Contribución al estudio de la actividad antimicrobiana de alquilgliceroles naturales y sintetizados

dc.contributor.advisorMayorga Wandurraga, Humberto
dc.contributor.authorGamboa Tovar, Evelyn Dayana
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Química Ecológica
dc.coverage.countryColombia
dc.date.accessioned2025-09-03T13:20:14Z
dc.date.available2025-09-03T13:20:14Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractLas especies vegetales y animales son usadas generalmente en el campo de investigación farmacológica, debido a su espectro amplio de propiedades biológicas adquiridas por el uso tradicional y en algunos casos incluso reconocidos a nivel científico. Los principios activos se siguen extrayendo principalmente de estas fuentes terrestres y marinas, gracias a la accesibilidad que presentan para la obtención de estructuras nuevas o de compuestos con actividad biológica novedosa o promisoria. Es por esto por lo que una de las alternativas más importantes para el desarrollo de la industria farmacéutica es el estudio de las posibilidades de obtención de fármacos a partir de productos naturales. El objetivo de esta investigación se centra en aportar al conocimiento en productos naturales, en particular sobre los beneficios para la salud de los alquilgliceroles (AQGs), mediante la síntesis orgánica de otras variantes estructurales naturales y la evaluación de su actividad contra algunos microorganismos. Por consiguiente, se inició la síntesis de una serie de alquilgliceroles idénticos a sus enantiómeros naturales y de cadena alifática impar, siguiendo la metodológica previamente establecida en el laboratorio de Productos Naturales Vegetales Bioactivos y Química Ecológica. Los AQGs se sintetizaron a partir del precursor quiral, R-solketal; ((R)-1,2-O-isopropilidenglicol) y un éster o el alcohol alifático correspondiente, mediante una secuencia de reacciones que incluyó reducción, mesilación, sustitución, y desprotección. Cada intermediario y el AQG obtenido se purificó por cromatografía en columna preparativa y sus estructuras se sometieron a experimentos de RMN monodimensional 1H y, 13C APT y bidimensional; COSY, HMQC, HSQC y HMBC en el caso de los AQGs. Se sintetizaron nueve enantiómeros de AQGs llamados (S)-3-(heptiloxi)propano-1,2-diol) (1), (S)-3-(noniloxi)propano-1,2-diol (2), (S)-3undeciloxi)propano-1,2-diol (3), (S)-3-(trideciloxi)propano-1,2-diol (4), (S)-3-(pentadeciloxi)propano-1,2-diol (5), (S)-3-(heptadeciloxi)propano-1,2-diol (6), (S)-3-(nonadeciloxi)propano-1,2-diol) (7), (S)-3-(henicosiloxi)propano-1,2-diol (8) y (S)-3-(tricosiloxi)propano-1,2-diol (9) Entre ellos de los AQGs 2, 8 y 9 se sintetizaron por primera vez sus enantiómeros de configuración (S) en este trabajo. Todos los AQGs fueron producidos con un rendimiento de la síntesis total entre 39-94%. Los resultados obtenidos con el análisis de los espectros de RMN fueron comparados con los de otros análogos de AQGs previamente sintetizados, además se determinó in vitro la concentración mínima inhibitoria contra 8 bacterias y 2 levaduras de cada uno de ellos, los resultados muestran que los alquilgliceroles inducen susceptibilidad en la cepa Pseudomonas aeruginosa ATCC 15442, especialmente el compuestos 2, con una CMI 16 μg/mL, seguido del compuesto 4 con una CMI 31 μg/mL, sin embargo, en comparación con el antibiótico de referencia, ciprofloxacino, su actividad es baja. Esta investigación contribuye al campo de productos naturales mediante la síntesis y caracterización estructural por RMN de otras variantes estructurales de alquilgliceroles naturales de cadena saturada impar no obtenidos antes por nuestro grupo de investigación, aporta datos de RMN adicionales de algunos de ellos, además, evalúa las posibilidades de estos compuestos frente a microorganismos. (Texto tomado de la fuente)spa
dc.description.abstractPlant and animal species are generally used in the field of pharmacological research due to their broad spectrum of biological properties, acquired through traditional use and, in some cases, even recognized at the scientific level. Active principles continue to be extracted mainly from these terrestrial and marine sources, thanks to their accessibility for obtaining new structures or compounds with novel or promising biological activity. For this reason, one of the most important alternatives for the development of the pharmaceutical industry is the study of the potential for obtaining drugs from natural products. The objective of this research is to contribute to the knowledge of natural products, particularly regarding the health benefits of alkylglycerols (AQGs), through the organic synthesis of other structurally natural variants and the evaluation of their activity against certain microorganisms. Accordingly, the synthesis of a series of alkylglycerols identical to their natural enantiomers and with an odd aliphatic chain was initiated, following the methodology previously established in the Natural Bioactive Plant Products and Ecological Chemistry Laboratory. AQGs were synthesized from the chiral precursor, R-solketal ((R)-1,2-Oisopropylideneglycerol), and an ester or the corresponding aliphatic alcohol, through a sequence of reactions including reduction, mesylation, substitution, and deprotection. Each intermediate and the obtained AQG were purified by preparative column chromatography, and their structures were subjected to NMR spectroscopy experiments, including onedimensional 1H y 13C APT, as well as two-dimensional analyses such as COSY, HMQC, HSQC, and HMBC in the case of AQGs. Nine AQG enantiomers were synthesized: (S)-3-(heptyloxy)propane-1,2-diol (1), (S)-3 nonyloxy)propane-1,2-diol (2), (S)-3-(undecyloxy)propane-1,2-diol (3), (S)-3-(tridecyloxy)propane-1,2-diol (4), (S)-3-(pentadecyloxy)propane-1,2-diol (5), (S)-3-(heptadecyloxy)propane-1,2-diol (6), (S)-3-(nonadecyloxy)propane-1,2-diol (7), (S)-3-(henicosyloxy)propane-1,2-diol (8), and (S)-3-(tricosyloxy)propane-1,2-diol (9). Among them, AQGs 2, 8, and 9 were synthesized for the first time as (S)-configured enantiomers in this study. All AQGs were produced with an overall synthesis yield ranging from 39% to 94%. The results obtained from the analysis of NMR spectra were compared with those of other previously synthesized AQG analogs. Additionally, the minimum inhibitory concentration (MIC) was determined in vitro against eight bacterial strains and two yeast strains for each compound. The results show that alkylglycerols induce susceptibility in the strain Pseudomonas aeruginosa ATCC15442, particularly compound 2, with an MIC of 16 μg/mL, followed by compound 4 with an MIC of 31 μg/mL. However, in comparison with the reference antibiotic ciprofloxacin, their activity is low. This research contributes to the field of natural products by synthesizing and structurally characterizing, via NMR, new structural variants of naturally occurring alkylglycerols with odd saturated chains, which had not been previously obtained by our research group. It also provides additional NMR data for some of these compounds and evaluates their potential against microorganisms. eng
dc.description.curricularareaQuímica.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.notesContiene en el anexo espectros de RMNspa
dc.description.researchareaProductos Naturales y Microbiología Farmacéutica
dc.format.extent232 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88568
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesAcevedo, R., Gil, D., Del Campo, J., Bracho, G., Valdés, Y., & Pérez, O. (2006). The adjuvant potential of synthetic alkylglycerols. Vaccine, 24(Suppl. 2), S32–S33. https://doi.org/10.1016/j.vaccine.2005.01.109
dc.relation.referencesAlexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M. I., Tsiafoulis, C. G., & Gerothanassis, I. P. (2017). High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules, 22(10), 1663. https://doi.org/10.3390/molecules22101663
dc.relation.referencesAlós, J. I. (2015). Antibiotic resistance: A global crisis. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004
dc.relation.referencesAmpatzidis, C. D., Varka, E. M. A., & Karapantsios, T. D. (2014). Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 176–183. https://doi.org/10.1016/j.colsurfa.2014.02.033
dc.relation.referencesAnadón, A., Martínez, M. A., Ares, I., Ramos, E. V. A., Señoráns, F. J., Reglero, G., & Torres, C. (2010). Acute and repeated dose (28 days) oral safety studies of an alkoxyglycerol extract from shark liver oil in rats. Journal of Agricultural and Food Chemistry, 58(3), 2040–2046. https://doi.org/10.1021/jf903384c
dc.relation.referencesAndrikopoulos, N. K., Siafaka-Kapadai, A., Demopoulos, C. A., & Kaulas, V. M. (1985). Lipids of Pinus halepensis pollen. Phytochemistry, 24(12), 2953–2957. https://doi.org/10.1016/S0031-9422(00)80709-6
dc.relation.referencesAppendino, G., Ligresti, A., Minassi, A., Daddario, N., Bisogno, T., & Di Marzo, V. (2003). Homologues and isomers of noladin ether, a putative novel endocannabinoid: Interaction with rat cannabinoid CB1 receptors. Bioorganic & Medicinal Chemistry Letters, 13(10), 43-46. https://doi.org/10.1016/S0960-894X(02)00839-9
dc.relation.referencesBarragán, A. C., Silva, G. E., Moreno, M. B., & Mayorga, W. H. (2018). Inhibition of quorum sensing by compounds from two Eunicea species and synthetic saturated alkylglycerols. Vitae, 25(2), 92–103. https://doi.org/10.17533/udea.vitae.v25n2a05
dc.relation.referencesBartolmäs, T., Heyn, T., Mickeleit, M., Fischer, A., Reutter, W., & Danker, K. (2005). Glucosamine-glycerophospholipids that activate cell-matrix adhesion and migration. Journal of Medicinal Chemistry, 48(21), 6750–6755. https://doi.org/10.1021/jm050558n
dc.relation.referencesBaumann, W. J., & Mangold, H. K. (1964). Reactions of aliphatic methanesulfonates. I. Syntheses of long-chain glyceryl-(1) ethers. The Journal of Organic Chemistry, 29(10), 3055–3057. https://doi.org/10.1021/jo01033a065
dc.relation.referencesBeilfuss, W., Siegert, W., Weber, K., Gradtke, R., & Diehl, K. H. (2003). Glyceryl ethers as preservatives for cooling lubricants. Patente de Estados Unidos 6,656,888
dc.relation.referencesBeilfuss, W., Wutsch, S., Weber, K., & Gradtke, R. (2008). Composition based on glycerol ether/polyol mixtures. Patente de Estados Unidos 7,378,393
dc.relation.referencesBéltran, O. (2006). Factor de impacto. Revista Colombiana de Gastroenterología, 21(1), 74–75. https://www.redalyc.org/articulo.oa?id=337729270008
dc.relation.referencesBergan, J., Skotland, T., Lingelem, A. B. D., Simm, R., Spilsberg, B., Lindbäck, T., Sylvänne, T., Simolin, H., Ekroos, K., & Sandvig, K. (2014). The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cellular and Molecular Life Sciences, 71(21), 4285–4300. https://doi.org/10.1007/s00018-014-1624-1
dc.relation.referencesBergmann, W., & Stansbury, H. A. (1943). Contributions to the study of marine products. XIV. Astrol. Journal of Organic Chemistry, 8(5), 283–284. https://doi.org/10.1021/jo01191a009
dc.relation.referencesBernal-Chávez, S. A., Pérez-Carreto, L. Y., Nava-Arzaluz, M. G., & Ganem-Rondero, A. (2017). Alkylglycerol derivatives, a new class of skin penetration modulators. Molecules, 22(1), 185. https://doi.org/10.3390/molecules22010185
dc.relation.referencesBordier, C. G., Sellier, N., Foucault, A. P., & Le Goffic, F. (1996). Purification and characterization of deep sea shark Centrophorus squamosus liver oil 1-O-alkylglycerol ether lipids. Lipids, 31(5), 587–593. https://doi.org/10.1007/BF02522646
dc.relation.referencesBrachwitz, H., Langen, P., Arndt, D., & Fichtner, I. (1987). Cytostatic activity of synthetic Oalkylglycerolipids. Lipids, 22(11), 897–903. https://doi.org/10.1007/BF02535551
dc.relation.referencesBrissette, J. L., Cabacungan, E. A., & Pieringer, R. A. (1986). Studies on the antibacterial activity of dodecylglycerol. Its limited metabolism and inhibition of glycerolipid and lipoteichoic acid biosynthesis in Streptococcus mutans BHT. Journal of Biological Chemistry, 261(14), 6338–6345. https://doi.org/10.1016/s0021-9258(19)84568-4
dc.relation.referencesBrohult, A., Brohult, J., Brohult, S., & Joelsson, I. (1977). Effect of alkoxyglycerols on the frequency of injuries following radiation therapy for carcinoma of the uterine cervix. Acta Obstetricia et Gynecologica Scandinavica, 56(4), 441–448. https://doi.org/10.3109/00016347709155008
dc.relation.referencesCardillo, G., Orena, M., Romero, M., & Sandri, S. (1989). Enantioselective synthesis of zbenzyloxy alcohols and 1,2-diols via alkylation of chiral glycolate imines: A convenient approach to optically active glycerol derivatives. Tetrahedron, 45(5), 1501–1508. https://doi.org/10.1016/s0040-4020(01)80517-9
dc.relation.referencesCaron, E., Desseyn, J. L., Sergent, L., Bartke, N., Husson, M. O., Duhamel, A., & Gottrand, F. (2015). Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection. British Journal of Nutrition, 113(2), 191–199. https://doi.org/10.1017/S0007114514003705
dc.relation.referencesCauwet, D., & Dubief, C. (1993). Cosmetic composition containing a surfactant such as an alkylpolyglycoside and/or polyglycerol and an urethanpolyether. Patente de Estados Unidos 5,230,899.
dc.relation.referencesChapelle, S., Nevenzel, J. C., & Benson, A. A. (1988). No effect of environmental acidity on the ether glycerophospholipids of crayfish gills. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 89(2), 311–314. https://doi.org/10.1016/0742-8413(88)90229-0
dc.relation.referencesChaverra Daza, K. E., Gómez, E. S., Moreno Murillo, B. D., & Wandurraga, H. M. (2021). Natural and enantiopure alkylglycerols as antibiofilms against clinical bacterial isolates and quorum sensing inhibitors of Chromobacterium violaceum ATCC 12472. Antibiotics, 10(4), 430. https://doi.org/10.3390/antibiotics10040430
dc.relation.referencesCheminade, C., Gautier, V., Hichami, A., Allaume, P., Le Lannou, D., & Legrand, A. B. (2002). 1-O-Alkylglycerols improve boar sperm motility and fertility. Biology of Reproduction, 66(2), 421–428. https://doi.org/10.1095/biolreprod66.2.421
dc.relation.referencesClayden, J., Greeves, N., & Warren, S. (2012). Organic chemistry (2.ª ed.). Oxford University Press
dc.relation.referencesDas, A. K., & Hajra, A. K. (1988). High incorporation of dietary 1-O-heptadecyl glycerol into tissue plasmalogens of young rats. FEBS Letters, 227(2), 187–190. https://doi.org/10.1016/0014-5793(88)80895-0
dc.relation.referencesDas, A. K., Holmes, R. D., Wilson, G. N., & Hajra, A. K. (1992). Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents. Lipids, 27(6), 401– 405. https://doi.org/10.1007/BF02536379
dc.relation.referencesDavies, G. G., Heilbron, I. M., & Owens, W. M. (1930). The unsaponifiable matter from the oils of elasmobranch fish. Part VII. The synthesis of α-glyceryl ethers and its bearing on the structure of batyl, selachyl, and chimyl alcohols. Journal of the Chemical Society (Resumed), 2542–2546. https://doi.org/10.1039/jr9300002542
dc.relation.referencesDean, J. M., & Lodhi, I. J. (2018). Structural and functional roles of ether lipids. Protein & Cell, 9(2), 196–206. https://doi.org/10.1007/s13238-017-0423-5
dc.relation.referencesDebouzy, J.-C., Crouzier, D., Lefebvre, B., & Dabouis, V. (2008). Study of alkylglycerol containing shark liver oil: A physicochemical support for biological effect? Lipids in Health and Disease, 7(1), 17–28. https://doi.org/10.1186/1476-511X-7-1
dc.relation.referencesDeniau, A. L., Mosset, P., Le Bot, D., & Legrand, A. B. (2011). Which alkylglycerols from shark liver oil have anti-tumour activities? Biochimie, 93(1), 1–3. https://doi.org/10.1016/j.biochi.2009.12.010
dc.relation.referencesDeniau, A. L., Mosset, P., Pédrono, F., Mitre, R., Le Bot, D., & Legrand, A. B. (2010). Multiple beneficial health effects of natural alkylglycerols from shark liver oil. Marine Drugs, 8(7), 2175–2184. https://doi.org/10.3390/md8072175
dc.relation.referencesDíaz, Y. M., Laverde, G. V., Gamba, L. R., Wandurraga, H. M., Arévalo-Ferro, C., Rodríguez, F. R., Beltrán, C. D., & Hernández, L. C. (2015). Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. Revista Brasileira de Farmacognosia, 25(6), 605–611. https://doi.org/10.1016/j.bjp.2015.08.007
dc.relation.referencesDuclos, R. I., Chia, H. H., Abdelmageed, O. H., Esber, H., Fournier, D. J., & Makriyannis, A. (1994). Syntheses of racemic and nearly optically pure ether lipids and evaluation of in vitro antineoplastic activities. Journal of Medicinal Chemistry, 37(24), 4147–4154. https://doi.org/10.1021/jm00050a011
dc.relation.referencesDumoulin, F., Lafont, D., Boullanger, P., Mackenzie, G., Mehl, G. H., & Goodby, J. W. (2002). Self-organizing properties of natural and related synthetic glycolipids. Journal of the American Chemical Society, 124(35), 13737-13748. https://doi.org/10.1021/ja020396x
dc.relation.referencesDyshlovoy, S. A., Fedorov, S. N., Svetashev, V. I., Makarieva, T. N., Kalinovsky, A. I., Moiseenko, O. P., Krasokhin, V. B., Shubina, L. K., Guzii, A. G., von Amsberg, G., & Stonik, V. A. (2022). 1-O-Alkylglycerol ethers from the marine sponge Guitarra abbotti and their cytotoxic activity. Marine Drugs, 20(7), 409. https://doi.org/10.3390/md20070409
dc.relation.referencesEremenko, L. T., & Korolev, A. M. (1977). Synthesis and study of some physical properties of i-n-alkyl ethers of glycerol and their dinitrates. Russian Journal of Applied Chemistry, 50(12), 2568–2570. https://doi.org/10.1007/BF00921867
dc.relation.referencesFernández, D. J., Contreras Jordan, L. A., Moreno-Murillo, B., Silva-Gómez, E., & Mayorga- Wandurraga, H. (2019). Enantiomeric synthesis of natural alkylglycerols and their antibacterial and antibiofilm activities. Natural Product Research, 35(15), 2544–2550. https://doi.org/10.1080/14786419.2019.1686370
dc.relation.referencesFricke, H., Gercken, G., & Oehlenschläger, J. (1986). 1-O-Alkylglycerolipids in Antarctic krill (Euphausia superba Dana). Comparative Biochemistry and Physiology Part B: Biochemistry And, 85(1), 131–134. https://doi.org/10.1016/0305-0491(86)90233-6
dc.relation.referencesFrusteri, F., Cannilla, C., Bonura, G., Spadaro, L., Mezzapica, A., Beatrice, C., Di Blasio, G., & Guido, C. (2013). Glycerol ethers production and engine performance with diesel/ethers blend. Topics in Catalysis, 56(1–8), 378–383. https://doi.org/10.1007/s11244-013-9983-7
dc.relation.referencesGómez-Serranillos Cuadrado, M. P. (2022). Las plantas medicinales como fuentes de fármacos. Panorama Actual del Medicamento, 46(452), 413–421. https://www.farmaceuticos.com/wp-content/uploads/2022/04/PAM452-10-1- PlantasMedicinales-Plantas-medicinales-fuentes-farmacos.pdf
dc.relation.referencesGopinath, D., Ravi, D., Rao, B. R., Apte, S. S., & Rambhau, D. (2002). 1-O-Alkylglycerol vesicles (Algosomes): Their formation and characterization. International Journal of Pharmaceutics, 246(1-2), 29–38. https://doi.org/10.1016/S0378-5173(02)00397-6
dc.relation.referencesGuivisdalsky, P. N., & Bittman, R. (1989). An efficient stereocontrolled route to both enantiomers of platelet activating factor and analogues with long-chain esters at C2: Saturated and unsaturated ether glycerolipids by opening of glycidyl arenesulfonates. Journal of Organic Chemistry, 54(19), 4643–4648. https://doi.org/10.1021/jo00280a035
dc.relation.referencesHallgren, B., Larsson, S., Dam, H., & Refn, S. (1959). Separation and identification of alkoxyglycerols. Acta Chemica Scandinavica, 13, 2147–2148. https://doi.org/10.3891/ACTA.CHEM.SCAND.13-2147
dc.relation.referencesHallgren, B., & Larsson, S. (1960). The glyceryl ethers in the liver oils of elasmobranch fish. Journal of Lipid Research, 3(1), 31–38. https://doi.org/10.1016/s0022-2275(20)40444- 4
dc.relation.referencesHallgren, B., & Larsson, S. (1960). The glyceryl ethers in man and cow. Journal of Lipid Research, 1(1), 39–43. https://doi.org/10.1016/S0022-2275(20)40445-6
dc.relation.referencesHamadate, N., Matsumoto, Y., Seto, K., Yamamoto, T., Yamaguchi, H., Nakagawa, T., Yamamoto, E., Fukagawa, M., & Yazawa, K. (2015). Vascular effects and safety of supplementation with shark liver oil in middle-aged and elderly males. Experimental and Therapeutic Medicine, 10(2), 641–646. https://doi.org/10.3892/etm.2015.2568
dc.relation.referencesHan, A.-R., Song, J.-L., Jang, D. S., Min, H.-Y., Lee, S. K., & Seo, E.-K. (2005). Cytotoxic constituents of the octocoral Dendronephthya gigantea. Archives of Pharmacal Research, 28(3), 284–288. https://doi.org/10.1007/BF02977794
dc.relation.referencesHanus, L., Abu-Lafi, S., Fride, E., Breuer, A., Vogel, Z., Shalev, D. E., Kustanovich, I., & Mechoulam, R. (2000). 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proceedings of the National Academy of Sciences, 98(7), 3662-3665. https://doi.org/10.1073/pnas.061029898
dc.relation.referencesHarvey, D. J. (1991). Identification and quantification of lipids from rabbit Harderian glands by gas chromatography/mass spectrometry. Biomedical Chromatography, 5(4), 143– 147. https://doi.org/10.1002/bmc.1130050402
dc.relation.referencesHarvey, D. J. (1991). Lipids from the guinea pig Harderian gland: Use of picolinyl and other pyridine-containing derivatives to investigate the structures of novel branched-chain fatty acids and glycerol ethers. Biological Mass Spectrometry, 20(2), 61-69. https://doi.org/10.1002/bms.1200200204
dc.relation.referencesHassane, C. S., Herbette, G., Garayev, E., Mabrouki, F., Clerc, P., de Voogd, N. J., Greff, S., Trougakos, I. P., Ouazzani, J., Fouillaud, M., Dufossé, L., Baghdikian, B., Ollivier, E., & Gauvin-Bialecki, A. (2022). New metabolites from the marine sponge Scopalina hapalia collected in Mayotte Lagoon. Marine Drugs, 20(3), 186. https://doi.org/10.3390/md20030186
dc.relation.referencesHaynes, M. P., Buckley, H. R., Higgins, M. L., & Pieringer, R. A. (1994). Synergism between the antifungal agents amphotericin B and alkyl glycerol ethers. Antimicrobial Agents and Chemotherapy, 38(7), 1523–1529. https://doi.org/10.1128/aac.38.7.1523
dc.relation.referencesHernández-Colina, M., Cermeño, A. M., & Díaz García, A. (2016). Selective cytotoxic effect of 1-O-undecylglycerol inhuman melanoma cells. Journal of Pharmacy & Pharmacognosy Research, 4(2), 84–94. http://jppres.com/jppres
dc.relation.referencesHernández-Colina, M., & Del Toro García, G. (2016). Cytotoxicity of 1-O-undecylglycerol inhuman breast cells by real time cell analysis. Ars Pharmaceutica, 57(2), 1-4. https://doi.org/10.30827/ars.v57i2.4963
dc.relation.referencesHernandez-Sanchez, M. T., Homoky, W. B., & Pancost, R. D. (2014). Occurrence of 1-Omonoalkyl glycerol ether lipids in ocean waters and sediments. Organic Geochemistry, 66, 1–13. https://doi.org/10.1016/j.orggeochem.2013.10.003
dc.relation.referencesHichami, A., Duroudier, V., Leblais, V., Vernhet, L., Le Goffic, F., Ninio, E., & Legrand, A. (1997). Modulation of platelet-activating-factor production by incorporation of naturally occurring 1-O-alkylglycerols in phospholipids of human leukemic monocyte-like THP- 1 cells. European Journal of Biochemistry, 250(2), 242–248. https://doi.org/10.1111/j.1432-1033.1997.0242a.x
dc.relation.referencesHong, C. I., An, S.-H., Buchheit, D. J., Nechaev, A., West, C. R., & Berdel, W. E. (1986). Nucleoside conjugates. 7. Synthesis and antitumor activity of 1-β-Darabinofuranosylcytosine conjugates of ether lipids. Journal of Medicinal Chemistry, 29(10), 2038–2048. https://doi.org/10.1021/jm00160a041
dc.relation.referencesHülper, P., Veszelka, S., Walter, F. R., Wolburg, H., Fallier-Becker, P., Piontek, J., Blasig, I. E., Lakomek, M., Kugler, W., & Deli, M. A. (2013). Acute effects of short-chain alkylglycerols on blood-brain barrier properties of cultured brain endothelial cells. British Journal of Pharmacology, 169(7), 1561–1573. https://doi.org/10.1111/bph.12218
dc.relation.referencesLagher, F., De Brito Belo, S. R., Souza, W. M., Nunes, J. R., Naliwaiko, K., Sassaki, G. L., Bonatto, S. J. R., De Oliveira, H. H. P., Brito, G. A. P., De Lima, C., Kryczyk, M., De Souza, C. F., Steffani, J. A., Nunes, E. A., & Fernandes, L. C. (2013). Antitumor and anti-cachectic effects of shark liver oil and fish oil: Comparison between independent or associative chronic supplementation in Walker 256 tumor-bearing rats. Lipids in Health and Disease, 12(1), 146. https://doi.org/10.1186/1476-511X-12-146
dc.relation.referencesLannitti, T., & Palmieri, B. (2010). An update on the therapeutic role of alkylglycerols. Marine Drugs, 8(8), 2267–2300. https://doi.org/10.3390/md8082267
dc.relation.referencesInada, K., & Tsutsumi, M. (2006). Aqueous inks with high re-dispersing ability for ink-jet printing. Patente de Estados Unidos 7,011,707
dc.relation.referencesIshikawa, A., Kuwano, Y., & Fujii, M. (2007). Deodorant compositions containing glyceryl ethers and surfactants, deodorant sprays, and deodorization with the sprays. Patente de Estados Unidos 7,208,460
dc.relation.referencesIshiwatari, M., Mochizuki, M., Takahashi, H., & Ito, K. (2000). Oil-in-water emulsified composition and oil-in-water emulsifying agent. Patente de Estados Unidos 6,117,835
dc.relation.referencesJaffrès, P. A., Gajate, C., Bouchet, A. M., Couthon-Gourvès, H., Chantôme, A., Potier- Cartereau, M., Besson, P., Bougnoux, P., Mollinedo, F., & Vandier, C. (2016). Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacology & Therapeutics, 165, 114–131. https://doi.org/10.1016/j.pharmthera.2016.06.003
dc.relation.referencesJohnson, R. A., Burgos, C. E., & Nidy, E. G. (1989). An asymmetric synthesis of (R) and (S)-1-alkoxy-2,3-propanediols including precursors to platelet activating factor. Chemistry and Physics of Lipids, 50(1-2), 107–112. https://doi.org/10.1016/0009- 3084(89)90035-2
dc.relation.referencesKantah, M.-K., Hiroshi, W., Kumari, A., Carrera-Bastos, P., & Beniamino, P. (2012). Intestinal immune-potentiation by a purified alkylglycerols compound. Journal of the American College of Nutrition, 31(3), 221. https://pubmed.ncbi.nlm.nih.gov/22978056/
dc.relation.referencesKao Productos Químicos Europa. (s. f.). PENETOL GE-ES. Recuperado el 8 de agosto de 2025, de sitio web de Kao
dc.relation.referencesKarnovsky, M. L., Gidez, L. I., & Foster, J. F. (1946). South African fish products. Part XXIV.—The occurrence of α-glyceryl ethers in the un-saponifiable fractions of naturalfats. Journal of the Society of Chemical Industry, 65(12), 425–428. https://doi.org/10.1002/jctb.5000651219
dc.relation.referencesKhan, A., Braganza, C. D., Kodar, K., Timmer, M. S. M., & Stocker, B. L. (2020). Stereochemistry, lipid length and branching influences Mincle agonist activity of monoacylglycerides. Organic and Biomolecular Chemistry, 18(3), 425–430. https://doi.org/10.1039/c9ob02302j
dc.relation.referencesKhannoon, E. R., Flachsbarth, B., El-Gendy, A., Mazik, K., Hardege, J. D., & Schulz, S. (2011). New compounds, sexual differences, and age-related variations in the femoral gland secretions of the lacertid lizard Acanthodactylus boskianus. Biochemical Systematics and Ecology, 39(2), 95–101. https://doi.org/10.1016/j.bse.2011.01.008
dc.relation.referencesKossei, V. A., & Edlbacher, S. (1915). Beiträge zur chemischen Kenntnis der Echinodermen. Zeitschrift für Physiologische Chemie, 94(4), 264–275. https://www.degruyterbrill.com/document/doi/10.1515/bchm2.1915.94.4.264/html?srs ltid=AfmBOoq0PQBgtJ6Mk1SHO5AcKiYKY6I2dmgWbE4mKCqAAz1fE55gDgnp
dc.relation.referencesKotting, J., Ungerb, C., & Eibl, H. (1987). Substrate specificity of O-alkylglycerol monooxygenase (E.C. 1.14.16.5), solubilized from rat liver microsomes. European Journal of Biochemistry, 169(1), 183–188. https://doi.org/10.1111/j.1432- 1033.1987.tb13589.x
dc.relation.referencesKrotkiewski, M., Przybyszewska, M., & Janik, P. (2003). Cytostatic and cytotoxic effects of alkylglycerols (Ecomer). Medical Science Monitor, 9(11), PI131–PI135. https://pubmed.ncbi.nlm.nih.gov/14586289/
dc.relation.referencesLampe, M. F., Ballweber, L. M., Isaacs, C. E., Patton, D. L., & Stamm, W. E. (1998). Killing of Chlamydia trachomatis by novel antimicrobial lipids adapted from compounds inhuman breast milk. Antimicrobial Agents and Chemotherapy, 42(5), 1239–1243. https://doi.org/10.1128/aac.42.5.1239
dc.relation.referencesLatyshev, N. A., Ermakova, S. P., Ermolenko, E. V., Imbs, A. B., Kasyanov, S. P., & Sultanov, R. M. (2019). 1-O-Alkylglycerols from the hepatopancreas of the crab Paralithodes camtschaticus, liver of the squid Berryteuthis magister, and liver of the skate Bathyraja parmifera, and their anticancer activity on human melanoma cells. Journal of Food Biochemistry, 43(5), e12828. https://doi.org/10.1111/jfbc.12828
dc.relation.referencesLewkowicz, P., & Tchórzewski, H. (2012). Wybrane aspekty działania przeciwnowotworowego 1-O-alkilogliceroli-głównej komponenty oleju z wątroby rekina [Anti-tumor activity of 1-O-alkylglycerols - the main component of shark liver oil]. Polski Merkuriusz Lekarski, 33(198), 353–356. https://pubmed.ncbi.nlm.nih.gov/23437708/
dc.relation.referencesLu, H. S. M., & Shuey, S. W. (2011). Adhésif de type hydrogel pour tissu à usage médical. Patente de Estados Unidos 7,932,328
dc.relation.referencesMagnusson, C. D., Gudmundsdottir, A. V., Hansen, K. A., & Haraldsson, G. G. (2015). Synthesis of enantiopure reversed structured ether lipids of the 1-O-alkyl-sn-2,3- diacylglycerol type. Marine Drugs, 13(1), 173–201. https://doi.org/10.3390/md13010173
dc.relation.referencesMagnusson, C. D., Gudmundsdottir, A. V., & Haraldsson, G. G. (2011). Chemoenzymatic synthesis of a focused library of enantiopure structured 1-O-alkyl-2,3-diacyl-snglycerol type ether lipids. Tetrahedron, 67(10), 1821–1836. https://doi.org/10.1016/j.tet.2011.01.032
dc.relation.referencesMagnusson, C. D., & Haraldsson, G. G. (2010). Synthesis of enantiomerically pure (Z)- (2′R)-1-O-(2′-methoxyhexadec-4′-enyl)-sn-glycerol present in the liver oil of cartilaginous fish. Tetrahedron: Asymmetry, 21(23), 2841–2847. https://doi.org/10.1016/j.tetasy.2010.10.033
dc.relation.referencesMagnusson, C. D., & Haraldsson, G. G. (2011). Ether lipids. Chemistry and Physics of Lipids, 164(5), 315–340. https://doi.org/10.1016/j.chemphyslip.2011.04.010
dc.relation.referencesMagnusson, C. D., & Haraldsson, G. G. (2012). Activation of n-3 polyunsaturated fatty acids as oxime esters: A novel approach for their exclusive incorporation into the primary alcoholic positions of the glycerol moiety by lipase. Chemistry and Physics of Lipids, 165(7), 712–720. https://doi.org/10.1016/j.chemphyslip.2012.07.005
dc.relation.referencesMalheiro, A. R., Correia, B., Ferreira da Silva, T., Bessa-Neto, D., Van Veldhoven, P. P., & Brites, P. (2019). Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1-myristyl ether treatment. Brain Pathology, 29(5), 622–639. https://doi.org/10.1111/bpa.12710
dc.relation.referencesManzhulo, I. V., Tyrtyshnaia, A. A., Mischenko, P. V., Egoraeva, A. A., Belova, A. S., Kasyanov, S. P., Sultanov, R. M., & Pislyagin, E. A. (2019). Alkyl glycerols activate RAW264.7 macrophage cell line. Natural Product Communications, 14(6), 1–6. https://doi.org/10.1177/1934578X19858516
dc.relation.referencesMarkova, A. A., Plyavnik, N. V., Morozova, N. G., Maslov, M. A., & Shtil, A. A. (2014). Antitumor phosphate-containing lipids and non-phosphorus alkyl cationic glycerolipids: Chemical structures and perspectives of drug development. Russian Chemical Bulletin, 63(5), 1081–1087. https://doi.org/10.1007/s11172-014-0552-4
dc.relation.referencesMartín, D., Morán-Valero, M. I., Señoráns, F. J., Reglero, G., & Torres, C. F. (2011). In vitro intestinal bioaccessibility of alkylglycerols versus triacylglycerols as vehicles of butyric acid. Lipids, 46(3), 277–285. https://doi.org/10.1007/s11745-010-3520-2
dc.relation.referencesMartínez, Y., Laverde, G. V., Gamba, L. R., Wandurraga, H. M., Arévalo-Ferro, C., Rodríguez, F. R., Beltrán, C. D., & Hernández, L. C. (2015). Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea.Revista Brasileira de Farmacognosia, 25(6), 605–611. https://doi.org/10.1016/j.bjp.2015.08.007
dc.relation.referencesMitre, R., Etienne, M., Martinais, S., Salmon, H., Allaume, P., Legrand, P., & Legrand, A. B. (2005). Humoral defence improvement and haematopoiesis stimulation in sows and offspring by oral supply of shark-liver oil to mothers during gestation and lactation. British Journal of Nutrition, 94(5), 753–762. https://doi.org/10.1079/bjn20051569
dc.relation.referencesMolina, S., Moran-Valero, M. I., Martin, D., Vázquez, L., Vargas, T., Torres, C. F., Ramirez De Molina, A., & Reglero, G. (2013). Antiproliferative effect of alkylglycerols as vehicles of butyric acid on colon cancer cells. Chemistry and Physics of Lipids, 175- 176, 50–56. https://doi.org/10.1016/j.chemphyslip.2013.07.011
dc.relation.referencesMyers, B., & Crews, P. (1983). Chiral ether glycerides from a marine sponge. Journal of Organic Chemistry, 48(20), 3583–3585. https://doi.org/10.1021/jo00168a051
dc.relation.referencesNgwenya, B. Z., & Foster, D. M. (1991). Enhancement of antibody production by lysophosphatidylcholine and alkylglycerol. Proceedings of the Society for Experimental Biology and Medicine, 196(1), 69–75. https://pubmed.ncbi.nlm.nih.gov/1984244/
dc.relation.referencesNi, G., Li, Z., Liang, K., Wu, T., De Libero, G., & Xia, C. (2014). Synthesis and evaluation of immunostimulant plasmalogen lysophosphatidylethanolamine and analogues for natural killer T cells. Bioorganic & Medicinal Chemistry, 22(11), 2966–2973. https://doi.org/10.1016/j.bmc.2014.04.012
dc.relation.referencesPalmieri, B., Pennelli, A., & Di Cerbo, A. (2014). Jurassic surgery and immunity enhancement by alkyglycerols of shark liver oil. Lipids in Health and Disease, 13(1), 178. https://doi.org/10.1186/1476-511X-13-178
dc.relation.referencesParant, B., Roussel, E., & Raoul, Y. (2011). Use of glycerol ethers as activators of the biological effects of a herbicide, fungicide or insecticide substance. Patente de Estados Unidos 7,910,517
dc.relation.referencesParkkari, T., Salo, O. M. H., Huttunen, K. M., Savinainen, J. R., Laitinen, J. T., Poso, A., Nevalainen, T., & Järvinen, T. (2006). Synthesis and CB1 receptor activities of dimethylheptyl derivatives of 2-arachidonoyl glycerol (2-AG) and 2-arachidonyl glyceryl ether (2-AGE). Bioorganic & Medicinal Chemistry, 14(8), 2850–2858. https://doi.org/10.1016/j.bmc.2005.12.007
dc.relation.referencesParri, A., Fitó, M., Torres, C. F., Muñoz-Aguayo, D., Schröder, H., Cano, J. F., Vázquez, L., Reglero, G., & Covas, M. I. (2016). Alkylglycerols reduce serum complement and plasma vascular endothelial growth factor in obese individuals. Inflammopharmacology, 24(2-3), 127–131. https://doi.org/10.1007/s10787-016-0265- 4
dc.relation.referencesPeixoto, J. V. C., de Paula, L. M. R., Iagher, F., Silva, I. K., Dias, F. A. L., & Fogaça, R. T. H. (2020). Shark liver oil consumption decreases contractility in EDL muscle of trained rats. Fisioterapia em Movimento, 33, e03310. https://doi.org/10.1590/1980- 5918.033.ao11
dc.relation.referencesPemha, R., Pegnyemb, D. E., & Mosset, P. (2012). Synthesis of (Z)-(2′R)-1-O-(2′- methoxynonadec-10′-enyl)- sn-glycerol, a new analog of bioactive ether lipids. Tetrahedron, 68(14), 2973–2983. https://doi.org/10.1016/j.tet.2012.02.033
dc.relation.referencesPeng, X., Dong, D., Li, S., Wang, H., Xu, S., & Wu, X. (2003). Studies on active constituents of marine sponge Cinachyrella australiensis from South China Sea. Zhongguo Haiyang Yaowu, 22(3), 5–9. https://eurekamag.com/research/023/693/023693343.php
dc.relation.referencesPhleger, C. F., Nelson, M. M., Mooney, B. D., & Nichols, P. D. (2001). Variations in the lipids of the Antarctic pteropods Clione limacina and Clio pyramidata from 2000 to 2001. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 128(3), 511–521. https://doi.org/10.1016/S1096-4959(00)00356-0
dc.relation.referencesPhleger, C. F., Nelson, M. M., Mooney, B., & Nichols, P. D. (1999). Lipids of the pteropod Spongiobranchaea australis and their hyperiid amphipod host. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 124(1), 101–110. https://doi.org/10.1016/S0305-0491(99)00120-0
dc.relation.referencesPinault, M., Guimaraes, C., Couthon, H., Thibonnet, J., Fontaine, D., Chantôme, A., Chevalier, S., Besson, P., Jaffrès, P. A., & Vandier, C. (2018). Synthesis of alkylglycerolipids standards for gas chromatography analysis: Application for chimera and shark liver oils. Marine Drugs, 16(4), 101. https://doi.org/10.3390/md16040101
dc.relation.referencesPoleschuk, T. S., Sultanov, R. M., Ermolenko, E. V., Shulgina, L. V., & Kasyanov, S. P. (2020). Protective action of alkylglycerols under stress. Stress, 23(2), 213–220. https://doi.org/10.1080/10253890.2019.1660316
dc.relation.referencesPrinz, H., Rues, K.-P., & Liefänder, M. (1985). Syntheses of Long-Chain Di- and Trialkyl Glyceryl Ethers. Liebigs Annalen der Chemie, 1985(2), 217–225. https://doi.org/10.1002/jlac.198519850202
dc.relation.referencesQian, L., Zhang, M., Wu, S., Zhong, Y., Van Tol, E., & Cai, W. (2014). Alkylglycerols modulate the proliferation and differentiation of non-specific agonist and specific antigen-stimulated splenic lymphocytes. PLoS ONE, 9(4), e96207. https://doi.org/10.1371/journal.pone.0096207
dc.relation.referencesQuijano, L., Cruz, F., Navarrete, I., Gómez, P., & Rios, T. (1994). Alkyl glycerol monoethers in the marine sponge Desmapsamma anchorata. Lipids, 29(10), 731–734. https://doi.org/10.1007/BF02538919
dc.relation.referencesRadhika, P., Rao, V., & Laatsch, H. (2004). Chemical constituents of a marine soft coral of the genus Lobophytum. Chemical and Pharmaceutical Bulletin, 52(11), 1345–1348. https://doi.org/10.1248/cpb.52.1345
dc.relation.referencesRao, B. V. S. K., Gangadhar, A., Subbarao, R., & Lakshminarayana, G. (1991). A facile synthesis of rac-1-O-alkylglycerols. Organic Preparations and Procedures International, 23(1), 119–122. https://doi.org/10.1080/00304949109458293
dc.relation.referencesReichwald, F., & Willems, M. (2010). Glycerinether enthaltende Stabilisatorzusammensetzungen für halogenhaltige Polymere. Patente de Estados Unidos 7,723,407
dc.relation.referencesRizzo, W. B., Craft, D. A., Somer, T., Carney, G., Trafrova, J., & Simon, M. (2008). Abnormal fatty alcohol metabolism in cultured keratinocytes from patients with Sjögren-Larsson syndrome. Journal of Lipid Research, 49(2), 410–419. https://doi.org/10.1194/jlr.M700469-JLR200
dc.relation.referencesRybin, V. G., Imbs, A. B., Demidkova, D. A., & Ermolenko, E. V. (2017). Identification of molecular species of monoalkyldiacylglycerol from the squid Berryteuthis magister using liquid chromatography–APCI high-resolution mass spectrometry. Chemistry and Physics of Lipids, 202, 55–61. https://doi.org/10.1016/j.chemphyslip.2016.11.008
dc.relation.referencesRybin, V., Pavel, K., & Mitrofanov, D. (2007). 1-O-Alkylglycerol ether lipids in two holothurian species: Cucumaria japonica and C. okhotensis. Natural Product Communications, 2(9), 933–936. https://doi.org/10.1177/1934578X0700200913
dc.relation.referencesSaito, R., Oba, M., Kaiho, K., Maruo, C., Fujibayashi, M., Chen, J., Chen, Z. Q., & Tong, J. (2013). Ether lipids from the lower and middle Triassic at Qingyan, Guizhou Province, Southern China. Organic Geochemistry, 58, 27–42. https://doi.org/10.1016/j.orggeochem.2013.02.002
dc.relation.referencesShi, L., Jia, C., Feng, J., Zhang, W., & He, J. (2023). Synthesis, characterization, antibacterial and antifungal activities of 1-O-alkylglycerols. Heliyon, 9(11), e21790. https://doi.org/10.1016/j.heliyon.2023.e21790
dc.relation.referencesShiroyabu, M., Hashimoto, Y., & Tonegawa, A. (2011). Polyurethanes, emulsifying agents containing them, and oil-in-water emulsion compositions stabilized with them. Patente de Estados Unidos 7,935,765
dc.relation.referencesSotomayor, H., Kasem, M. I., Brito, V., García, J. C., León, J. L., González, F. M., & Valdés, Y. C. (2006). Citotoxicidad de 1-O-decilglicerol y 1-O-dodecilglicerol sintéticos sobre carcinoma humano de mama MCF-7. Acta Farmaceutica Bonaerense, 25(3), 339– 343. http://www.latamjpharm.org/trabajos/25/3/LAJOP_25_3_1_3_SE5X0914KD.pdf
dc.relation.referencesSperling, P., & Heinz, E. (1993). Isomeric sn-1-octadecenyl and sn-2-octadecenyl analogues of lysophosphatidylcholine as substrates for acylation and desaturation by plant microsomal membranes. European Journal of Biochemistry, 213(3), 965–971. https://doi.org/10.1111/j.1432-1033.1993.tb17841.x
dc.relation.referencesStegerhoek, L. J., & Verkade, P. E. (1956). Esters derived from batyl alcohol. Recueil des Travaux Chimiques des Pays-Bas, 75(2), 143–163. https://doi.org/10.1002/recl.19560750203
dc.relation.referencesSutter, M., Da Silva, E., Duguet, N., Raoul, Y., Métay, E., & Lemaire, M. (2015). Glycerol ether synthesis: A bench test for green chemistry concepts and technologies. Chemical Reviews, 115(16), 8609–8651. https://doi.org/10.1021/cr5004002
dc.relation.referencesTaguchi, H., Paal, B., & Armarego, W. L. F. (1995). Glyceryl-ether monooxygenase [EC 1.14.16.5] Part VII: Purification and properties of the enzyme from rat liver microsomes. Pteridines, 6(2), 45–57. DOI:10.1515/pteridines.1995.6.2.45
dc.relation.referencesTakeara, R., Jimenez, P. C., Wilke, D. V., de Moraes, M. O., Pessoa, C., Lopes, N. P., Lopes, J. L. C., da Cruz Lotufo, T. M., & Costa-Lotufo, L. V. (2008). Antileukemic effects of Didemnum psammatodes (Tunicata: Ascidiacea) constituents. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(3), 363– 369. https://doi.org/10.1016/j.cbpa.2007.02.011
dc.relation.referencesTakeara, R., Callegari Lopes, J. L., Peporine Lopes, N., Jimenez, P. C., Costa-Lotufo, L. V., & da Cruz Lotufo, T. (2007). Constituintes químicos da ascídia Didemnum psammatodes (Sluiter, 1895) coletada na costa cearense. Química Nova, 30(5), 1179–1181. https://doi.org/10.1590/S0100-40422007000500024
dc.relation.referencesTorres-Domínguez, A., Del Toro-García, G., Valdés-Rodríguez, Y. C., León, J. L., & Merchán, F. (2005). Efecto in vitro de los 1-O-alquilgliceroles sintéticos en la falciformación y en la hemólisis de los eritrocitos SS. Bioquimia, 30(4), 101–109. https://www.medigraphic.com/pdfs/bioquimia/bq-2005/bq054b.pdf
dc.relation.referencesTyrtyshnaia, A. A., Manzhulo, I. V., Sultanov, R. M., & Ermolenko, E. V. (2017). Adult hippocampal neurogenesis in neuropathic pain and alkyl glycerol ethers treatment. Acta Histochemica, 119(8), 812–821. https://doi.org/10.1016/j.acthis.2017.10.007
dc.relation.referencesTyrtyshnaia, A., Manzhulo, I., Kipryushina, Y., & Ermolenko, E. (2019). Neuroinflammation and adult hippocampal neurogenesis in neuropathic pain and alkyl glycerol ethers treatment in aged mice. International Journal of Molecular Medicine, 43(5), 2153– 2163. https://doi.org/10.3892/ijmm.2019.4142
dc.relation.referencesUkawa, K., Imamiya, E., Yamamoto, H., Aono, T., Kozai, Y., Okutani, T., Nomura, H., Honma, Y., Hozumi, M., & Kudo, I. (1989). Synthesis and antitumor activity of new amphiphilic alkylglycerolipids substituted with a polar head group, 2-(2- trimethylammonioethoxy)ethyl or a congeneric oligo(ethyleneoxy)ethyl group.Chemical and Pharmaceutical Bulletin, 37(12), 3277–3285. https://doi.org/10.1248/cpb.37.3277
dc.relation.referencesUlagay, S. (1957). Syntheses in the α-alkylglycerol series. Istanbul Universitesi Fen Fakültesi Mecmuası, 22(1-4), 28–81.
dc.relation.referencesVed, H. S., Gustow, E., & Pieringer, R. A. (1990). Synergism between penicillin G and the antimicrobial ether lipid, rac-1-dodecylglycerol, acting below its critical micelle concentration. Lipids, 25(2), 119–121. https://pubmed.ncbi.nlm.nih.gov/2329923/
dc.relation.referencesVed, H. S., Gustow, E., Mahadevan, V., & Pieringer, R. A. (1984). A new type of antibacterial agent which stimulates autolysin activity in Streptococcus faecium ATCC 9790. The Journal of Biological Chemistry, 259(13), 8115–8121. https://doi.org/10.1016/S0021-9258(17)39701-6
dc.relation.referencesWanders, R. J. A. (2004). Peroxisomes, lipid metabolism, and peroxisomal disorders. Molecular Genetics and Metabolism, 83(1-2), 16–27. https://doi.org/10.1016/j.ymgme.2004.08.016
dc.relation.referencesWang, Y., & Xu, Y. (2016). Distribution and source of 1-O-monoalkyl glycerol ethers in the Yellow River and Bohai Sea. Organic Geochemistry, 91, 81–88. https://doi.org/10.1016/j.orggeochem.2015.10.012
dc.relation.referencesWatschinger, K., & Werner, E. R. (2013). Orphan enzymes in ether lipid metabolism. Biochimie, 95(1), 59–65. https://doi.org/10.1016/j.biochi.2012.06.027
dc.relation.referencesWeldon, P. J., Lloyd, H. A., & Blum, M. S. (1990). Glycerol monoethers in the scent gland secretions of the western diamondback rattlesnake (Crotalus atrox; Serpentes, Crotalinae). Experientia, 46(4), 774–775. https://link.springer.com/article/10.1007/BF01939965
dc.relation.referencesYoon, B. K., Jackman, J. A., Park, S., Mokrzecka, N., & Cho, N. J. (2019). Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers. Langmuir, 35(9), 3568–3575. https://doi.org/10.1021/acs.langmuir.9b00244
dc.relation.referencesZhang, H., Shibuya, K., Hemmi, H., Nishino, T., & Prestwich, G. D. (2006). Total, synthesis of geranylgeranylglyceryl phosphate enantiomers: Substrates for characterization of 2,3-O-digeranylgeranylglyceryl phosphate synthase. Organic Letters, 8(5), 943–946. https://doi.org/10.1021/ol0530878
dc.relation.referencesZhang, M., Sun, S., Tang, N., Cai, W., & Qian, L. (2013). Oral administration of alkylglycerols differentially modulates high-fat diet-induced obesity and insulin resistance in mice. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/834027
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.bnePharmaceutical chemistry -- Methodologyeng
dc.subject.bneQuímica farmacéutica -- Metodologíaspa
dc.subject.bneCompuestos orgánicos -- Síntesisspa
dc.subject.bneOrganic compounds -- Synthesiseng
dc.subject.bneReacciones químicasspa
dc.subject.bneChemical reactionseng
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc615.19
dc.subject.decsProductos con acción antimicrobianaspa
dc.subject.decsProducts with antimicrobial actioneng
dc.subject.decsProductos biológicos -- Síntesis químicaspa
dc.subject.decsBiological products -- Chemical synthesiseng
dc.subject.decsMicrobiología industrial -- Métodosspa
dc.subject.decsIndustrial microbiology -- Methodseng
dc.subject.decsProductos biofarmacéuticos -- Químicaspa
dc.subject.proposalAlquilgliceroles naturalesspa
dc.subject.proposalSíntesisspa
dc.subject.proposalActividad antimicrobianaspa
dc.subject.proposalRMNspa
dc.subject.proposalNatural alkylglycerolseng
dc.subject.proposalSynthesiseng
dc.subject.proposalAntimicrobial activityeng
dc.subject.proposalNMReng
dc.subject.unamSíntesis orgánica -- Métodosspa
dc.subject.wikidataOrganic synthesiseng
dc.titleContribución al estudio de la actividad antimicrobiana de alquilgliceroles naturales y sintetizadosspa
dc.title.translatedContribution to the study of the antimicrobial activity of natural and synthesized alkylglycerolseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026582347.2025.pdf
Tamaño:
10.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: