ngom-Bru, C., Berger, B., Philippe, L., Ammon-Zuffrey, C., Leone, P., Chevrier, G., St-Amand, E., Marette, A., Doré, J., & Tremblay, A. (2014). Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. The British Journal of Nutrition, 111(8), 1507–1519. https://doi.org/10.1017/S0007114513003875spa
dc.relation.referencesSanders, M. (2009). How do we know when something called “probiotic” is really a probiotic? A guideline for consumers and health care professionals. Functional Food Reviews, 1(1), 3–12. https://doi.org/10.2310/6180.2009.00002spa
dc.relation.referencesSegers, M. E., & Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG - host interactions. Microbial Cell Factories, 13(Suppl 1), 1–16. https://doi.org/10.1186/1475-2859-13-S1-S7spa
dc.relation.referencesSoukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2014a). Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food and Bioprocess Technology, 7(5), 1255–1268. https://doi.org/10.1007/s11947-013-1120-xspa
dc.relation.referencesSoukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. D. (2014b). Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chemistry, 159, 302–308. https://doi.org/10.1016/j.foodchem.2014.03.008spa
dc.relation.referencesŠušković, J., Kos, B., Matošić, S., & Besendorfer, V. (2000). The effect of bile salts on survival and morphology of a potential probiotic strain Lactobacillus acidophilus M92. World Journal of Microbiology and Biotechnology, 16(7), 673–678. https://doi.org/10.1023/A:1008909505651spa
dc.relation.referencesTan, D. T., Poh, P. E., & Chin, S. K. (2018). Microorganism preservation by convective air-drying—A review. Drying Technology, 36(7), 764–779. https://doi.org/10.1080/07373937.2017.1354876spa
dc.relation.referencesTarifa, M. C., Piqueras, C. M., Genovese, D. B., & Brugnoni, L. I. (2021). Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions. International Journal of Biological Macromolecules, 179, 457–465. https://doi.org/10.1016/j.ijbiomac.2021.03.038spa
dc.relation.referencesVerdenelli, M. C., Ghelfi, F., Silvi, S., Orpianesi, C., Cecchini, C., & Cresci, A. (2009). Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. European Journal of Nutrition, 48(6), 355–363. https://doi.org/10.1007/s00394-009-0021-2spa
dc.relation.referencesWickens, K. L., Barthow, C. A., Murphy, R., Abels, P. R., Maude, R. M., Stone, P. R., Mitchell, E. A., Stanley, T. V., Purdie, G. L., Kang, J. M., Hood, F. E., Rowden, J. L., Barnes, P. K., Fitzharris, P. F., & Crane, J. (2017). Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial. British Journal of Nutrition, 117(6), 804–813. https://doi.org/10.1017/S0007114517000289spa
dc.relation.referencesYing, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering, 109(3), 597–602. https://doi.org/10.1016/j.jfoodeng.2011.10.017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocProbióticos
dc.subject.agrovocFlora microbiana
dc.subject.agrovocLactobacillus rhamnosus
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y floresspa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembIndustrias alimenticias
dc.subject.lembControl de enfermedades
dc.subject.lembCafé - Alimentos pulverizados
dc.subject.lembCafé - Alimentos liofilizados
dc.subject.lembResiduos agrícolas
dc.subject.proposalnutraceúticospa
dc.subject.proposalprobióticospa
dc.subject.proposalbiopelícula,spa
dc.subject.proposalsubproductospa
dc.subject.proposalnutraceuticaleng
dc.subject.proposalprobioticeng
dc.subject.proposalbiofilmeng
dc.subject.proposalby-producteng
dc.titleDesarrollo de un producto alimenticio probiótico y antioxidante a partir de la inmovilización de Lactobacillus rhamnosus sobre cáscara de café
dc.title.translatedDevelopment of a probiotic and antioxidant food product from the immobilization of Lactobacillus rhamnosus on coffee huskeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152701514.2021.pdf
Tamaño:
2.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: