Estudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colina

dc.contributor.advisorMaldonado Villamil, Mauricio
dc.contributor.authorVela Suazo, Miguel Angel
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)spa
dc.date.accessioned2021-12-07T22:04:59Z
dc.date.available2021-12-07T22:04:59Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEste trabajo de investigación tiene como objetivo la síntesis, derivación y caracterización de resorcinarenos corona solubles en agua para evaluar la interacción molecular con colina. En este sentido se llevó a cabo la síntesis para la obtención del C-tetra(nonil)calix[4]resorcinareno y C-tetra(fenil)calix[4]resorcinareno de la cual se obtuvo y caracterizó (IR, RMN-1H y RMN-13C) sus respectivos isómeros corona, y adicionalmente el isómero silla del C-tetra(fenil)calix[4]resorcinareno separado exitosamente mediante extracción con disolventes. En el caso puntual del C-tetra(fenil)calix[4]resorcinareno corona presentó dinamismo molecular demostrando que en solución tiene un cambio continuo conformacional de bote-corona-bote. Los dos macrociclos corona obtenidos fueron derivatizados mediante la reacción de sulfometilación en donde el C-tetra(fenil)calix[4]resorcinareno demostró tener baja quimioselectividad lo que conllevó a obtener una mezcla de varios compuestos (evidenciado por HPLC y RMN-1H) que varían según la cantidad de sitios funcionalizados dificultando su separación. Finalmente se evaluó la interacción molecular con colina con el único compuesto sulfometilado obtenido mediante titulaciones conductimétricas y por RMN-1H, por las cuales se logró determinar qué forma el complejo con estequiometria 1:1 con el huésped, además de evidenciar una buena interacción en la cavidad del macrociclo, demostrando un gran potencial para sistemas huésped-hospedero con colina. (texto tomado de la fuente)spa
dc.description.abstractThis research work aims at the synthesis, derivation and characterization of water-soluble crown resorcinarenes to evaluate the molecular interaction with choline. In this sense, the synthesis was carried out to obtain C-tetra(nonyl)calix[4]resorcinarene and C-tetra (phenyl)calix[4]resorcinarene from which it was obtained and characterized (IR, 1H-NMR and 13C-NMR) their respective crown isomers, and additionally the chair isomer of C-tetra(phenyl)calix[4]resorcinarene successfully removed by solvent extraction. In the specific case of crown C-tetra(phenyl)calix[4]resorcinarene presented molecular dynamism, demonstrating that in solution it has a continuous boat-crown-boat conformational change. The two crown macrocycles obtained were derived by the sulfomethylation reaction where C-tetra(phenyl)calix[4]resorcinarene demonstrated low chemoselectivity, which led to obtaining a mixture of several compounds (evidenced by HPLC and 1H-NMR) that It varies according to the number of functionalize sites, making it difficult to separate them. Finally, the molecular interaction with choline and the only sulfomethylated compound obtained through conductometric titrations and 1H-NMR was evaluated, by which it was possible to determine what the complex forms with 1: 1 stoichiometry with the host, in addition to showing a good interaction in the macrocycle cavity, demonstrating great potential for choline host-guest systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaSíntesis orgánicaspa
dc.format.extentxiv, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80763
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesZeisel, S. H.; da Costa, K.-A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67 (11), 615–623. https://doi.org/10.1111/j.1753-4887.2009.00246.x.spa
dc.relation.referencesWang, X.-F.; Zhou, Y.; Xu, J.-J.; Chen, H.-Y. Signal-On Electrochemiluminescence Biosensors Based on CdS-Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine. Adv. Funct. Mater. 2009, 19 (9), 1444–1450. https://doi.org/10.1002/adfm.200801313.spa
dc.relation.referencesMironova, D. A.; Muslinkina, L. A.; Morozova, J. E.; Shalaeva, Y. V.; Kazakova, E. K.; Kadyrov, M. T.; Nizameev, I. R.; Konovalov, A. I. Complexes of Tetramethylensulfonatocalix[4]Resorcinarene Aggregates with Methyl Orange: Interactions with Guests and Driving Force of Color Response. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 468, 339–345. https://doi.org/10.1016/j.colsurfa.2014.12.028.spa
dc.relation.referencesPereira, N. M.; Brincoveanu, O.; Pantazi, A. G.; Pereira, C. M.; Araújo, J. P.; Fernando Silva, A.; Enachescu, M.; Anicai, L. Electrodeposition of Co and Co Composites with Carbon Nanotubes Using Choline Chloride-Based Ionic Liquids. Surf. Coatings Technol. 2017, 324, 451–462. https://doi.org/10.1016/j.surfcoat.2017.06.002.spa
dc.relation.referencesGramage-Doria, R.; Armspach, D.; Matt, D. Metallated Cavitands (Calixarenes, Resorcinarenes, Cyclodextrins) with Internal Coordination Sites. Coord. Chem. Rev. 2013, 257 (3–4), 776–816. https://doi.org/10.1016/j.ccr.2012.10.006.spa
dc.relation.referencesKumar, S.; Chawla, S.; Zou, M. C. Calixarenes Based Materials for Gas Sensing Applications: A Review. J. Incl. Phenom. Macrocycl. Chem. 2017, 88 (3–4), 129–158. https://doi.org/10.1007/s10847-017-0728-2.spa
dc.relation.referencesMa, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem. Rev. 2015, 115 (15), 7794–7839. https://doi.org/10.1021/cr500392w.spa
dc.relation.referencesCatti, L.; Pöthig, A.; Tiefenbacher, K. Host-Catalyzed Cyclodehydration-Rearrangement Cascade Reaction of Unsaturated Tertiary Alcohols. Adv. Synth. Catal. 2017, 359 (8), 1331–1338. https://doi.org/10.1002/adsc.201601363.spa
dc.relation.referencesZhang, Q.; Catti, L.; Kaila, V. R. I.; Tiefenbacher, K. To Catalyze or Not to Catalyze: Elucidation of the Subtle Differences between the Hexameric Capsules of Pyrogallolarene and Resorcinarene. Chem. Sci. 2017, 8 (2), 1653–1657. https://doi.org/10.1039/C6SC04565K.spa
dc.relation.referencesBallester, P.; Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. In The Importance of Pi-Interactions in Crystal Engineering; John Wiley & Sons, Ltd: Chichester, UK, 2012; pp 79–107. https://doi.org/10.1002/9781119945888.ch3.spa
dc.relation.referencesBaeyer, A. Ueber Die Verbindungen Der Aldehyde Mit Den Phenolen. Berichte der Dtsch. Chem. Gesellschaft 1872, 5 (1), 280–282. https://doi.org/10.1002/cber.18720050186.spa
dc.relation.referencesMichael, A. On the Action of Aldehydes on Phenols I. Am. Chem. J 1883, 5, 338--349.spa
dc.relation.referencesNiederl, J. B.; Vogel, H. J. Aldehyde—Resorcinol Condensations 1. J. Am. Chem. Soc. 1940, 62 (9), 2512–2514. https://doi.org/10.1021/ja01866a067.spa
dc.relation.referencesErdtman, H.; Högberg, S.; Abrahamsson, S.; Nilsson, B. Cyclooligomeric Phenol-Aldehyde Condensation Products I. Tetrahedron Lett. 1968, 9 (14), 1679–1682. https://doi.org/10.1016/S0040-4039(01)99028-8.spa
dc.relation.referencesJain, V. K.; Kanaiya, P. H. Chemistry of Calix[4]Resorcinarenes. Russ. Chem. Rev. 2011, 80 (1), 75–102. https://doi.org/10.1070/RC2011v080n01ABEH004127.spa
dc.relation.referencesMullins, S. Calixarenes By C. David Gutsche, Royal Society of Chemistry, Cambridge, 1989, Pp. 210, Price £39.50. ISBN 0-85186-916-5. J. Chem. Technol. Biotechnol. 2007, 50 (2), 293–294. https://doi.org/10.1002/jctb.280500214.spa
dc.relation.referencesCalixarenes 2001; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Saadioui, M., Eds.; Kluwer Academic Publishers: Dordrecht, 2002. https://doi.org/10.1007/0-306-47522-7.spa
dc.relation.referencesEgberink, R. J. M.; Cobben, P. L. H. M.; Vverboom, W.; Harkema, S.; Reinhoudt, D. N. Hogberg Compounds with a Functionalized Box-like Cavity. J. Incl. Phenom. Mol. Recognit. Chem. 1992, 12 (1–4), 151–158. https://doi.org/10.1007/BF01053858.spa
dc.relation.referencesCram, D. J.; Karbach, S.; Kim, H. E.; Knobler, C. B.; Maverick, E. F.; Ericson, J. L.; Helgeson, R. C. Host-Guest Complexation. 46. Cavitands as Open Molecular Vessels Form Solvates. J. Am. Chem. Soc. 1988, 110 (7), 2229–2237. https://doi.org/10.1021/ja00215a037.spa
dc.relation.referencesSchneider, U.; Schneider, H.-J. Synthese Und Eigenschaften von Makrocyclen Aus Resorcinen Sowie von Entsprechenden Derivaten Und Wirt-Gast-Komplexen. Chem. Ber. 1994, 127 (12), 2455–2469. https://doi.org/10.1002/cber.19941271216.spa
dc.relation.referencesPurse, B. W.; Shivanyuk, A.; Rebek, J. Resorcin[6]Arene as a Building Block for Tubular Crystalline State Architectures. Chem. Commun. 2002, No. 22, 2612. https://doi.org/10.1039/b208189j.spa
dc.relation.referencesWeinelt, F.; Schneider, H. J. Host-Guest Chemistry. 27. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 1991, 56 (19), 5527–5535. https://doi.org/10.1021/jo00019a011.spa
dc.relation.referencesMann, G.; Weinelt, F.; Hauptmann, S. Influence of Aromatic Substituents on the Configuration and Conformation of Calix[4]Areneoctols. J. Phys. Org. Chem. 1989, 2 (7), 531–539. https://doi.org/10.1002/poc.610020705.spa
dc.relation.referencesMann, G.; Tittelbach-Helmrich, V.; Lippmann, T.; Müller, K. Separation of Stereoisomers of Tetramethylcalix[4]Arenoctol and Derivatives by High-Performance Liquid Chromatography. Chromatographia 1992, 34 (9–10), 453–456. https://doi.org/10.1007/BF02290235.spa
dc.relation.referencesTunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 1989, 54 (6), 1305–1312. https://doi.org/10.1021/jo00267a015.spa
dc.relation.referencesHoegberg, A. G. S. Two Stereoisomeric Macrocyclic Resorcinol-Acetaldehyde Condensation Products. J. Org. Chem. 1980, 45 (22), 4498–4500. https://doi.org/10.1021/jo01310a046.spa
dc.relation.referencesMa, B.-Q.; Coppens, P. A Novel Scoop-Shaped Conformation of C-Methylcalix[4]Resorcinarene in a Bilayer StructureElectronic Supplementary Information (ESI) Available: Figure Showing Interlocked CMCR Molecules between Adjacent Sheets. See Http://Www.Rsc.Org/Suppdata/Cc/B1/B110193. Chem. Commun. 2002, No. 5, 424–425. https://doi.org/10.1039/b110193p.spa
dc.relation.referencesAbis, L.; Dalcanale, E.; Du vosel, A.; Spera, S. Nuclear Magnetic Resonance Elucidation of Ring-Inversion Processes in Macrocyclic Octaols. J. Chem. Soc. Perkin Trans. 2 1990, No. 12, 2075. https://doi.org/10.1039/p29900002075.spa
dc.relation.referencesCastillo-Aguirre, A.; Rivera-Monroy, Z.; Maldonado, M. Selective O-Alkylation of the Crown Conformer of Tetra(4-Hydroxyphenyl)Calix[4]Resorcinarene to the Corresponding Tetraalkyl Ether. Molecules 2017, 22 (10), 1660. https://doi.org/10.3390/molecules22101660.spa
dc.relation.referencesHoegberg, A. G. S. Cyclooligomeric Phenol-Aldehyde Condensation Products. 2. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-Tetraphenyl[14]Metacyclophan-3,5,10,12,17,19,24,26-Octols. J. Am. Chem. Soc. 1980, 102 (19), 6046–6050. https://doi.org/10.1021/ja00539a012.spa
dc.relation.referencesLi, D.; Kusunoki, T.; Yamagishi, T.-A.; Nakamoto, Y. Synthesis of C-Unalkylated Calix[4]Resorcinarene from 1,3-Dimethoxybenzene-Formaldehyde Condensation. Polym. Bull. 2002, 47 (6), 493–499. https://doi.org/10.1007/s002890200013.spa
dc.relation.referencesFalana, O. M.; Al-Farhan, E.; Keehn, P. M.; Stevenson, R. High Yield Synthesis of the Parent C-Unsubstituted Calix[4]Resorcinarene Octamethyl Ether. Tetrahedron Lett. 1994, 35 (1), 65–68. https://doi.org/10.1016/0040-4039(94)88163-4.spa
dc.relation.referencesKlaes, M.; Agena, C.; Köhler, M.; Inoue, M.; Wada, T.; Inoue, Y.; Mattay, J. First Synthesis, Isolation and Characterization of Enantiomerically Pure and Inherently Chiral Resorc[4]Arenes by Lewis Acid Cyclization of a Resorcinol Monoalkyl Ether. European J. Org. Chem. 2003, 2003 (8), 1404–1409. https://doi.org/10.1002/ejoc.200390197.spa
dc.relation.referencesBotta, B.; Monache, G. D.; Salvatore, P.; Gasparrini, F.; Villani, C.; Botta, M.; Corelli, F.; Tafi, A.; Gacs-baitz, E.; Santini, A.; Carvalho, C. F.; Misiti, D. Synthesis of C-Alkylcalix[4]Arenes. 4. Design, Synthesis, and Computational Studies of Novel Chiral Amido[4]Resorcinarenes. J. Org. Chem. 1997, 62 (14), 932–938. https://doi.org/10.1021/jo962018r.spa
dc.relation.referencesBotta, B.; Iacomacci, P.; Di Giovanni, C.; Delle Monache, G.; Gacs-Baitz, E.; Botta, M.; Tafi, A.; Corelli, F.; Misiti, D. The Tetramerization of 2,4-Dimethoxycinnamates. A Novel Route to Calixarenes. J. Org. Chem. 1992, 57 (12), 3259–3261. https://doi.org/10.1021/jo00038a001.spa
dc.relation.referencesBotta, B.; Di Giovanni, M. C.; Monache, G. D.; De Rosa, M. C.; Gacs-Baitz, E.; Botta, M.; Corelli, F.; Tafi, A.; Santini, A. A Novel Route to Calix[4]Arenes. 2. Solution- and Solid-State Structural Analyses and Molecular Modeling Studies. J. Org. Chem. 1994, 59 (6), 1532–1541. https://doi.org/10.1021/jo00085a047.spa
dc.relation.referencesIwanek, W.; Urbaniak, M.; Bocheńska, M. The Template Synthesis and Complexation Properties of Methoxypyrogallo[4]Arene. Tetrahedron 2002, 58 (11), 2239–2243. https://doi.org/10.1016/S0040-4020(02)00097-2.spa
dc.relation.referencesBourgeois, J.-M.; Stoeckli-Evans, H. Synthesis of New Resorcinarenes Under Alkaline Conditions. Helv. Chim. Acta 2005, 88 (10), 2722–2730. https://doi.org/10.1002/hlca.200590211.spa
dc.relation.referencesKonishi, H.; Iwasaki, Y. Base-Catalyzed Synthesis of a Calix[4]Resorcinarene: Cyclocondensation of 2-Butyrylresorcinol with Formaldehyde. Synlett 1995, 1995 (06), 612–612. https://doi.org/10.1055/s-1995-5037.spa
dc.relation.referencesSanabria, E.; Esteso, M.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M.; Sanabria, E.; Esteso, M. Á.; Pérez-Redondo, A.; Vargas, E.; Maldonado, M. Synthesis and Characterization of Two Sulfonated Resorcinarenes: A New Example of a Linear Array of Sodium Centers and Macrocycles. Molecules 2015, 20 (6), 9915–9928. https://doi.org/10.3390/molecules20069915.spa
dc.relation.referencesVelásquez-Silva, A.; Cortés, B.; Rivera-Monroy, Z. J.; Pérez-Redondo, A.; Maldonado, M. Crystal Structure and Dynamic NMR Studies of Octaacetyl-Tetra(Propyl)Calix[4]Resorcinarene. J. Mol. Struct. 2017, 1137, 380–386. https://doi.org/10.1016/j.molstruc.2017.02.059.spa
dc.relation.referencesKazakova, E. K.; Ziganshina, A. U.; Muslinkina, L. A.; Morozova, J. E.; Makarova, N. A.; Mustafina, A. R.; Habicher, W. D. The Complexation Properties of the Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarene toward α-Aminoacids. J. Incl. Phenom. Macrocycl. Chem. 2002, 43 (1/2), 65–69. https://doi.org/10.1023/A:1020404220640.spa
dc.relation.referencesCasas-Hinestroza, J.; Maldonado, M. Conformational Aspects of the O-Acetylation of C-Tetra(Phenyl)Calixpyrogallol[4]Arene. Molecules 2018, 23 (5), 1225. https://doi.org/10.3390/molecules23051225.spa
dc.relation.referencesYan, C.; Chen, W.; Chen, J.; Jiang, T.; Yao, Y. Microwave Irradiation Assisted Synthesis, Alkylation Reaction, and Configuration Analysis of Aryl Pyrogallol[4]Arenes. Tetrahedron 2007, 63 (39), 9614–9620. https://doi.org/10.1016/j.tet.2007.07.043.spa
dc.relation.referencesTimmerman, P.; Verboom, W.; Reinhoudt, D. N. Resorcinarenes. Tetrahedron 1996, 52 (8), 2663–2704. https://doi.org/10.1016/0040-4020(95)00984-1.spa
dc.relation.referencesFransen, J. R.; Dutton, P. J. Cation Binding and Conformation of Octafunctionalized Calix[4]Resorcinarenes. Can. J. Chem. 1995, 73 (12), 2217–2223. https://doi.org/10.1139/v95-275.spa
dc.relation.referencesMaldonado, M.; Sanabria, E.; Batanero, B.; Esteso, M. Á. Apparent Molal Volume and Viscosity Values for a New Synthesized Diazoted Resorcin[4]Arene in DMSO at Several Temperatures. J. Mol. Liq. 2017, 231, 142–148. https://doi.org/10.1016/j.molliq.2017.01.093.spa
dc.relation.referencesLi, N.; Harrison, R. G.; Lamb, J. D. Application of Resorcinarene Derivatives in Chemical Separations. J. Incl. Phenom. Macrocycl. Chem. 2014, 78 (1–4), 39–60. https://doi.org/10.1007/s10847-013-0336-8.spa
dc.relation.referencesPietraszkiewicz, O.; Pietraszkiewicz, M. Separation of Pyrimidine Bases on a HPLC Stationary RP-18 Phase Coated with Calix[4]Resorcinarene. J. Incl. Phenom. Macrocycl. Chem. 1999, 35 (1/2), 261–270. https://doi.org/10.1023/A:1008151100076.spa
dc.relation.referencesVelásquez-Silva, B. A.; Castillo-Aguirre, A.; Rivera-Monroy, Z. J.; Maldonado, M. Aminomethylated Calix[4]Resorcinarenes as Modifying Agents for Glycidyl Methacrylate (GMA) Rigid Copolymers Surface. Polymers (Basel). 2019, 11 (7), 1147. https://doi.org/10.3390/polym11071147.spa
dc.relation.referencesZhang, H.; Dai, R.; Ling, Y.; Wen, Y.; Zhang, S.; Fu, R.; Gu, J. Resorcarene Derivative Used as a New Stationary Phase for Capillary Gas Chromatography. J. Chromatogr. A 1997, 787 (1–2), 161–169. https://doi.org/10.1016/S0021-9673(97)00613-4.spa
dc.relation.referencesJain, V. K.; Pillai, S. G.; Gupte, H. S. Supervanadophile: Complexation, Preconcentration and Transport Studies of Vanadium by Octa Functionalized Calix[4]Resorcinarene-Hydroxamic Acid. J. Iran. Chem. Soc. 2008, 5 (4), 646–656. https://doi.org/10.1007/BF03246146.spa
dc.relation.referencesJAIN, V. K.; PILLAP, S. G.; MANDAL, H. C. LIQUID-LIQUID EXTRACTION, PRECONCENTRATION AND TRANSPORT STUDIES OF LANTHANUM (III) WITH CALIX [4] RESORCINARENE-HYDROXAMIC ACID (C4RAHA). J. Chil. Chem. Soc. 2007, 52 (2). https://doi.org/10.4067/S0717-97072007000200013.spa
dc.relation.referencesJain, V. K.; Pillai, S. G.; Kanaiya, P. H. Octafunctionalized Calix[4]Resorcinarene-N-Fenil-Acetohydroxamic Acid for the Separation, Preconcentration and Transport Studies of Cerium(IV). J. Braz. Chem. Soc. 2006, 17 (7), 1316–1322. https://doi.org/10.1590/S0103-50532006000700018.spa
dc.relation.referencesPodyachev, S. N.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Osyanina, D. V.; Avvakumova, L. V.; Buzykin, B. I.; Latypov, S. K.; Bauer, I.; Habicher, W. D.; Konovalov, A. I. Synthesis of New Calix[4]Arenes Functionalizated by Acetylhydrazide Groups. J. Incl. Phenom. Macrocycl. Chem. 2007, 58 (1–2), 55–61. https://doi.org/10.1007/s10847-006-9117-y.spa
dc.relation.referencesPodyachev, S. N.; Burmakina, N. E.; Syakaev, V. V.; Sudakova, S. N.; Shagidullin, R. R.; Konovalov, A. I. Synthesis, IR and NMR Characterization and Ion Extraction Properties of Tetranonylcalix[4]Resorcinol Bearing Acetylhydrazone Groups. Tetrahedron 2009, 65 (1), 408–417. https://doi.org/10.1016/j.tet.2008.10.008.spa
dc.relation.referencesKuznetsova, L. S.; Pribylova, G. A.; Mustafina, A. R.; Tananaev, I. G.; Myasoedov, B. F.; Konovalov, A. I. Extraction of Am(III) and Eu(III) with a Dimethylaminomethylated Derivative of Calix[4]Resorcinolarene. Radiochemistry 2004, 46 (3), 277–281. https://doi.org/10.1023/B:RACH.0000031689.21856.c4.spa
dc.relation.referencesPuttreddy, R.; Beyeh, N. K.; Taimoory, S. M.; Meister, D.; Trant, J. F.; Rissanen, K. Host–Guest Complexes of Conformationally Flexible C -Hexyl-2-Bromoresorcinarene and Aromatic N -Oxides: Solid-State, Solution and Computational Studies. Beilstein J. Org. Chem. 2018, 14, 1723–1733. https://doi.org/10.3762/bjoc.14.146.spa
dc.relation.referencesHong, M.; Zhang, Y.-M.; Liu, Y. Selective Binding Affinity between Quaternary Ammonium Cations and Water-Soluble Calix[4]Resorcinarene. J. Org. Chem. 2015, 80 (3), 1849–1855. https://doi.org/10.1021/jo502825z.spa
dc.relation.referencesWei, J.; Ren, J.; Liu, J.; Meng, X.; Ren, X.; Chen, Z.; Tang, F. An Eco-Friendly, Simple, and Sensitive Fluorescence Biosensor for the Detection of Choline and Acetylcholine Based on C-Dots and the Fenton Reaction. Biosens. Bioelectron. 2014, 52, 304–309. https://doi.org/10.1016/j.bios.2013.09.006.spa
dc.relation.referencesZeisel, S. H.; Mar, M.-H.; Howe, J. C.; Holden, J. M. Concentrations of Choline-Containing Compounds and Betaine in Common Foods. J. Nutr. 2003, 133 (5), 1302–1307. https://doi.org/10.1093/jn/133.5.1302.spa
dc.relation.referencesZeisel, S. H. Choline: Critical Role During Fetal Development and Dietary Requirements in Adults. Annu. Rev. Nutr. 2006, 26 (1), 229–250. https://doi.org/10.1146/annurev.nutr.26.061505.111156.spa
dc.relation.referencesBuchman, A. L.; Dubin, M. D.; Moukarzel, A. A.; Jenden, D. J.; Roch, M.; Rice, K. M.; Gornbein, J.; Ament, M. E. Choline Deficiency: A Cause of Hepatic Steatosis during Parenteral Nutrition That Can Be Reversed with Intravenous Choline Supplementation. Hepatology 1995, 22 (5), 1399–1403.spa
dc.relation.referencesWilcock, G. K.; Esiri, M. M.; Bowen, D. M.; Smith, C. C. Alzheimer’s Disease. Correlation of Cortical Choline Acetyltransferase Activity with the Severity of Dementia and Histological Abnormalities. J. Neurol. Sci. 1982, 57 (2–3), 407–417.spa
dc.relation.referencesThal, L. J.; Rosen, W.; Sharpless, N. S.; Crystal, H. Choline Chloride Fails to Improve Cognition in Alzheimer’s Disease. Neurobiol. Aging 1981, 2 (3), 205–208. https://doi.org/10.1016/0197-4580(81)90022-1.spa
dc.relation.referencesPhillips, M. M. Analytical Approaches to Determination of Total Choline in Foods and Dietary Supplements. Anal. Bioanal. Chem. 2012, 403 (8), 2103–2112. https://doi.org/10.1007/s00216-011-5652-5.spa
dc.relation.referencesHolmes-McNary, M. Q.; Cheng, W. L.; Mar, M. H.; Fussell, S.; Zeisel, S. H. Choline and Choline Esters in Human and Rat Milk and in Infant Formulas. Am. J. Clin. Nutr. 1996, 64 (4), 572–576. https://doi.org/10.1093/ajcn/64.4.572.spa
dc.relation.referencesZeisel, S. H.; Blusztajn, J. K. Choline and Human Nutrition. Annu. Rev. Nutr. 1994, 14 (1), 269–296. https://doi.org/10.1146/annurev.nu.14.070194.001413.spa
dc.relation.referencesAOAC International., J. I.; Thomson Gale (Firm), C. M.; Trucksess, M. W. Journal of AOAC International.; AOAC International, 1992; Vol. 87.spa
dc.relation.referencesPati, S.; Palmisano, F.; Quinto, M.; Zambonin, P. G. Quantitation of Major Choline Fractions in Milk and Dietary Supplements Using a Phospholipase D Bioreactor Coupled to a Choline Amperometric Biosensor. J. Agric. Food Chem. 2005, 53 (18), 6974–6979. https://doi.org/10.1021/jf050277o.spa
dc.relation.referencesGuyenet, P. G.; Agid, Y.; Javoy, F.; Beaujouan, J. C.; Rossier, J.; Glowinski, J. Effects of Dopaminergic Receptor Agonists and Antagonists on the Activity of the Neo-Striatal Cholinergic System. Brain Res. 1975, 84 (2), 227–244. https://doi.org/10.1016/0006-8993(75)90978-6.spa
dc.relation.referencesHaubrich, D. R.; Gerber, N.; Pflueger, A. B.; Zweig, M. Tissue Choline Studied Using a Simple Chemical Assay. J. Neurochem. 1981, 36 (4), 1409–1417. https://doi.org/10.1111/j.1471-4159.1981.tb00580.x.spa
dc.relation.referencesRoisin, M.-P.; Brassart, J.-L.; Charton, G.; Crepel, V.; Ari, Y. Ben. A New Method for the Measurement of Endogenous Transmitter Release in Localized Regions of Hippocampal Slices. J. Neurosci. Methods 1991, 37 (2), 183–189. https://doi.org/10.1016/0165-0270(91)90129-N.spa
dc.relation.referencesYAO, T.; HANDA, S. Electroanalytical Properties of Aldehyde Biosensors with a Hybrid-Membrane Composed of an Enzyme Film and a Redox Os-Polymer Film. Anal. Sci. 2003, 19 (5), 767–770. https://doi.org/10.2116/analsci.19.767.spa
dc.relation.referencesBullock, R.; Butcher, S. P.; Chen, M.-H.; Kendall, L.; McCulloch, J. Correlation of the Extracellular Glutamate Concentration with Extent of Blood Flow Reduction after Subdural Hematoma in the Rat. J. Neurosurg. 1991, 74 (5), 794–802. https://doi.org/10.3171/jns.1991.74.5.0794.spa
dc.relation.referencesMurai, S.; Saito, H.; Masuda, Y.; Itsukaichi, O.; Itoh, T. Basal Levels of Noradrenaline, Dopamine, 5-Hydroxytryptamine, and Acetylcholine in the Submandibular, Parotid, and Sublingual Glands of Mice and Rats. Arch. Oral Biol. 1995, 40 (7), 663–668. https://doi.org/10.1016/0003-9969(95)00023-I.spa
dc.relation.referencesIzaki, Y.; Hori, K.; Nomura, M. Dopamine and Acetylcholine Elevation on Lever-Press Acquisition in Rat Prefrontal Cortex. Neurosci. Lett. 1998, 258 (1), 33–36. https://doi.org/10.1016/S0304-3940(98)00841-6.spa
dc.relation.referencesKhan, A.; Khan, A. A. P.; Asiri, A. M.; Rub, M. A.; Azum, N.; Rahman, M. M.; Khan, S. B.; Ghani, S. A. A New Trend on Biosensor for Neurotransmitter Choline/Acetylcholine—an Overview. Appl. Biochem. Biotechnol. 2013, 169 (6), 1927–1939. https://doi.org/10.1007/s12010-013-0099-0.spa
dc.relation.referencesTamiya, E.; Sugiura, Y.; Nepomuceno Navera, E.; Mizoshita, S.; Nakajima, K.; Akiyama, A.; Karube, I. Ultramicro Acetylcholine Sensor Based on an Enzyme-Modified Carbon Fibre Electrode. Anal. Chim. Acta 1991, 251 (1–2), 129–134. https://doi.org/10.1016/0003-2670(91)87125-Q.spa
dc.relation.referencesYao, T.; Suzuki, S.; Nishino, H.; Nakahara, T. On-Line Amperometric Assay of Glucose,L-Glutamate, and Acetylcholine Using Microdialysis Probes and Immobilized Enzyme Reactors. Electroanalysis 1995, 7 (12), 1114–1117. https://doi.org/10.1002/elan.1140071203.spa
dc.relation.referencesLarsson, N.; Ruzgas, T.; Gorton, L.; Kokaia, M.; Kissinger, P.; Csöregi, E. Design and Development of an Amperometric Biosensor for Acetylcholine Determination in Brain Microdialysates. Electrochim. Acta 1998, 43 (23), 3541–3554. https://doi.org/10.1016/S0013-4686(98)00102-9.spa
dc.relation.referencesBOWEN, D. M.; SMITH, C. B.; WHITE, P.; DAVISON, A. N. NEUROTRANSMITTER-RELATED ENZYMES AND INDICES OF HYPOXIA IN SENILE DEMENTIA AND OTHER ABIOTROPHIES. Brain 1976, 99 (3), 459–496. https://doi.org/10.1093/brain/99.3.459spa
dc.relation.referencesPotter, P. E.; Meek, J. L.; Neff, N. H. Acetylcholine and Choline in Neuronal Tissue Measured by HPLC with Electrochemical Detection. J. Neurochem. 1983, 41 (1), 188–194. https://doi.org/10.1111/j.1471-4159.1983.tb13668.x.spa
dc.relation.referencesMeek, J. L.; Eva, C. Enzymes Adsorbed on an Ion Exchanger as a Post-Column Reactor: Application to Acetylcholine Measurement. J. Chromatogr. A 1984, 317, 343–347. https://doi.org/10.1016/S0021-9673(01)91673-5.spa
dc.relation.referencesTyrefors, N.; Gillberg, P. G. Determination of Acetylcholine and Choline in Microdialysates from Spinal Cord of Rat Using Liquid Chromatography with Electrochemical Detection. J. Chromatogr. B Biomed. Sci. Appl. 1987, 423, 85–91. https://doi.org/10.1016/0378-4347(87)80330-4.spa
dc.relation.referencesBusi, S.; Saxell, H.; Fröhlich, R.; Rissanen, K. The Role of Cation⋯π Interactions in Capsule Formation: Co-Crystals of Resorcinarenes and Alkyl Ammonium Salts. CrystEngComm 2008, 10 (12), 1803. https://doi.org/10.1039/b809503e.spa
dc.relation.referencesBeyeh, N. K.; Pan, F.; Valkonen, A.; Rissanen, K. Encapsulation of Secondary and Tertiary Ammonium Salts by Resorcinarenes and Pyrogallarenes: The Effect of Size and Charge Concentration. CrystEngComm 2015, 17 (5), 1182–1188. https://doi.org/10.1039/C4CE01927J.spa
dc.relation.referencesShivanyuk, A.; Rissanen, K.; Kolehmainen, E. Encapsulation of Et3N+–H•••OH2 in a Hydrogen-Bonded Resorcarene Capsule. Chem. Commun. 2000, No. 13, 1107–1108. https://doi.org/10.1039/b002144j.spa
dc.relation.referencesAbd El-Rahman, M. K.; Mazzone, G.; Mahmoud, A. M.; Sicilia, E.; Shoeib, T. Spectrophotometric Determination of Choline in Pharmaceutical Formulations via Host-Guest Complexation with a Biomimetic Calixarene Receptor. Microchem. J. 2019, 146, 735–741. https://doi.org/10.1016/j.microc.2019.01.046.spa
dc.relation.referencesKazakova, E. K.; Makarova, N. A.; Ziganshina, A. U.; Muslinkina, L. A.; Muslinkin, A. A.; Habicher, W. D. Novel Water-Soluble Tetrasulfonatomethylcalix[4]Resorcinarenes. Tetrahedron Lett. 2000, 41 (51), 10111–10115. https://doi.org/10.1016/S0040-4039(00)01798-6.spa
dc.relation.referencesAhmadzadeh, S.; Rezayi, M.; Karimi-Maleh, H.; Alias, Y. Conductometric Measurements of Complexation Study between 4-Isopropylcalix[4]Arene and Cr3+ Cation in THF–DMSO Binary Solvents. Measurement 2015, 70, 214–224. https://doi.org/10.1016/j.measurement.2015.04.005.spa
dc.relation.referencesJalali, F.; Ashrafi, A.; Shamsipur, M. Conductance Study of the Thermodynamics of Complexation of Amantadine, Rimantadine and Aminocyclohexane with Some Macrocyclic Compounds in Acetonitrile Solution. J. Incl. Phenom. Macrocycl. Chem. 2008, 61 (1–2), 77–82. https://doi.org/10.1007/s10847-007-9395-z.spa
dc.relation.referencesHasani, M.; Shamsipur, M. Conductance Study of the Thermodynamics of Ammonium Ion Complexes with Several Crown Ethers in Acetonitrile Solution. J. Solution Chem. 1994, 23 (6), 721–734. https://doi.org/10.1007/BF00972718.spa
dc.relation.referencesChristy, F. A.; Shrivastav, P. S. Conductometric Studies on Cation-Crown Ether Complexes: A Review. Crit. Rev. Anal. Chem. 2011, 41 (3), 236–269. https://doi.org/10.1080/10408347.2011.589284.spa
dc.relation.referencesKashapov, R. R.; Razuvayeva, Y. S.; Ziganshina, A. Y.; Mukhitova, R. K.; Sapunova, A. S.; Voloshina, A. D.; Syakaev, V. V.; Latypov, S. K.; Nizameev, I. R.; Kadirov, M. K.; Zakharova, L. Y. N-Methyl-d-Glucamine–Calix[4]Resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24 (10), 1939. https://doi.org/10.3390/molecules24101939.spa
dc.relation.referencesTakedaYasuyuki; YanoHisao; IshibashiMasayuki; IsozumiHiroshi. A Conductance Study of Alkali Metal Ion-15-Crown-5, 18-Crown-6, and Dibenzo-24-Crown-8 Complexes in Propylene Carbonate. http://dx.doi.org/10.1246/bcsj.53.72 2006, 53 (1), 72–76. https://doi.org/10.1246/BCSJ.53.72.spa
dc.relation.referencesThordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40 (3), 1305–1323. https://doi.org/10.1039/C0CS00062K.spa
dc.relation.referencesSalorinne, K.; Weimann, D. P.; Schalley, C. A.; Nissinen, M. Resorcinarene Podand with Amine-Functionalized Side Arms €“ Synthesis, Structure, and Binding Properties of a Neutral Anion Receptor. European J. Org. Chem. 2009, 2009 (35), 6151–6159. https://doi.org/10.1002/ejoc.200900814.spa
dc.relation.referencesHelttunen, K.; Salorinne, K.; Barboza, T.; Barbosa, H. C.; Suhonen, A.; Nissinen, M. Cation Binding Resorcinarene Bis-Crowns: The Effect of Lower Rim Alkyl Chain Length on Crystal Packing and Solid Lipid Nanoparticles. New J. Chem. 2012, 36 (3), 789. https://doi.org/10.1039/c2nj20981k.spa
dc.relation.referencesHelttunen, K.; Shahgaldian, P. Self-Assembly of Amphiphilic Calixarenes and Resorcinarenes in Water. New J. Chem. 2010, 34 (12), 2704. https://doi.org/10.1039/c0nj00123f.spa
dc.relation.referencesPatil, R. S.; Zhang, C.; Atwood, J. L. Process Development for Separation of Conformers from Derivatives of Resorcin[4]Arenes and Pyrogallol[4]Arenes. Chem. - A Eur. J. 2016, 22 (43), 15202–15207. https://doi.org/10.1002/chem.201603090.spa
dc.relation.referencesMahadevi, A. S.; Sastry, G. N. Cooperativity in Noncovalent Interactions. Chem. Rev. 2016, 116 (5), 2775–2825. https://doi.org/10.1021/cr500344e.spa
dc.relation.referencesUrbaniak, M.; Pedrycz, A.; Gawdzik, B.; Wzorek, A. Preparation of Partially Functionalised Resorcinarene Derivatives. Supramol. Chem. 2013, 25 (12), 777–781. https://doi.org/10.1080/10610278.2013.803108.spa
dc.relation.referencesKonishi, H.; Nakamaru, H.; Nakatani, H.; Ueyama, T.; Kobayashi, K.; Morikawa, O. Regioselective Distal -Dibromination of Calix[4]Resorcinarene. Chem. Lett. 1997, 26 (2), 185–186. https://doi.org/10.1246/cl.1997.185.spa
dc.relation.referencesLuostarinen, M.; Shivanyuk, A.; Rissanen, K. Partial Aminomethylation of Resorcarenes. Org. Lett. 2001, 3 (26), 4141–4144. https://doi.org/10.1021/ol016658e.spa
dc.relation.referencesHart, H.; Craine, L.; Hart, D.; Hadac, C. Química Orgánica, 12th ed.; McGraw-Hill, 2007.spa
dc.relation.referencesMorrison, R. T.; Boyd, R. N. Química Orgánica, 5th ed.; Pearson Education., 1990.spa
dc.relation.referencesHirose, K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001, 39 (3), 193–209. https://doi.org/10.1023/A:1011117412693.spa
dc.relation.referencesMacomber, R. S. An Introduction to NMR Titration for Studying Rapid Reversible Complexation. J. Chem. Educ. 1992, 69 (5), 375. https://doi.org/10.1021/ed069p375.spa
dc.relation.referencesJurado, J. M.; Muñiz-Valencia, R.; Alcázar, A.; Ceballos-Magaña, S. G.; González, J. Ajustando Datos Químicos Con Excel: Un Tutorial Práctico. Educ. Química 2016, 27 (1), 21–29. https://doi.org/10.1016/j.eq.2015.09.009.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalresorcin[4]arenospa
dc.subject.proposalcomplejos huésped-hospederospa
dc.subject.proposalsulfometilaciónspa
dc.subject.proposalinteracción molecularspa
dc.subject.proposalresorcin[4]areneeng
dc.subject.proposalhost-guest complexeseng
dc.subject.proposalsulfomethylationeng
dc.subject.proposalmolecular interactioneng
dc.subject.unescoQuímica orgánicaspa
dc.subject.unescoOrganic chemistryeng
dc.subject.unescoCompuesto orgánicospa
dc.subject.unescoOrganic compoundseng
dc.titleEstudio del efecto del sustituyente en el borde inferior de resorcinarenos sulfometilados y su comportamiento en la interacción huésped-hospedero con colinaspa
dc.title.translatedStudy of the effect of substituent on the lower rim of sulfomethylated resorcinarenes and its behavior in the host-guest interaction with cholineeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026288997.2021.pdf
Tamaño:
4.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: