Síntesis y cribado de péptidos modificados derivados de lactoferricina bovina como fármacos citotóxicos contra líneas de cáncer de colon

dc.contributor.advisorGarcía Castañeda, Javier Eduardo
dc.contributor.authorCárdenas Martínez, Karen Johanna
dc.contributor.orcidCárdenas Martínez, Karen Johanna [0000-0002-7266-8769]spa
dc.date.accessioned2024-07-18T16:32:38Z
dc.date.available2024-07-18T16:32:38Z
dc.date.issued2024-07
dc.descriptionIlustraciones a color, diagramasspa
dc.description.abstractResearch on anticancer peptide drugs has gained interest due to their potency and selectivity. Bovine Lactoferricin (LfcinB) and derived peptides, as used in this study, have shown cytotoxic activity against breast cancer. Therefore, their effect on colon cancer was evaluated, specifically on Caco-2 and HT-29 cell lines, with the latter being more resistant. Two hit peptides, LfcinB (21-25)Pal and 26[F] LfcinB (20-30)2, were identified. Libraries of monomeric and dimeric peptides were constructed from these, resulting in 34 molecules. Their cytotoxic effect was assessed on colon cancer cell lines. This process allowed the identification of key amino acids in the sequence necessary for cytotoxic activity and modifications of interest to enhance it. Fifteen molecules exhibited inhibitory concentrations (IC50) below 200 μg/mL against colon cancer cell lines, with eight considered optimized peptides due to improved activity and selectivity. They remained active in colon cancer cell lines from 2 to 72 hours, showing cytotoxicity in prostate, cervical, and breast cancer lines. Optimized peptides, particularly 3, 19, and LfcinB (21-25)Pal, induced cell death in HT-29 cells primarily through the apoptotic pathway, causing mitochondrial membrane depolarization, caspase overexpression, and morphological changes such as rounding and cell contraction. The toxicity of optimized peptides 3, 19, LfcinB (21-25)Pal, and LfcinB (21-25)Pal2 was evaluated in Galleria mellonella, finding lethal doses (LD50) >100mg/kg. Moreover, peptide 19 toxicity was assessed in CD1 mice through the Irwin test, revealing central nervous system effects with LD50 between 70mg/kg and 140mg/kg. Lastly, the zebrafish model determined the CL50 of this optimized peptide to be between 20-25 μg/mL. It was also found that this optimized peptide exhibited lower in vivo toxicity than the sequence-derived peptide (hit). Based on the results, eight optimized peptides were identified, with peptides 3, 19, and LfcinB (21-25)Pal standing out as candidates for further studies in developing treatments for colon cancer.eng
dc.description.abstractLa investigación en fármacos de origen peptídico anticancerígenos ha ganado interés debido a su potencia y selectividad. La Lactoferricina Bovina (LfcinB) y péptidos derivados, como los utilizados en el presente estudio han mostrado actividad citotóxica frente a cáncer de mama, por lo que se evaluó su efecto sobre cáncer de colon (líneas celulares Caco-2 y HT-29, siendo esta última la más resistente). Se identificaron dos péptidos hit, LfcinB (21-25)Pal y 26[F] LfcinB (20-30)2, a partir de los cuales se construyeron librerías de péptidos monoméricos y diméricos para la obtención de 34 moléculas, cuyo efecto citotóxico se evaluó en líneas celulares de cáncer de colon. Este proceso permitió la identificación de aminoácidos clave de la secuencia que son o no necesarios para la actividad citotóxica y modificaciones de interés para mejorar la actividad. Quince moléculas mostraron concentraciones inhibitorias (IC50) menores de 200 μg/mL frente a las líneas celulares de cáncer de colon, de los cuales ocho fueron considerados como péptidos optimizados por su actividad y selectividad mejorada. Estos fueron activos en líneas celulares de cáncer de colon desde las 2 hasta las 72 horas de tratamiento, algunas también demostraron citotoxicidad en líneas de cáncer de próstata, cuello uterino y mama. Los péptidos optimizados con los mejores resultados 3, 19 y el LfcinB (21-25)Pal indujeron muerte celular en células HT-29 por la vía apoptótica principalmente, causando despolarización de la membrana mitocondrial, sobreexpresión de caspasas y cambios morfológicos como redondeamiento y contracción celular. La toxicidad de los péptidos optimizados 3, 19, LfcinB (21-25)Pal y el LfcinB (21-25)Pal2 fue evaluada en Galleria mellonella, encontrando dosis letales (DL50) >100mg/kg. Por otro lado, la toxicidad del péptido 19 fue evaluada en ratones CD1 mediante la prueba de Irwin, evidenciando que el péptido indujo efectos en el sistema nervioso central y la DL50 está entre 70mg/kg y 140mg/kg. Por último, en el modelo de pez cebra se determinó que la CL50 de este péptido está entre 20-25 μg/mL. Así mismo, se evidenció que este péptido optimizado presentó menor toxicidad in vivo que el péptido del que se derivó su secuencia (péptido hit). A partir de los resultados obtenidos se identificaron ocho péptidos optimizados, de los cuales se destacan los péptidos 3, 19 y LfcinB (21-25)Pal como candidatos para continuar en estudios para el desarrollo de tratamientos contra el cáncer de colon. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.format.extent199 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86567
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesHanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell, 646–674 (2011).spa
dc.relation.referencesSiegel Mph, R. L. et al. Cancer statistics, 2023. CA Cancer J Clin, 17–48 (2023).spa
dc.relation.referencesWorld Health Organization. WHO | Cancer Key statistics. https://www.who.int/cancer/resources/keyfacts/en/ (2020).spa
dc.relation.referencesInfografías cáncer en cifras INC - Instituto Nacional de Cancerología. https://www.cancer.gov.co/portafolio-1/salud-publica/grupos/grupo-vigilancia-epidemiologica-del-cancer/infografias-cancer-cifras-inc (2023).spa
dc.relation.referencesBonnor, R. M. & Ludwig, K. A. Laparoscopic colectomy for colon cancer: Comparable to conventional oncologic surgery? Clin Colon Rectal Surg, 174–181 (2005).spa
dc.relation.referencesMinisterio de Salud y Protección Social. Guía de Práctica Clínica para la detección temprana, diagnóstico, tratamiento integral, seguimiento y rehabilitación del cáncer de colon y recto. gpc.mimsalud.gov.co (2017).spa
dc.relation.referencesVogel, J. D., et al. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of colon cancer. Dis Colon Rectum, 999–1017 (2017).spa
dc.relation.referencesPaschke, S. Value of adjuvant chemotherapy for colon and rectal cancer from a surgeon´s point of view. Practical oncology 1–9 (2017).spa
dc.relation.referencesRamphal, W. et al. Oncologic outcome and recurrence rate following anastomotic leakage after curative resection for colorectal cancer. Surg Oncol, 730–736 (2018).spa
dc.relation.referencesRuiz-tovar, J. et al. De La Cirugía Colónica. Cir Cir, 283–291 (2010).spa
dc.relation.referencesArtinyan, A. et al. Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: A study of 12,075 patients. Ann Surg, 497–505 (2015).spa
dc.relation.referencesAlves Costa De Jesus, C., et al.. Quality of life of colorectal cancer patients with intestinal stomas Quality of Life of Colorectal Cancer Patients with Intestinal Stomas. J Carcinog Mutagen (2014).spa
dc.relation.referencesHilchie, A. L. et al. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Research, 1–16 (2011).spa
dc.relation.referencesFelício, M. R., et al.. Peptides with dual antimicrobial and anticancer activities. Front Chem, 1–9 (2017).spa
dc.relation.referencesMarqus, S., Pirogova, E, Piva, T. J. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci, (2017).spa
dc.relation.referencesRoudi, R., Syn, N. L, Roudbary, M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: A comprehensive overview. Frontiers in Immunology (2017).spa
dc.relation.referencesHao, Y. et al. A review of the design and modification of lactoferricins and their derivatives. BioMetals, 331–341 (2018).spa
dc.relation.referencesMader, J. S., Salsman, J., Conrad, D. M, Hoskin, D. W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther, 612–624 (2005).spa
dc.relation.referencesGibbons, J., Kanwar, R, Kanwar Jagat. Lactoferrin and Cancer in Different Cancer Models. Front Biosci 1080–1088 (2011).spa
dc.relation.referencesInsuasty-Cepeda, D. S. et al. Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci, 4550 (2020).spa
dc.relation.referencesVargas Casanova, Y. et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules, 1–11 (2017).spa
dc.relation.referencesBarragán-Cárdenas, A. et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv, 17593–17601 (2020).spa
dc.relation.referencesRichardson, A., et al.. Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun, 736–741 (2009).spa
dc.relation.referencesGuerra, J. R. et al. The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line. RSC Adv, 20497–20504 (2019).spa
dc.relation.referencesSolarte, V. A. et al. A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One, (2017).spa
dc.relation.referencesWorld Health Organization GLOBOCAN. Cancer Today 2020. https://gco.iarc.fr/today/ (2020).spa
dc.relation.referencesGalán, E. F., et al. Manual Para La Detección Temprana Del Cáncer de Colon y Recto. (2015).spa
dc.relation.referencesLabianca, R. et al. Colon cancer. Critical Reviews in Oncology/Hematology vol. 74 106–133 (2010).spa
dc.relation.referencesTesta, U., Pelosi, E., Castelli, G. Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences, 31 (2018).spa
dc.relation.referencesFearon, E. R., Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell vol. 61 759–767 (1990).spa
dc.relation.referencesKim, S. H. et al. Tropism between hepatic and pulmonary metastases in colorectal cancers. Oncol Rep, 459–464 (2012).spa
dc.relation.referencesGhidini, M., Petrelli, F, Tomasello, G. Right Versus Left Colon Cancer: Resectable and Metastatic Disease. Current Treatment Options in Oncology (2018).spa
dc.relation.referencesRawla, P., Sunkara, T., Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Przeglad Gastroenterologiczny vol. 14 89–103 (2019).spa
dc.relation.referencesStidham, R. W., Higgins, P. D. R. Colorectal Cancer in Inflammatory Bowel Disease. Clin Colon Rectal Surg, 168–178 (2018).spa
dc.relation.referencesGaliano de Sánchez, M. T. Cáncer colorrectal (CCR). Revista Colombia de Gastroenterología, (2005).spa
dc.relation.referencesHamel, J. F. et al. Comparison of treatment to improve gastrointestinal functions after colorectal surgery within enhanced recovery programmes: a systematic review and meta-analysis. Scientific Reports 2021 11:1, 1–12 (2021).spa
dc.relation.referencesBanaszkiewicz, Z. et al. Intestinal stoma in patients with colorectal cancer from the perspective of 20-year period of clinical observation. Prz Gastroenterol, 23 (2015).spa
dc.relation.referencesSilva, N. M., et al. Psychological aspects of patients with intestinal stoma: integrative review1. Rev Lat Am Enfermagem, 2950 (2017).spa
dc.relation.referencesMcKenzie, F. et al. Psychological impact of colostomy pouch change and disposal. Br J Nurs, 308–316 (2006).spa
dc.relation.referencesBrown, S. R. et al. The Impact of Postoperative Complications on Long-term Quality of Life After Curative Colorectal Cancer Surgery. Ann Surg, 916–923 (2014).spa
dc.relation.referencesAlty, I. G. et al. Refusal of surgery for colon cancer: Sociodemographic disparities and survival implications among US patients with resectable disease. The American Journal of Surgery, 39–45 (2021).spa
dc.relation.referencesBenson, A. B. et al. NCCN Guidelines Version 2.2021 Colon Cancer NCCN Framework TM : Basic Resources Continue NCCN Guidelines Panel Disclosures. (2021).spa
dc.relation.referencesAparicio, T. Oxaliplatin, fluorouracil and leucovorin as adjuvant treatment for colon cancer. Colon and Rectum, 33–35 (2011).spa
dc.relation.referencesYamazaki, K. et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Annals of Oncology, 1539–1546 (2016).spa
dc.relation.referencesLongley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 330–338 (2003).spa
dc.relation.referencesWalko, C. M. & Lindley, C. Capecitabine: A review. Clin Ther, 23–44 (2005).spa
dc.relation.referencesAlcindor, T. & Beauger, N. Oxaliplatin: a review in the era of molecularly targeted therapy. Current Oncology, 18 (2011).spa
dc.relation.referencesKciuk, M., Marciniak, B., Kontek, R. Irinotecan—Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. International Journal of Molecular Sciences, 4919 (2020).spa
dc.relation.referencesDe Rosa, M. et al. The biological complexity of colorectal cancer: Insights into biomarkers for early detection and personalized care. Therapeutic Advances in Gastroenterology, 861–886 (2016).spa
dc.relation.referencesKazazi-Hyseni, F., Beijnen, J. H. & Schellens, J. H. M. Bevacizumab. Oncologist, 819 (2010).spa
dc.relation.referencesKronfol, M. M. & McClay, J. L. Epigenetic biomarkers in personalized medicine. Prognostic Epigenetics 375–395 (2019).spa
dc.relation.referencesNguyen, C. M. & Jacob, S. E. Pembrolizumab. J Dermatol Nurses Assoc, 95–97 (2017).spa
dc.relation.referencesCarrera, P. M., Kantarjian, H. M. & Blinder, V. S. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J Clin, 153–165 (2018).spa
dc.relation.referencesSiddiqui, M. & Rajkumar, S. V. The High Cost of Cancer Drugs and What We Can Do About It. JMCP, 935–943 (2012).spa
dc.relation.referencesKunnumakkara, A. B. et al. Cancer drug development: The missing links. Experimental Biology and Medicine, 663–689 (2019).spa
dc.relation.referencesRonen, J., Hayat, S. & Akalin, A. Methods Evaluation of colorectal cancer subtypes and cell lines using deep learning (2019).spa
dc.relation.referencesMenter, D. G. et al. Back to the Colorectal Cancer Consensus Molecular Subtype Future. Curr Gastroenterol Rep, 5 (2019).spa
dc.relation.referencesGuinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat Med, 1350–1356 (2015).spa
dc.relation.referencesOkita, A. et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget, 18698 (2018).spa
dc.relation.referencesBaker, S. et al. Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics, 3973–3981 (2017).spa
dc.relation.referencesPaul, D. The systemic hallmarks of cancer. J Cancer Metastasis Treat, (2020).spa
dc.relation.referencesAlves, A. C., Ribeiro, D., Nunes, C. & Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochimica et Biophysica Acta – Biomembranes, 2231–2244 (2016).spa
dc.relation.referencesSherbet, G. V. Membrane Fluidity and Cancer Metastasis. Pathobiology, 198–205 (1989).spa
dc.relation.referencesChiangjong, W., Chutipongtanate, S. & Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). International Journal of Oncology vol, 678–696 (2020).spa
dc.relation.referencesBhatia, R. et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer and Metastasis Reviews, 223–236 (2019).spa
dc.relation.referencesRen, J. et al. Correlation between the Presence of Microvilli and the Growth or Metastatic Potential of Tumor Cells. Japanese Journal of Cancer Research, 920–926 (1990).spa
dc.relation.referencesButler, L. M. et al. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 245–293 (2020).spa
dc.relation.referencesYang, M. & Brackenbury, W. J. Membrane potential and cancer progression. Frontiers in Physiology (2013).spa
dc.relation.referencesBaba, A. I. & Câtoi, C. Tumor cell morphology. (2007).spa
dc.relation.referencesFischer, E. G. Nuclear Morphology and the Biology of Cancer Cells. Acta Cytol, 511–519 (2020).spa
dc.relation.referencesThiran, J. P., Macq, B., Mairesse, J. Morphological classification of cancerous cells. Proceedings - International Conference on Image Processing, 706–710 (1994).spa
dc.relation.referencesHilchie, A. L., Hoskin, D. W, Power Coombs, M. R. Anticancer activities of natural and synthetic peptides. in Advances in Experimental Medicine and Biology, 131–147 (2019).spa
dc.relation.referencesXie, M., Liu, D., Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification: Anticancer peptides. Open Biology (2020).spa
dc.relation.referencesQin, Y. et al. From Antimicrobial to Anticancer Peptides: The Transformation of Peptides. Recent Pat Anticancer Drug Discov, 70–84 (2019).spa
dc.relation.referencesCamilio, K. A., Rekdal, Ø., Sveinbjörnsson, B. LTX-315 (OncoporeTM): A short synthetic anticancer peptide and novel immunotherapeutic agent. Oncoimmunology, (2014).spa
dc.relation.referencesStangelberger, A., Schally, A. V., Djavan, B. New Treatment Approaches for Prostate Cancer Based on Peptide Analogues. European Urology, 890–900 (2008).spa
dc.relation.referencesGarton, M. et al. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci U S A, 1505–1510 (2018).spa
dc.relation.referencesGentilucci, L., De Marco, R., Cerisoli, L. Chemical Modifications Designed to Improve Peptide Stability: Incorporation of Non-Natural Amino Acids, Pseudo-Peptide Bonds, and Cyclization. Curr Pharm Des, 3185–3203 (2010).spa
dc.relation.referencesVlieghe, P., Lisowski, V., Martinez, J., Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discovery Today vol. 15 40–56 (2010).spa
dc.relation.referencesOtvos, L. & Wade, J. D. Current challenges in peptide-based drug discovery. Front Chem (2014).spa
dc.relation.referencesD’Arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 582–592 (2019).spa
dc.relation.referencesSancho-Martínez, S. M et al. Necrotic Concentrations of Cisplatin Activate the Apoptotic Machinery but Inhibit Effector Caspases and Interfere with the Execution of Apoptosis. Toxicological Sciences, 73–85 (2011).spa
dc.relation.referencesJohnstone, R. W., Ruefli, A. A., Lowe, S. W. Apoptosis: A Link between Cancer Genetics and Chemotherapy. Cell, 153–164 (2002).spa
dc.relation.referencesHoskin, D. W. & Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta Biomembr, 357–375 (2008).spa
dc.relation.referencesPapo, N. & Shai, Y. Host defense peptides as new weapons in cancer treatment. Cellular and Molecular Life Sciences CMLS, 784–790 (2005).spa
dc.relation.referencesZhou, X. R. et al. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1914–1925 (2016).spa
dc.relation.referencesArias, M. et al. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim Biophys Acta Biomembr, (2020).spa
dc.relation.referencesKashyap, D., Garg, V. K., Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol, 73–120 (2021).spa
dc.relation.referencesMin, K. A., Maharjan, P., Ham, S., Shin, M. C. Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res, 594–616 (2018).spa
dc.relation.referencesFaraji, N., Arab, S. S., Doustmohammadi, A., Daly, N. L., Khosroushahi, A. Y. ApInAPDB: a database of apoptosis-inducing anticancer peptides. Scientific Reports 2022, 1–7 (2022).spa
dc.relation.referencesWang, H. et al. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci, (2022).spa
dc.relation.referencesZong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev, 1–15 (2006).spa
dc.relation.referencesKim, J. J. Y. et al. Necrosis-inducing peptide has the beneficial effect on killing tumor cells through neuropilin (NRP-1) targeting. Oncotarget, 32449 (2016).spa
dc.relation.referencesLu, Y. et al. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells. Scientific Reports 2016, 1–12 (2016).spa
dc.relation.referencesDo, T. N. et al. Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene 2003, 1431–1444 (2003).spa
dc.relation.referencesQiu, Y. et al. Cell-penetrating peptides induce apoptosis and necrosis through specific mechanism and cause impairment of Na+–K+-ATPase and mitochondria. Amino Acids, 75–88 (2017).spa
dc.relation.referencesDecraene, B. et al. Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes & Immunity, 1–11 (2022).spa
dc.relation.referencesZhou, J. et al. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med, 4854 (2019).spa
dc.relation.referencesAria, H., Rezaei, M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomedicine & Pharmacotherapy, 114503 (2023).spa
dc.relation.referencesMathew, R., Karantza-Wadsworth, V. , White, E. Role of autophagy in cancer. Nature Reviews Cancer, 961–967 (2007).spa
dc.relation.referencesTilija Pun, N., Jang, W. J. & Jeong, C. H. Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res, 475–488 (2020).spa
dc.relation.referencesThorburn, A., Thamm, D. H. & Gustafson, D. L. Autophagy and Cancer Therapy. Mol Pharmacol, 830 (2014).spa
dc.relation.referencesRen, S. X. et al. FK-16 Derived from the Anticancer Peptide LL-37 Induces Caspase-Independent Apoptosis and Autophagic Cell Death in Colon Cancer Cells. PLoS One (2013).spa
dc.relation.referencesShoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 201–206 (2013).spa
dc.relation.referencesPan, W. R. et al. Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci, 7511–7520 (2013).spa
dc.relation.referencesTomita, M. et al. Twenty-five years of research on bovine lactoferrin applications. Biochimie, 52–57 (2009).spa
dc.relation.referencesCutone, A. et al. Lactoferrin’s anti-cancer properties: Safety, selectivity, and wide range of action. Biomolecules vol. 10, (2020).spa
dc.relation.referencesTsuda, H., Sekine, K., Fujita, K. I., Iigo, M. Cancer prevention by bovine lactoferrin and underlying mechanisms - A review of experimental and clinical studies. in Biochemistry and Cell Biology, 131–136 (2002).spa
dc.relation.referencesIigo, M. et al. Inhibition of intestinal polyp growth by oral ingestion of bovine lactoferrin and immune cells in the large intestine. BioMetals, 1017–1029 (2014).spa
dc.relation.referencesCutone, A. et al. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel), 3806 (2020).spa
dc.relation.referencesTanaka, H. et al. Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochemistry and Cell Biology, 1–7 (2020).spa
dc.relation.referencesGiansanti, F., Panella, G., Leboffe, L., Antonini, G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals, 61 (2016).spa
dc.relation.referencesArias, M. et al. Anticancer activities of bovine and human lactoferricin-derived peptides1. in Biochemistry and Cell Biology, 91–98 (2017).spa
dc.relation.referencesSadiq, I. Z., Babagana, K., Danlami, D., Abdullahi, L. I., Khan, A. R. Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin. Asian Journal of Biochemistry, Genetics and Molecular Biology, 1–9 (2018).spa
dc.relation.referencesZhou, N., Tieleman, D. P., Vogel, H. J. Molecular dynamics simulations of bovine lactoferricin: turning a helix into a sheet. Biometals, 217–223 (2004).spa
dc.relation.referencesHuertas, N., et al. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules, 987 (2017).spa
dc.relation.referencesTolokh, I. S., et al.. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. Phys Rev E Stat Nonlin Soft Matter Phys, (2009).spa
dc.relation.referencesRahman, R. et al. Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide. J Cell Mol Med, 7181–7189 (2021).spa
dc.relation.referencesFurlong, S. J., Mader, J. S., Hoskin, D. W. Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol Rep, 1385–1390 (2006).spa
dc.relation.referencesMuj, C., Mukhopadhyay, S., Jana, P., Kondapi, A. K. Synergistic action of lactoferrin in enhancing the safety and effectiveness of docetaxel treatment against prostate cancer. Cancer Chemother Pharmacol, 375–387 (2023).spa
dc.relation.referencesGuedes, J. P., Pereira, C. S., Rodrigues, L. R., Côrte-Real, M. Bovine milk lactoferrin selectively kills highly metastatic prostate cancer PC-3 and osteosarcoma MG-63 cells in vitro. Front Oncol, 355424 (2018).spa
dc.relation.referencesTone Eliassen, L. et al. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res, 2703–2710 (2002).spa
dc.relation.referencesMistry, N. et al. The anti-papillomavirus activity of human and bovine lactoferricin. Antiviral Res, 258–265 (2007).spa
dc.relation.referencesJiang, R. & Lönnerdal, B. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways1. in Biochemistry and Cell Biology, 99–109 (2017).spa
dc.relation.referencesFreiburghaus, C., Janicke, B., Lindmark-Månsson, H., Oredsson, S. M. & Paulsson, M. A. Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line. J Dairy Sci, 2477–2484 (2009).spa
dc.relation.referencesFreiburghaus, C., Lindmark-Månsson, H., Paulsson, M. & Oredsson, S. Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide. J Dairy Sci, 5552–5560 (2012).spa
dc.relation.referencesSpicer, J. et al. Safety, anti-tumor activity and T-cell responses in a dose-ranging phase 1 trial of the oncolytic peptide LTX-315 in patients with solid tumors. Clinical Cancer Research, 3435 (2021).spa
dc.relation.referencesTomita, M., Wakabayashi, H., Yamauchi, K., Teraguchi, S., Hayasawa, H. Bovine lactoferrin and lactoferricin derived from milk: Production and applications. in Biochemistry and Cell Biology, 109–112 (2002).spa
dc.relation.referencesAgouridas, V. et al. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews (2019).spa
dc.relation.referencesJensen, K. J. Solid-phase peptide synthesis: An introduction. Methods in Molecular Biology, 1–21 (2013).spa
dc.relation.referencesKato, H., Hayashi, M., Fukumori, Y., Kaneko, H. MHC restriction in contact hypersensitivity to dicyclohexylcarbodiimide. Food and Chemical Toxicology, 1713–1718 (2002).spa
dc.relation.referencesGraham, J. C. et al. An Evaluation of the Occupational Health Hazards of Peptide Couplers. Chem Res Toxicol, 1011–1022 (2022).spa
dc.relation.referencesNavarrete, E. L. Síntesis de péptidos. Universidad nacional autonoma de méxico, Instituto de Biotecnología, 1–53 (2007).spa
dc.relation.referencesManne, S. R. et al. Understanding OxymaPure as a Peptide Coupling Additive: A Guide to New Oxyma Derivatives. ACS Omega, 6007–6023 (2022).spa
dc.relation.referencesRomán Bothia, J. T. Implementación y optimización del proceso sintético de i) complejos aminoácido - estaño IV y ii) péptidos conjugados con Ferroceno, como contribución al desarrollo de fármacos basados en moléculas Organometálicas. (Universidad Nacional de Colombia, Bogotá, 2020).spa
dc.relation.referencesVrettos, E. I. et al. Unveiling and tackling guanidinium peptide coupling reagent side reactions towards the development of peptide-drug conjugates. RSC Adv, 50519–50526 (2017).spa
dc.relation.referencesLuna, O. F. et al. Deprotection Reagents in Fmoc Solid Phase Peptide Synthesis: Moving Away from Piperidine? Molecules, (2016).spa
dc.relation.referencesFields, G. B. Methods for Removing the Fmoc Group. Peptide Synthesis Protocols 17–27 (1994).spa
dc.relation.referencesSuzuki, R. & Konno, H. Stain Protocol for the Detection of N-Terminal Amino Groups during Solid-Phase Peptide Synthesis. ACS Appl Mater Interfaces (2020).spa
dc.relation.referencesYemm, E. W., Cocking, E. C., Ricketts, R. E. The determination of amino-acids with ninhydrin. Analyst, 209–214 (1955).spa
dc.relation.referencesPedersen, S. L., Jensen, K. J. Peptide release, side-chain deprotection, work-up, and isolation. Methods Mol Biol, 43–63 (2013).spa
dc.relation.referencesCraik, D. J. & Kan, M. W. How can we improve peptide drug discovery? Learning from the past, 1399–1402 (2021).spa
dc.relation.referencesMuttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nature Reviews Drug Discovery, 309–325 (2021).spa
dc.relation.referencesHenninot, A., Collins, J. C. & Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? Journal of Medicinal Chemistry vol. 61, 1382–1414 (2018).spa
dc.relation.referencesTimur, S. S. & Gürsoy, R. N. The role of peptide-based therapeutics in oncotherapy. J Drug Target, 1048–1062 (2021).spa
dc.relation.referencesMcErlean, E. M. et al. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. Journal of Controlled Release, 1288–1299 (2021).spa
dc.relation.referencesPappa, E. V. et al. Structure–activity studies of lGnRH-III through rational amino acid substitution and NMR conformational studies. Peptide Science, 525–534 (2012).spa
dc.relation.referencesKumar, A. et al. Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity. Antimicrob Agents Chemother, 3687 (2016).spa
dc.relation.referencesIrazazabal, L. N. et al. Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2699–2708 (2016).spa
dc.relation.referencesSchmidt, S. et al. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design. Bioconjug Chem, 382–389 (2017).spa
dc.relation.referencesRäder, A. F. B. et al. Orally Active Peptides: Is There a Magic Bullet? Angewandte Chemie International Edition, 14414–14438 (2018).spa
dc.relation.referencesHicks, R. P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids. Bioorg Med Chem, 4056–4065 (2016).spa
dc.relation.referencesScorciapino, M. A., Serra, I., Manzo, G. & Rinaldi, A. C. Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int J Mol Sci, (2017).spa
dc.relation.referencesLiu, S. P., Zhou, L., Lakshminarayanan, R. & Beuerman, R. W. Multivalent antimicrobial peptides as therapeutics: Design principles and structural diversities. in International Journal of Peptide Research and Therapeutics, 199–213 (2010).spa
dc.relation.referencesLorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A. & Cilli, E. M. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein Pept Lett, 98–107 (2019).spa
dc.relation.referencesZhong, J. & Chau, Y. Synthesis, characterization, and thermodynamic study of a polyvalent lytic peptide-polymer conjugate as novel anticancer agent. Bioconjug Chem, 2055–2064 (2010).spa
dc.relation.referencesGunasekera, S., Muhammad, T., Strömstedt, A. A., Rosengren, K. J. & Göransson, U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front Microbiol, 1–15 (2020).spa
dc.relation.referencesTam, J. P. & Zavala, F. Multiple antigen peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J Immunol Methods, 53–61 (1989).spa
dc.relation.referencesBondaryk, M., Staniszewska, M., Zielińska, P. & Urbańczyk-Lipkowska, Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. Journal of Fungi (2017).spa
dc.relation.referencesGalati, R., Verdina, A., Falasca, G. & Chersi, A. Increased resistance of peptides to serum proteases by modification of their amino groups. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 558–561 (2003).spa
dc.relation.referencesArispe, N., Carlos Diaz, J. & Flora, M. Efficiency of Histidine-Associating Compounds for Blocking the Alzheimer’s Ab Channel Activity and Cytotoxicity. Biophys J, (2008).spa
dc.relation.referencesFeng, Z. & Xu, B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomolecular Concepts, 179–187 (2016).spa
dc.relation.referencesOliva, R. et al. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep, 8888 (2018).spa
dc.relation.referencesCardoso, M. H., Cândido, E. S., Oshiro, K. G. N., Rezende, S. B. & Franco, O. L. Peptides containing D-amino acids and retro-inverso peptides: General applications and special focus on antimicrobial peptides. in Peptide Applications in Biomedicine, Biotechnology and Bioengineering, 131–155 (2018).spa
dc.relation.referencesAghamiri, S. et al. Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacol Res, 105777 (2021).spa
dc.relation.referencesGan, B. H., Gaynord, J., Rowe, S. M., Deingruber, T., Spring, D. R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev, 7820–7880 (2021).spa
dc.relation.referencesKowalczyk, R., Harris, P. W. R., Williams, G. M., Yang, S. H. & Brimble, M. A. Peptide lipidation - A synthetic strategy to afford peptide based therapeutics. Advances in Experimental Medicine and Biology, 185–227 (2017).spa
dc.relation.referencesAlbada, B. Tuning Activity of Antimicrobial Peptides by Lipidation. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids, 317–334 (2018).spa
dc.relation.referencesMorstein, J. et al. Medium-Chain Lipid Conjugation Facilitates Cell-Permeability and Bioactivity. J Am Chem Soc, 18532–18544 (2022).spa
dc.relation.referencesWang, D. et al. Anticancer Properties of Lipidated Peptide Drug Supramolecular Self-Assemblies with Enhanced Stability. ACS Appl Bio Mater, 5995–6003 (2019).spa
dc.relation.referencesMenacho-Melgar, R., Decker, J. S., Hennigan, J. N. & Lynch, M. D. A review of lipidation in the development of advanced protein and peptide therapeutics. Journal of Controlled Release, 1–12 (2019).spa
dc.relation.referencesWang, Y. et al. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: Peptide oligomerization or binding to serum albumin? J Control Release, 25–33 (2016).spa
dc.relation.referencesZhang, X. et al. A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS Appl Bio Mater, 8277–8290 (2021).spa
dc.relation.referencesBech, E. M., Pedersen, S. L. & Jensen, K. J. Chemical Strategies for Half-Life Extension of Biopharmaceuticals: Lipidation and Its Alternatives. ACS Med Chem Lett, 577–580 (2018).spa
dc.relation.referencesMilton Harris, J. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 214–221 (2003).spa
dc.relation.referencesPorfiryeva, N. N., Moustafine, R. I. & Khutoryanskiy, V. V. PEGylated Systems in Pharmaceutics. Polymer Science - Series C, 62–74 (2020).spa
dc.relation.referencesMaiti, S. & Paira, P. Biotin conjugated organic molecules and proteins for cancer therapy: A review. European Journal of Medicinal Chemistry, 206–223 (2018).spa
dc.relation.referencesZempleni, J., Hassan, Y. I. & Wijeratne, S. S. K. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab, 715–724 (2008).spa
dc.relation.referencesYang, W., Cheng, Y., Xu, T., Wang, X. & Wen, L. ping. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem, 862–868 (2009).spa
dc.relation.referencesLee, H. S. et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett, 47–55 (2008).spa
dc.relation.referencesRen, W. X. et al. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications, 10403–10418 (2015).spa
dc.relation.referencesEliassen, L. T., Haug, B. E., Berge, G. & Rekdal, Ø. Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications. J Pept Sci, 510–517 (2003).spa
dc.relation.referencesSvendsen, J. S. M., Grant, T. M., Rennison, D., Brimble, M. A. & Svenson, J. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Acc Chem Res, 749–759 (2019).spa
dc.relation.referencesVogel, H. J. et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides, 49–63 (2011).spa
dc.relation.referencesArias, M., Piga, K. B., Hyndman, M. E. & Vogel, H. J. Improving the activity of trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules (2018).spa
dc.relation.referencesMadorran, E., Stožer, A., Bevc, S. & Maver, U. In vitro toxicity model: Upgrades to bridge the gap between preclinical and clinical research. Bosn J Basic Med Sci, 157 (2020).spa
dc.relation.referencesVan Norman, G. A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. JACC Basic Transl Sci, 387 (2020).spa
dc.relation.referencesHT-29 - HTB-38 | ATCC. https://www.atcc.org/products/htb-38.spa
dc.relation.referencesKleiveland, C. et al. The Impact of Food Bioactives on Health In Vitro and Ex Vivo Models. Chapter 11; HT29 Cell line.spa
dc.relation.referencesCaco-2 [Caco2] - HTB-37 | ATCC. https://www.atcc.org/products/htb-37.spa
dc.relation.referencesKleiveland, C. et al. The Impact of Food Bioactives on Health In Vitro and Ex Vivo Models.Chapter 10: Caco-2 Cell line.spa
dc.relation.referencesHCT 116 - CCL-247 | ATCC. https://www.atcc.org/products/ccl-247.spa
dc.relation.referencesHEK-293 - CRL-1573 | ATCC. https://www.atcc.org/products/crl-1573.spa
dc.relation.referencesThomas, P. & Smart, T. G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods, 187–200 (2005).spa
dc.relation.referencesDU 145 - HTB-81 | ATCC. https://www.atcc.org/products/htb-81.spa
dc.relation.referencesStone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer, 274–281 (1978).spa
dc.relation.referencesHeLa - CCL-2 | ATCC. https://www.atcc.org/products/ccl-2.spa
dc.relation.referencesHorwitz, K. B., Costlow, M. E. & McGuire, W. L. MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids, 785–795 (1975).spa
dc.relation.referencesMCF7 - HTB-22 | ATCC. https://www.atcc.org/products/htb-22.spa
dc.relation.referencesVargas-Casanova, Y. et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv, 7239–7245 (2019).spa
dc.relation.referencesBarragán‐Cárdenas, A. et al. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect, 9691–9700 (2020).spa
dc.relation.referencesRodríguez, J. Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama. (Universidad Nacional de Colombia, 2019).spa
dc.relation.referencesNgoma, T. World Health Organization cancer priorities in developing countries. Cancer Initiatives in Developing Countries (2005).spa
dc.relation.referencesMagalhaes, L. G., Ferreira, L. L. G. & Andricopulo, A. D. Recent Advances and Perspectives in Cancer Drug Design. An Acad Bras Cienc, 1233–1250 (2018).spa
dc.relation.referencesBray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 394–424 (2018).spa
dc.relation.referencesOrangio, G. R. The Economics of Colon Cancer. Surgical Oncology Clinics of North America, 327–347 (2018).spa
dc.relation.referencesRiedl, S., Zweytick, D., Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids, 766–781 (2011).spa
dc.relation.referencesMuller, P. Y. & Milton, M. N. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov, 751–761 (2012).spa
dc.relation.referencesInsuasty Cepeda, D. S. et al. Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology. Molecules, (2019).spa
dc.relation.referencesBusquet, F. et al. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regulatory Toxicology and Pharmacology, 496–511 (2014).spa
dc.relation.referencesHuertas Méndez, N. D. J. et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules, 1–10 (2017).spa
dc.relation.referencesCárdenas-Martínez, K. J. et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 1–12 (2021).spa
dc.relation.referencesDe Both, N. J., Vermey, M., Dinjens, W. N., Bosman, F. T. A comparative evaluation of various invasion assays testing colon carcinoma cell lines. Br J Cancer, 934–941 (1999).spa
dc.relation.referencesGheytanchi, E. et al. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int, 1–16 (2021).spa
dc.relation.referencesRousset, M. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie, 1035–1040 (1986).spa
dc.relation.referencesAhmed, D. et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, (2013).spa
dc.relation.referencesHilchie, A. L., Vale, R., Zemlak, T. S., Hoskin, D. W. Generation of a hematologic malignancy-selective membranolytic peptide from the antimicrobial core (RRWQWR) of bovine lactoferricin. Exp Mol Pathol , 192–198 (2013).spa
dc.relation.referencesKawai, K. et al. Comprehensive karyotyping of the HT-29 colon adenocarcinoma cell line. Genes Chromosomes Cancer, 1–8 (2002).spa
dc.relation.referencesBeter, M. et al. Multivalent Presentation of Cationic Peptides on Supramolecular Nanofibers for Antimicrobial Activity. Mol Pharm, 3660–3668 (2017).spa
dc.relation.referencesZhang, F. et al. Short, mirror-symmetric antimicrobial peptides centered on “RRR” have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater, 145–167 (2022).spa
dc.relation.referencesJia, B. Y. et al. High Cell Selectivity and Bactericidal Mechanism of Symmetric Peptides Centered on d-Pro–Gly Pairs. Int J Mol Sci, (2020).spa
dc.relation.referencesYang, S. T., Shin, S. Y. & Kim, J. Il. Interaction mode of a symmetric Trp-rich undeca peptide PST11-RK with lipid bilayers. FEBS Lett, 157–163 (2007).spa
dc.relation.referencesZhong, C. et al. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol (2021).spa
dc.relation.referencesVargas-Casanova, Y. et al. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. Chemistry Select, 7236–7242 (2020).spa
dc.relation.referencesBarragán-Cárdenas, A. C. et al. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS Omega, 2712–2722 (2022).spa
dc.relation.referencesVargas-Casanova, Y. et al. Combining the Peptide RWQWRWQWR and an Ethanolic Extract of Bidens pilosa Enhances the Activity against Sensitive and Resistant Candida albicans and C. auris Strains. J Fungi, (2023).spa
dc.relation.referencesSvenson, J. et al. Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability. J Pharmacol Exp Ther, 1032–1039 (2010).spa
dc.relation.referencesIsidro-Llobet, A., Álvarez, M., Albericio, F. Amino acid-protecting groups. Chem Rev, 2455–2504 (2009).spa
dc.relation.referencesAlhassan, M., Kumar, A., Lopez, J., Albericio, F., de la Torre, B. G. Revisiting NO2 as Protecting Group of Arginine in Solid-Phase Peptide Synthesis. Int J Mol Sci, 1–12 (2020).spa
dc.relation.referencesRagnarsson, U., Grehn, L. Dual protection of amino functions involving Boc. RSC Adv, 18691–18697 (2013).spa
dc.relation.referencesApplied Biosystems- ThermoFisher. Cleavage, Deprotection, and Isolation of Peptides after Fmoc Synthesis Potential Problems.spa
dc.relation.referencesGenScript. Peptide solubility Guidelines. https://www.genscript.com/peptide_solubility_and_stablity.html.spa
dc.relation.referencesGutman, I. et al. Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 23771–23781 (2022).spa
dc.relation.referencesGenScript. Recommended Peptide Purity Guidelines. https://www.genscript.com/recommended_peptide_purity.html.spa
dc.relation.referencesMueller, L. K., Baumruck, A. C., Zhdanova, H., Tietze, A. A. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Frontiers in Bioengineering and Biotechnology (2020).spa
dc.relation.referencesPeptide Hydrophobicity/Hydrophilicity Analysis Tool. https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php.spa
dc.relation.referencesZapadka, K. L., Becher, F. J., Gomes dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus (2017).spa
dc.relation.referencesErtl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform (2009).spa
dc.relation.referencesPeter M. Hwang, Ning Zhou, Xi Shan, Cheryl H. Arrowsmith, Hans J. Vogel. Three-Dimensional Solution Structure of Lactoferricin B, an Antimicrobial Peptide Derived from Bovine Lactoferrin†. Biochemistry, 4288–4298 (1998).spa
dc.relation.referencesArbeláez, M. D. L. R., Aleixo, D. T., Barragán Cárdenas, A. C., Pittella, F., Tavares, G. D. The role of synthetic peptides derived from bovine lactoferricin against breast cancer cell lines: A mini-review. Oncologie, 629–633 (2023).spa
dc.relation.referencesLi, L., Vorobyov, I., Allen, T. W. The different interactions of lysine and arginine side chains with lipid membranes. Journal of Physical Chemistry B, 11906–11920 (2013).spa
dc.relation.referencesHristova, K. & Wimley, W. C. A Look at Arginine in Membranes. J Membr Biol, 49 (2011).spa
dc.relation.referencesKhemaissa, S., Walrant, A., Sagan, S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys, (2022).spa
dc.relation.referencesÅmand, H. L., Fant, K., Nordén, B., Esbjörner, E. K. Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine. Biochem Biophys Res Commun, 621–625 (2008).spa
dc.relation.referencesYang, S.-T. et al. Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Lett, 229–233 (2003).spa
dc.relation.referencesSzabó, I. et al. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022, 907 (2022).spa
dc.relation.referencesSvenson, J. et al. Altered activity and physicochemical properties of short cationic antimicrobial peptides by incorporation of arginine analogues. Mol Pharm, 996–1005 (2009).spa
dc.relation.referencesSahsuvar, S., Kocagoz, T., Gok, O., Can, O. In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. Scientific Reports, 1–13 (2023).spa
dc.relation.referencesGreco, I. et al. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep, (2020).spa
dc.relation.referencesRodgers, G. M., Gilreath, J. A. The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematol, 13–20 (2019).spa
dc.relation.referencesTimmons, P. B., Hewage, C. M. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 1–18 (2020).spa
dc.relation.referencesWin, T. S. et al. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem, 275–291 (2017).spa
dc.relation.referencesAskari, P., Namaei, M. H., Ghazvini, K., Hosseini, M. In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria. BMC Pharmacol Toxicol, 1–12 (2021).spa
dc.relation.referencesTakahashi S. et al. The Structure-Function Relationship of Mastoparan : Loss of the Hemolytic Activity of Mastoparan by Substituting Lysine with Ornithine Residues in the Molecule. The Journal of Tokyo Academy of Health Sciences, 86–96 (2002).spa
dc.relation.referencesKang, A., Lee, J. H., Lin, E., Westerhoff, M. Metastatic colon carcinoma to the prostate gland. J Comput Assist Tomogr, 463–465 (2013).spa
dc.relation.referencesInsuasty-Cepeda, D. S. et al. Non-natural amino acids into LfcinB-derived peptides: effect in their (i) proteolytic degradation and (ii) cytotoxic activity against cancer cells. R Soc Open Sci (2023).spa
dc.relation.referencesDel Genio, V. et al. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics, (2022).spa
dc.relation.referencesHollville, E., Martin, S. J. Measuring Apoptosis by Microscopy and Flow Cytometry. Curr Protoc Immunol (2016).spa
dc.relation.referencesGreen, D. R., Llambi, F. Cell Death Signaling. Cold Spring Harb Perspect Biol (2015).spa
dc.relation.referencesJan, R., Chaudhry, G. e. S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull, 205 (2019).spa
dc.relation.referencesVaseva, A. V., Moll, U. M. The mitochondrial p53 pathway. Biochim Biophys Acta, 414–420 (2009).spa
dc.relation.referencesPiatek, M., Sheehan, G., Kavanagh, K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics, 1545 (2021).spa
dc.relation.referencesIgnasiak, K., Maxwell, A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes, 428 (2017).spa
dc.relation.referencesErhirhie, E. O., Ihekwereme, C. P., Ilodigwe, E. E. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol, 5–12 (2018).spa
dc.relation.referencesMcCann, M. et al. In vitro and in vivo studies into the biological activities of 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione and its copper(ii) and silver(i) complexes. Toxicol Res, 47–54 (2012).spa
dc.relation.referencesPerše, M. Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines (2021).spa
dc.relation.referencesAl Shoyaib, A., Archie, S. R., Karamyan, V. T. Intraperitoneal Route of Drug Administration: Should it Be Used in Experimental Animal Studies? Pharm Res, 12 (2019).spa
dc.relation.referencesRedfern, W. S. et al. The functional observational battery and modified Irwin test as global neurobehavioral assessments in the rat: Pharmacological validation data and a comparison of methods. J Pharmacol Toxicol Methods (2019).spa
dc.relation.referencesICH S7A Safety pharmacology studies for human pharmaceuticals - Scientific guideline | European Medicines Agency.spa
dc.relation.referencesZhao, X. et al. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. Journal of Cerebral Blood Flow & Metabolism (2021).spa
dc.relation.referencesKumari, S., Ahsan, S. M., Kumar, J. M., Kondapi, A. K., Rao, N. M. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Scientific Reports, 1–13 (2017).spa
dc.relation.referencesArcella, A. et al. In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg, 1026–1035 (2015).spa
dc.relation.referencesBegley, D. J. Strategies for delivery of peptide drugs to the central nervous system: exploiting molecular structure. Journal of Controlled Release, 293–306 (1994).spa
dc.relation.referencesQi, N. et al. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology, 1–17 (2021).spa
dc.relation.referencesCaballero, M. V., Candiracci, M. Zebrafish as screening model for detecting toxicity and drugs efficacy. Journal of Unexplored Medical Data (2018).spa
dc.relation.referencesChahardehi, A. M., Arsad, H., Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants, 1–35 (2020).spa
dc.relation.referencesBrotzmann, K., Wolterbeek, A., Kroese, D., Braunbeck, T. Neurotoxic effects in zebrafish embryos by valproic acid and nine of its analogues: the fish-mouse connection? Arch Toxicol, 641–657 (2021).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc540- Química y Ciencias Afinesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembPeptidosspa
dc.subject.lembCancerspa
dc.subject.otherLactoferrinaspa
dc.subject.proposalPeptidosspa
dc.subject.proposalLactoferricina bovinaspa
dc.subject.proposalpéptido hitspa
dc.subject.proposalpéptido optimizadospa
dc.subject.proposalcáncer de colonspa
dc.titleSíntesis y cribado de péptidos modificados derivados de lactoferricina bovina como fármacos citotóxicos contra líneas de cáncer de colonspa
dc.title.translatedSynthesis and screening of modified peptides derived from bovine lactoferricin as cytotoxic drugs against colon cancer cell lineseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Obtención de un prototipo peptídico promisorio para el desarrollo de un medicamento de amplio espectro para el tratamiento del cáncer de colon, cuello uterino y próstata” código 110184466986, contrato 845-2019.spa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032503039.2024.pdf
Tamaño:
4.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: