Antagonismo e inhibición de la comunicación bacteriana en bacterias cultivables aisladas de esponjas del Caribe Colombiano con Biofouling y sin Biofouling

dc.contributor.advisorArévalo Ferro, Catalinaspa
dc.contributor.authorBurgos Toro, Angie Danielaspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupComunicación y Comunidades Bacterianasspa
dc.date.accessioned2020-08-20T21:54:59Zspa
dc.date.available2020-08-20T21:54:59Zspa
dc.date.issued2019-05-26spa
dc.description.abstractThe porifers and their symbiotic microbiota have a very close relationship that seeks the establishment and maintenance of holobionte homeostasis. Within this link ecosystem services are transferred that not only benefit the symbiont bacterial community and the sponge body but also the marine ecosystem to which they belong; in this way, the secretion of secondary metabolites, the transformation and provision of essential nutrients and the intermediation in communication events of the porifer and its environment, modulate the composition of the microbiota that intervenes as the establishment of new bacterial species and higher order organisms on the surface of the biofilm where the symbiote microbiota is structured, giving rise to biofouling or epibiosis. The bacterial community, within its complex "social" relationships, regulates both the composition of its populations and the expression of genes that may not be beneficial to the context of the consortium. Thus, the production of virulence factors, bactericidal and bacteriostatic substances and even the production of substances toxic to eukaryotic organisms are regulated from the control of cell proliferation and from the very activation of specific genes. In events such as bacterial Quorum Sensing (QS), cell signaling molecules are used that increase in concentration with population density. These molecules are converted into a signal that activates the expression of genes required by the total population and even by the community to which they belong, allowing bacterial consortia to gain advantage or respond to environmental pressures. Modulating communication events as well as regulating population growth are some of the mechanisms used by the community to maintain the stability of the holobionte. The production of QS-inhibiting molecules and bacterial growth-inhibiting compounds, which are also highly regulated, provides the biological system with tools to prevent some populations from exceeding the production of these substances by disrupting both the community and host integrity. In this research, a pioneer in the field of microbial ecology associated with Colombian Caribbean sponges, we characterized cultivable bacterial communities associated with four marine sponges with biofouling (Aplysina insularis (AiBf) and Desmapsamma anchorata (DaBf)) and without biofouling (Xestospongia muta Xm1 and Xm2) on their surface. We performed the taxonomic determination and comparison of the composition of each community, followed by a qualitative description of the capacity of these isolates to produce and inhibit QS via Acyl Homoserin-Lactone (AHLs) type molecules. We also evaluate the capacity to produce substances that inhibit bacterial growth on isolates from the same consortium. The results showed dominance of the phylum Firmicutes (represented by the genus Bacillus), followed by the phylum Actinobacteria (represented by the genus Micrococcus) and the presence of only four bacterial species belonging to the phylum Proteobacteria, of the genera Pseudomonas, Oceanimonas and Paracoccus. The production of AHL molecules by isolates of the species Pseudomonas oceani and Pseudomonas stutzeri was reported for the first time; and the production of QS inhibitory molecules by 25 bacterial isolates, 13 of them associated to sponges without biofouling and 12 associated to sponges with biofouling. Out of a total of 2148 trials, 138 antagonism events were reported from sponge isolations without epibiosis and 118 events from sponges with epibiosis. The results obtained and the information collected from the literature served to propose the role of certain bacterial species in both ecological niches with and without epibiosis; in addition, a similar number of antagonistic events and inhibition of cellular communication were observed among bacteria belonging to the microbial communities associated with biofouling or the absence of biofouling. This allows us to infer that there are variables within the bacterial community, in addition to those evaluated, that regulate these phenotypes, generating the appropriate conditions for biofouling to establish, develop, or be inhibited.spa
dc.description.abstractLos poríferos y su microbiota simbionte poseen una relación muy estrecha que busca el establecimiento y el mantenimiento de la homeostasis del holobionte. Dentro de este vínculo se transfieren servicios ecosistémicos que no sólo benefician a la comunidad bacteriana simbionte y al cuerpo de la esponja sino al ecosistema marino al que pertenecen; de esta manera, la secreción de metabolitos secundarios, la transformación y puesta en disposición de nutrientes esenciales y la intermediación en eventos de comunicación del porífero y su entorno, modulan la composición de la microbiota que interviene como el establecimiento de nuevas especies bacterianas y organismos de orden superior en la superficie de la biopelícula en donde la microbiota simbionte se estructura, dando lugar al biofouling o epibiosis. La comunidad bacteriana dentro de sus relaciones “sociales” complejas, regula tanto la composición de sus poblaciones como la expresión de genes que pueden no ser benéficos para el contexto del consorcio. Así, la producción de factores de virulencia, sustancias bactericidas y bacteriostáticas e incluso la producción de sustancias toxicas para organismos eucariotas se encuentran reguladas desde el control de la proliferación celular y desde la misma activación de genes específicos. En eventos como la comunicación bacteriana tipo Quorum Sensing (QS), se usan moléculas de señalización celular que aumentan en concentración con la densidad poblacional. Estas moléculas, se convierten en una señal que activa la expresión de genes requeridos por la población total e incluso por la comunidad a la que pertenecen, permitiendo que los consorcios bacterianos adquieran ventajas o respondan a presiones del entorno. Modular los eventos de comunicación tanto como regular el crecimiento poblacional son algunos de los mecanismos usados por la comunidad para mantener la estabilidad del holobionte. La producción de moléculas inhibidoras del QS y de compuestos inhibidores del crecimiento bacteriano, que también se encuentran altamente regulados, provee al sistema biológico herramientas para evitar que algunas poblaciones excedan la producción de estas sustancias alterando tanto a la comunidad como la integridad del hospedero. En esta investigación, pionera en el campo de la ecología microbiana asociada a esponjas del caribe colombiano, caracterizamos comunidades bacterianas cultivables asociadas a cuatro esponjas marinas con biofouling (Aplysina insularis (AiBf) y Desmapsamma anchorata (DaBf)) y sin biofouling (Xestospongia muta Xm1 y Xm2) en su superficie. Realizamos la determinación taxonómica y la comparación de la composición de cada comunidad, seguida de una descripción cualitativa de la capacidad que tienen estos aislamientos para producir e inhibir el QS vía moléculas tipo Acil Homoserín Lactonas (AHLs). Así mismo evaluamos la capacidad de producir sustancias inhibidoras del crecimiento bacteriano sobre aislamientos de su mismo consorcio. Los resultados demostraron dominancia por parte del filo Firmicutes (representado por el género Bacillus), seguido por el filo Actinobacteria (representado por el género Micrococcus) y la presencia de apenas cuatro especies bacterianas pertenecientes al filo Proteobacteria, de los géneros Pseudomonas, Oceanimonas y Paracoccus. Se reportó por primera vez la producción de moléculas AHL por parte de aislamientos de las especies Pseudomonas oceani y Pseudomonas stutzeri; y la producción de moléculas inhibidoras del QS por 25 aislamientos bacterianos, 13 de ellos asociados a esponjas sin biofouling y 12 asociados a esponjas con biofouling. De un total de 2148 ensayos se reportaron 138 eventos de antagonismo por parte de aislamientos de esponjas sin epibiosis y 118 eventos de esponjas con epibiosis. Los resultados obtenidos y la información colectada de bibliografía sirvieron para proponer el papel de ciertas especies bacterianas en ambos nichos ecológicos con y sin epibiosis; además se observó un número similar eventos de antagonismo e inhibición de la comunicación celular entre bacterias pertenecientes a las comunidades microbianas asociadas a biofouling o a la ausencia de éste. Esto nos permite inferir que existen variables dentro de la comunidad bacteriana, además de las evaluadas, que regulan estos fenotipos, generando las condiciones adecuadas para que el biofouling se establezca, se desarrolle, o se inhiba.spa
dc.description.additionalLínea de Investigación: Ecología Bacterianaspa
dc.description.degreelevelMaestríaspa
dc.description.projectFortalecimiento del estudio y conocimiento de la comunicación bacteriana en algunas especies asociadas a la superficie de los corales Montastrea cavernosa y Montastrea faveolata. Código del proyecto: 37572.spa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extent193spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78125
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbbas, A. A. Y., & Amran, A. M. (2018). Bacillus pumilus isolated from healthy honey bees and its effects on some biological aspects in mice. World Journal of Pharmaceutical Research, 7(10), 50–57. https://doi.org/10.20959/wjpr201810-12327spa
dc.relation.referencesAbdelmohsen, U., Bayer, K., & Hentschel, U. (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 31(3), 381–399. https://doi.org/10.1039/c3np70111espa
dc.relation.referencesAlAbbas, F., Williamson, C., Bhola, S. M., Spear, J. R., Olson, D. L., Mishra, B., & Kakpovbia, A. E. (2013). Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80). International Biodeterioration and Biodegradation, 78, 34–42. https://doi.org/10.1016/j.ibiod.2012.10.014spa
dc.relation.referencesAllemand, D., & Osborn, D. (2019). Ocean acidification impacts on coral reefs: From sciences to solutions. Regional Studies in Marine Science, 28, 100558. https://doi.org/10.1016/j.rsma.2019.100558spa
dc.relation.referencesAltinyay, C., Eryilmaz, M., Yazgan, A., & Yilmaz, B. (2015). Antimicrobial Activity of Some Alnus Species. European Review for Medical and Pharmacological Science, 19(January), 4671–4674.spa
dc.relation.referencesAnnamalai, N., Rajeswari, M. V., Sahu, S. K., & Balasubramanian, T. (2014). Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochemistry, 8. https://doi.org/10.1016/j.procbio.2014.03.007spa
dc.relation.referencesArslan, S., & Buyser, D. (2019). Molecular Characterization and Toxin Profiles of Bacillus spp. Isolated from Retail Fish and Ground Beef. Journal of Food Science, 0(0). https://doi.org/10.1111/1750-3841.14445spa
dc.relation.referencesAslim, B., Saglam, N., & Beyatli, Y. (2002). Determination of Some Properties of Bacillus Isolated from Soil. Turk J Biol, 26, 41–48spa
dc.relation.referencesAzam, F., & Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10), 782–791. https://doi.org/10.1038/nrmicro1747spa
dc.relation.referencesBatista, D., Costa, R., Carvalho, A., Batista, W., Rua, C., de Oliveira, L., … Dobretsov, S. (2018). Environmental conditions affect activity and associated microorganisms of marine sponges. Marine Environmental Research, 09(20). https://doi.org/10.1016/j.marenvres.2018.09.020spa
dc.relation.referencesBatista, D., Costa, R., Polycarpa, A., Romão, W., Rua, C. P. J., Oliveira, L. De, … Dobretsov, S. (2018). Environmental conditions a ff ect activity and associated microorganisms of marine sponges. Marine Environmental Research, 142(April), 59–68. https://doi.org/10.1016/j.marenvres.2018.09.020spa
dc.relation.referencesBay, A., Matobole, R. M., Zyl, L. J. Van, Parker-nance, S., Davies-coleman, M. T., & Trindade, M. (2016). Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa. Marine Drugs, 15(47), 8–10. https://doi.org/10.3390/md15020047spa
dc.relation.referencesBell, J. (2008). The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79(3), 341–353. https://doi.org/10.1016/j.ecss.2008.05.002spa
dc.relation.referencesBerry, M. A., Davis, T. W., Cory, R. M., Duhaime, M. B., Johengen, T. H., Kling, G. W., … Denef, V. J. (2017). Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. Environmental Microbiology, 19(3), 1149–1162. https://doi.org/10.1111/1462-2920.13640spa
dc.relation.referencesBiswa, P., & Doble, M. (2013). Production of acylated homoserine lactone by Gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 343(1), 34–41. https://doi.org/10.1111/1574-6968.12123spa
dc.relation.referencesBixler, G. D., & Bhushan, B. (2012). Biofouling: Lessons from nature. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502spa
dc.relation.referencesBodelón, G., Montes-García, V., López-Puente, V., Hill, E. H., Hamon, C., Sanz-Ortiz, M. N., … Liz-Marzán, L. M. (2016). Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 15(11), 1203–1211. https://doi.org/10.1038/nmat4720spa
dc.relation.referencesBorges, A., & Simoes, M. (2019). Quorum Sensing Inhibition by Marine Bacteria. Marine Drugs, 17, 427.spa
dc.relation.referencesBose, U., Ortori, C. A., Sarmad, S., Barrett, D. A., Hewavitharana, A. K., Hodson, M. P., … Shaw, P. N. (2017). Production of N-acyl homoserine lactones by the sponge-associated marine actinobacteria Salinispora arenicola and Salinispora pacifica. FEMS Microbiology Letters, 364(2), 1–7. https://doi.org/10.1093/femsle/fnx002spa
dc.relation.referencesBotté, E. S., Nielsen, S., Abdul Wahab, M. A., Webster, J., Robbins, S., Thomas, T., & Webster, N. S. (2019). Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-12156-yspa
dc.relation.referencesBoyett, H. V., Bourne, D. G., & Willis, B. L. (2007). Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Marine Biology, 151(5), 1711–1720. https://doi.org/10.1007/s00227-006-0603-yspa
dc.relation.referencesBrackman, G., & Coenye, T. (2015). Quorum Sensing Inhibitors as Anti-Biofilm Agents. Current Pharmaceutical Design, 21, 5–11.spa
dc.relation.referencesBrinkmann, C., Kearns, P., & Evans-illidge, E. (2017). Diversity and Bioactivity of Marine Bacteria Associated with the Sponges Candidaspongia flabellata and Rhopaloeides odorabile from the Great Barrier Reef. Diversity, 9(39), 2–26. https://doi.org/10.3390/d9030039spa
dc.relation.referencesBulushi, A., Poole, S., Deeth, H., & Dykes, G. (2018). Evaluation the spoilage and biogenic amines formation potential of marine Gram-positive bacteria. International Food Research Journal, 25(October), 2143–2148.spa
dc.relation.referencesBurke, C., Thomas, T., Lewis, M., Steinberg, P., & Kjelleberg, S. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal, 5(4), 590–600. https://doi.org/10.1038/ismej.2010.164spa
dc.relation.referencesBusse, H., Ludwig, W., Ka, P., Tindall, B. J., & Rossello, R. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60, 249–266.spa
dc.relation.referencesCabral, R. B., & Rollan, G. (2018). How important are coral reefs to food security in the Philippines? Diving deeper than national aggregates and averages. Marine Policy, 91(February), 136–141. https://doi.org/10.1016/j.marpol.2018.02.007spa
dc.relation.referencesCao, S., Wang, J., Haosheng, C., & Darong, C. (2011). Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 56(7), 598–612. https://doi.org/10.1007/s11434-010-4158-4spa
dc.relation.referencesCarbonnelle, E., Mesquita, C., Bille, E., Day, N., Dauphin, B., Beretti, J., … Nassif, X. (2011). MALDI-TOF mass spectrometry tools for bacterial identi fi cation in clinical microbiology laboratory. Clinical Biochemistry, 44(1), 104–109. https://doi.org/10.1016/j.clinbiochem.2010.06.017spa
dc.relation.referencesCárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F., & Arévalo-Ferro, C. (2011). Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. The Isme Journal, 6(3), 502. https://doi.org/10.1038/ismej.2011.123spa
dc.relation.referencesCastro, P., Mendoza, L., Vásquez, C., Pereira, P. C., Navarro, F., Lizama, K., … Cotoras, M. (2019). Antifungal Activity against Botrytis cinerea of 2,6-Dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone Derivatives. Molecules, 24(4). https://doi.org/10.3390/molecules24040706spa
dc.relation.referencesCebrian, E., Uriz, M. J., Garrabou, J., & Ballesteros, E. (2011). Sponge mass mortalities in a warming mediterranean sea: Are cyanobacteria-harboring species worse off? PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0020211spa
dc.relation.referencesCerqueda-García, D., & Falcón, L. (2016). La construcción del nicho y el concepto de holobionte, hacia la reestructuración de un paradigma. Revista Mexicana de Biodiversidad, 87, 239–241. https://doi.org/10.1016/j.rmb.2015.11.001spa
dc.relation.referencesChang, S., Chen, X., Jiang, S., Chen, J., & Shi, L. (2017). Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis. Canadian Journal of Microbiology, 63(7), 608–620. https://doi.org/10.1139/cjm-2016-0463spa
dc.relation.referencesCheng, Y., Xiao, X., Li, X., Song, D., Lu, Z., Wang, F., & Wang, Y. (2017). Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14. Carbohydrate Polymers, 114(8). https://doi.org/10.1016/j.carbpol.2017.08.124spa
dc.relation.referencesChhabra, S. R., Ca, M., & Williams, P. (2005). N -Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology, 151, 3313–3322. https://doi.org/10.1099/mic.0.27961-0spa
dc.relation.referencesCita, Y., Suhermanto, A., Radjasa, O., & Sudharmono, P. (2017). Asian Pacific Journal of Tropical Biomedicine Antibacterial activity of marine bacteria isolated from sponge Xestospongia. Asian Pacific Journal of Tropical Biomedicine, 7(5), 450–454. https://doi.org/10.1016/j.apjtb.2017.01.024spa
dc.relation.referencesCobet, A., Wirsen, C., & Jones, G. (1970). The Effect of Nickel on a Marine Bacterium Arthrobacter marinus sp.nov. Journal of General Microbiology, 62, 159–169.spa
dc.relation.referencesCollins, F. W. J., Connor, P. M. O., Sullivan, O. O., Rea, M. C., Hill, C., Ross, R. P., & Ross, R. P. (2016). Formicin – a novel broad-spectrum two- component lantibiotic produced by Bacillus paralicheniformis APC 1576, 1662–1671. https://doi.org/10.1099/mic.0.000340spa
dc.relation.referencesCollins, M. D., Jones, D., Keddie, R. M., Kroppenstedt, R. M., & Schleifer, K. H. (1983). Classification of Some Coryneform Bacteria in a New Genus Aureobacterium. Systematic and Applied Microbiology, 252(4), 236–252. https://doi.org/10.1016/S0723-2020(83)80053-8spa
dc.relation.referencesCostantino, V., Sala, G. Della, Saurav, K., Teta, R., Bar-shalom, R., Mangoni, A., & Steindler, L. (2017). Plakofuranolactone as a Quorum Quenching Agent from the Indonesian Sponge Plakortis cf. lita many. Marine Drugs, 15(99), 1–12. https://doi.org/10.3390/md15030059spa
dc.relation.referencesDahms, H. U., & Dobretsov, S. (2017). Antifouling compounds from marine macroalgae. Marine Drugs, 15(9). https://doi.org/10.3390/md15090265spa
dc.relation.referencesde Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M., & Gomes, N. C. M. (2015). Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiology Ecology, 91(4), 1–12. https://doi.org/10.1093/femsec/fiv019spa
dc.relation.referencesDefoirdt, T., Brackman, G., & Coenye, T. (2013). Quorum sensing inhibitors: How strong is the evidence? Trends in Microbiology, 21(12), 619–624. https://doi.org/10.1016/j.tim.2013.09.006spa
dc.relation.referencesDeignan, L. K., Pawlik, J. R., & Erwin, P. M. (2018). Agelas Wasting Syndrome Alters Prokaryotic Symbiont Communities of the Caribbean Brown Tube Sponge, Agelas tubulata. Microbial Ecology, 76(2), 459–466. https://doi.org/10.1007/s00248-017-1135-3spa
dc.relation.referencesDeignan, L., & Pawlik, J. R. (2016). Demographics of the Caribbean brown tube sponge Agelas tubulata on Conch Reef, Florida Keys, and a description of Agelas Wasting Syndrome (AWS). Proc 13th ICRS, Honolulu, 4(June), 72.spa
dc.relation.referencesDelauney, L., Compare, C., & Lehaitre, M. (2010). Biofouling protection for marine environmental sensors. Ocean Science, 6(2), 503–511. https://doi.org/10.5194/os-6-503-2010spa
dc.relation.referencesDenikina, N. N., Dzyuba, E. V., Bel’kova, N. L., Khanaev, I. V., Feranchuk, S. I., Makarov, M. M., … Belikov, S. I. (2016). The first case of disease of the sponge Lubomirskia baicalensis: Investigation of its microbiome. Biology Bulletin, 43(3), 263–270. https://doi.org/10.1134/S106235901603002Xspa
dc.relation.referencesDickschat, J. S. (2010). Quorum sensing and bacterial biofilms. Natural Product Reports, 27(3), 343–369. https://doi.org/10.1039/b804469bspa
dc.relation.referencesDobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., & Paul, V. (2011). Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling: The Journal of Bioadhesion and Biofilm Research, 7014, 892–905. https://doi.org/10.1080/08927014.2011.609616spa
dc.relation.referencesDobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P., & Paul, V. J. (2011). Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling: The Journal of Bioadhesion and Biofilm Research, 27(8), 893–905. https://doi.org/10.1080/08927014.2011.609616spa
dc.relation.referencesDobretsov, S., Teplitski, M., & Paul, V. (2009). Quorum Sensing in the Marine Environment and Its Relationship to Biofouling. Biofouling, 25(5), 413–427. https://doi.org/10.1080/08927010902853516spa
dc.relation.referencesDong, Y., Wang, L., Zhang, H., Zhang, X., & Zhang, L. (2001). Quenching quorum-sensing- dependent bacterial infection by an N -acyl homoserine lactonase. Letters for Nature, 411(June).spa
dc.relation.referencesDong, Y., Xu, J., Li, X., & Zhang, L. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3526–3531. https://doi.org/10.1073/pnas.060023897spa
dc.relation.referencesDudley-evans, T., Hamp-lyons, L., Master, P., Preece, R., Johns, A., Belcher, D., … Perrin, M. (2012). Advances in Marine Biology: The physiology and molecular biology of sponge tissues (Vol. 62). https://doi.org/10.1016/0044-8486(76)90094-6spa
dc.relation.referencesDufour, D., Leung, V., & Lévesque, C. M. (2012). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics, 22, 2–16. https://doi.org/10.1111/j.1601-1546.2012.00277.xspa
dc.relation.referencesDunbar, I., Philp, J., Kuyukina, M., Ivshina, B., Wray, V., & Lang, S. (2002). Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Applied Microbiology and Biotechnology, 59, 318–324. https://doi.org/10.1007/s00253-002-1018-4spa
dc.relation.referencesDunlap, C. A., Kwon, S., Rooney, A. P., Kim, S., & Kim, S. (2019). Bacillus paralicheniformis sp . nov ., isolated from fermented soybean paste. International Journal of Systematic and Evolutionary Microbiology, 65(2015), 3487–3492. https://doi.org/10.1099/ijsem.0.000441spa
dc.relation.referencesEasson, C. G., & Thacker, R. W. (2014). Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Frontiers in Microbiology, 5(OCT), 1–11. https://doi.org/10.3389/fmicb.2014.00532spa
dc.relation.referencesEgan, S., James, S., Holmstro, C., Holmström, C., & Kjelleberg, S. (2001). Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiology Ecology, 35(August), 67–73. https://doi.org/10.1111/j.1574-6941.2001.tb00789.xspa
dc.relation.referencesEncarnacion, R. D., Sandoval, E., Malmstrøm, J., & Christophersen, C. (2000). Calafianin , a Bromotyrosine Derivative from the Marine Sponge Aplysina gerardogreeni. Journal of Natural Products, 63(6), 874–875.spa
dc.relation.referencesFaria, F., Vollú, E., & Jurelevicius, D. (2016). Whole-Genome Sequence of Rummeliibacillus stabekisii Strain PP9 Isolated from Antarctic Soil. Genome Announcements, 4(3), 9–10. https://doi.org/10.1128/genomeA.00416-16.Copyrightspa
dc.relation.referencesFerenci, T. (2008). The spread of a beneficial mutation in experimental bacterial populations : the influence of the environment and genotype on the fixation of rpoS mutations. Nature Publishing Group, 100, 446–452. https://doi.org/10.1038/sj.hdy.6801077spa
dc.relation.referencesFieseler, L., Horn, M., Wagner, M., & Hentschel, U. (2004). Discovery of the Novel Candidate Phylum “‘Poribacteria’” in Marine Sponges. Applied and Environmental Microbiology, 70(6), 3724–3732. https://doi.org/10.1128/AEM.70.6.3724spa
dc.relation.referencesFiore, C. L., Labrie, M., Jarett, J. K., & Lesser, M. P. (2015). Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: Molecular evidence for metabolic interchange. Frontiers in Microbiology, 6(APR). https://doi.org/10.3389/fmicb.2015.00364spa
dc.relation.referencesFitridge, I., Dempster, T., Guenther, J., & de Nys, R. (2012). The impact and control of biofouling in marine aquaculture: A review. Biofouling, 28(7), 649–669. https://doi.org/10.1080/08927014.2012.700478spa
dc.relation.referencesFlemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. https://doi.org/10.1038/nrmicro2415spa
dc.relation.referencesFonteneau, A., Chatssot, E., Ortega-García, S., Delgado, A., & Bez, N. (2010). On the use of the Finetti ternary diagrams to show the species composition of free and fad associated tuna schools in the Atlantic and Indian oceans. Collect. Vol. Sci. Pap. ICCAT, 65(January), 546–555.spa
dc.relation.referencesranco, Á., Arevalo-Ferro, C., & Cadavid, L. F. (2015). Influencia de moléculas del Quorum Sensing producidas por bacterias simbiontes de las conchas del cangrejo Pagurus longicarpus sobre larvas de Hydractinia symbiolongicarpus. Universidad Nacional de Colombia.spa
dc.relation.referencesFranco, Á., Cadavid, L., & Arévalo-ferro, C. (2019). Biopelículas y extractos de bacterias que producen moléculas de señalización de “Quorum Sensing” promueven comportamientos de quimiotaxis y asentamiento en larvas de Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Acta Biológica Colombiana, 24(1), 150–162.spa
dc.relation.referencesFriedrich, A. B., Fischer, I., Proksch, P., Hacker, J., & Hentschel, U. (2001). Temporal variation of the microbial community associated with the mediterranean sponge Aplysina aerophoba. FEMS Microbiology Ecology, 38(2–3), 105–113. https://doi.org/10.1016/S0168-6496(01)00185-4spa
dc.relation.referencesFuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density- responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994spa
dc.relation.referencesGarge, S. S., & Nerurkar, A. S. (2016). Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS ONE, 11(12), 1–23. https://doi.org/10.1371/journal.pone.0167344spa
dc.relation.referencesGil-Agudelo, D. L., Navas-Camacho, R., Rodríguez-Ramírez, A., Reyes- Nivia, M. C., Bejarano, S., Garzón-Ferreira, J., & Smith, G. W. (2009). Enfermedades coralinas y su investigación en los arrecifes colombianos. Boletín de Investigaciones Marinas y Costeras, 38(1037), 189–224.spa
dc.relation.referencesGilan, O., Hadar, Y., & Sivan, A. (2004). Colonization , biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbial and Cell Physiology, 64, 97–104. https://doi.org/10.1007/s00253-004-1584-8spa
dc.relation.referencesGoecke, F., Labes, A., Wiese, J., & Imhoff, J. (2010). Chemical Interactions Between Marine Macroalgae and Bacteria. Marine Ecology Progress Series, 409(6), 267–300. https://doi.org/10.3354/meps08607spa
dc.relation.referencesGómez-Garzón, C., & Dussán, J. (2017). Evidence-based validation of quorum quenching from Lysinibacillus sphaericus and Geobacillus sp. in bioremediation of oil sludge. Canadian Journal of Microbiology, 63(1), 74–82. https://doi.org/10.1139/cjm-2016-0323spa
dc.relation.referencesGonzález-Rivero, M., Yakob, L., & Mumby, P. J. (2011). The role of sponge competition on coral reef alternative steady states. Ecological Modelling, 222(11), 1847–1853. https://doi.org/10.1016/j.ecolmodel.2011.03.020spa
dc.relation.referencesGuillonneau, R., Baraquet, C., Bazire, A., & Molmeret, M. (2018). Multispecies biofilm development of marine bacteria implies complex relationships through competition and synergy and modification of matrix components. Frontiers in Microbiology, 9(AUG), 1–15. https://doi.org/10.3389/fmicb.2018.01960spa
dc.relation.referencesGutierrez, J., Paragues, M., Dobson, A., & O’Gara, F. (2019). Genome Sequence of Paracoccus sp. JM45, a Bacterial Strain Isolated from a Marine Sponge with a Dual Quorum Sensing Inhibition Activity. Microbiology Resource Announcements, (October 2018), 1–3.spa
dc.relation.referencesHadaidi, G., Ziegler, M., Shore-Maggio, A., Jensen, T., Aeby, G., & Voolstra, C. R. (2018a). Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ, 6, e5169. https://doi.org/10.7717/peerj.5169spa
dc.relation.referencesHamedi, J., Kafshnouchi, M., & Ranjbaran, M. (2019). A Study on actinobacterial diversity of Hampoeil cave and screening of their biological activities. Saudi Journal of Biological Sciences, 26(7), 1587–1595. https://doi.org/10.1016/j.sjbs.2018.10.010spa
dc.relation.referencesHamilton, T. L., Bryant, D. A., & Macalady, J. L. (2016). The role of biology in planetary evolution : cyanobacterial primary production in low-oxygen Proterozoic oceans. Environmental Microbiology, 18, 325–340. https://doi.org/10.1111/1462-2920.13118spa
dc.relation.referencesHarder, T., Campbell, A. H., Egan, S., & Steinberg, P. D. (2012). Chemical Mediation of Ternary Interactions Between Marine Holobionts and Their Environment as Exemplified by the Red Alga Delisea pulchra. Journal of Chemical Ecology, 38(5), 442–450. https://doi.org/10.1007/s10886-012-0119-5spa
dc.relation.referencesHardoim, C., Costa, R., Arau, F. V, Hajdu, E., Peixoto, R., & Lins, U. (2009). Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters. Applied and Environmental Microbilogy, 75(10), 3331–3343. https://doi.org/10.1128/AEM.02101-08spa
dc.relation.referencesHayat, R., Ahmed, I., & Paek, J. (2014). Lysinibacillus composti sp. nov., isolated from compost. Annals of Microbiology, 64, 1081–1088. https://doi.org/10.1007/s13213-013-0747-1spa
dc.relation.referencesHentschel, U., Fieseler, L., Wehrl, M., Gernert, C., Steinert, M., Hacker, J., & Horn, M. (2003). Microbial Diversity of Marine Sponges. Sponges (Porifera), 2003, 59–88. https://doi.org/10.1007/978-3-642-55519-0_3spa
dc.relation.referencesHentschel, U., Piel, J., Degnan, S., & Taylor, M. (2012). Genomic Insights Into the Marine Sponge Microbiome. Nature Reviews Microbiology, 10(9), 641–654. https://doi.org/10.1038/nrmicro2839spa
dc.relation.referencesHentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C., & Hacker, J. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology, 35(3), 305–312. https://doi.org/10.1016/S0168-6496(01)00110-6spa
dc.relation.referencesHoffmann, F., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H. T., … Kuypers, M. M. M. (2009). Complex nitrogen cycling in the sponge Geodia barretti. Environmental Microbiology, 11(9), 2228–2243. https://doi.org/10.1111/j.1462-2920.2009.01944.xspa
dc.relation.referencesHolliday, N. P., Yelland, M. J., Pascal, R., Swail, V. R., Taylor, P. K., Griffiths, C. R., & Kent, E. (2006). Were extreme waves in the Rockall trough the largest ever recorded? Geophysical Research Letters, 33(5), 2–5. https://doi.org/10.1029/2005GL025238spa
dc.relation.referencesHolmström, C., Egan, S., Franks, A., McCloy, S., & Kjelleberg, S. (2002). Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiology Ecology, 41(1), 47–58. https://doi.org/10.1016/S0168-6496(02)00239-8spa
dc.relation.referencesHou, J., Wang, C., Rozenbaum, R. T., Gusnaniar, N., de Jong, E. D., Woudstra, W., … van der Mei, H. C. (2019). Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-46196-7spa
dc.relation.referencesHou, X., Kawamura, Y., Sultana, F., & Shu, S. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. International Journal of Systematic Bacteriology, 48(1 998), 423–429.spa
dc.relation.referencesHøyland-kroghsbo, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., & Westra, E. (2017). Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, 114(1), 131–135. https://doi.org/10.1073/pnas.1617415113spa
dc.relation.referencesHuang, R. Y., Chen, W. T., Kurtán, T., Mándi, A., Ding, J., Li, J., … Guo, Y. W. (2016). Bioactive isoquinolinequinone alkaloids from the South China Sea nudibranch Jorunna funebris and its sponge-prey Xestospongia sp. Future Medicinal Chemistry, 8(1), 17–27. https://doi.org/10.4155/fmc.15.169spa
dc.relation.referencesHunting, E. R., Franken, O., Knopperts, F., Kraak, M. H. S., Vargas, R., Röling, W. F. M., & Van Der Geest, H. G. (2013). Substrate as a driver of sponge distributions in mangrove ecosystems. Marine Ecology Progress Series, 486, 133–141. https://doi.org/10.3354/meps10376spa
dc.relation.referencesHwang, C. Y., Lee, I., Cho, Y., Lee, Y. M., Baek, K., Jung, Y., … Lee, H. K. (2019). Rhodococcus aerolatus sp . nov ., isolated from subarctic rainwater, (2015), 465–471. https://doi.org/10.1099/ijs.0.070086-0spa
dc.relation.referencesIneichen, R., & Batschelet, E. (1975). Genetic Selection and De Finetti Diagrams. Journal of Mathematical Biology, 39(2), 33–39.spa
dc.relation.referencesIvanova, E. P., Onyshchenko, O. M., Christen, R., Zhukova, N. V, Lysenko, A. M., Shevchenko, L. S., … Kiprianova, E. A. (2005). Oceanimonas smirnovii sp . nov ., a novel organism isolated from the Black Sea, 28, 131–136. https://doi.org/10.1016/j.syapm.2004.11.002spa
dc.relation.referencesIyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50(3), 340–343. https://doi.org/10.1016/j.marpolbul.2004.11.012spa
dc.relation.referencesJeswani, H., & Mukherji, S. (2013). International Biodeterioration & Biodegradation Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasi fi cation wastewater. International Biodeterioration & Biodegradation, 80, 1–9. https://doi.org/10.1016/j.ibiod.2013.02.002spa
dc.relation.referencesJiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y., & Yu, W. (2011). Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS ONE, 6(4), 1–11. https://doi.org/10.1371/journal.pone.0018514spa
dc.relation.referencesJoint, I., Tait, K., Callow, M. E., Callow, J. A., Milton, D., Williams, P., & Ca, M. (2002). Cell-to-Cell Communication Across the Prokaryote-Eukaryote Boundary. Science, 298(November), 1207. https://doi.org/10.1126/science.1077075spa
dc.relation.referencesKalia, V. C. (2013). Quorum sensing inhibitors : An overview. Biotechnology Advances, 31(2), 224–245. https://doi.org/10.1016/j.biotechadv.2012.10.004spa
dc.relation.referencesKelly, S. R., Jensen, P. R., Henkel, T. P., Fenical, W., & Pawlik, J. R. (2003). Effects of Caribbean sponge extracts on bacterial attachment. Aquatic Microbial Ecology, 31(2), 175–182. https://doi.org/10.3354/ame031175spa
dc.relation.referencesKerekes, E. B., Deák, É., Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C., & Krisch, J. (2013). Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. Journal of Applied Microbiology, 115(4), 933–942. https://doi.org/10.1111/jam.12289spa
dc.relation.referencesKim, S., Lee, S., Hong, S., Oh, Y., Seoul, M., Kweon, J., & Kim, T. (2009). Biofouling of reverse osmosis membranes: Microbial quorum sensing and fouling propensity. Desalination, 247(1–3), 303–315. https://doi.org/10.1016/j.desal.2008.12.033spa
dc.relation.referencesKiran, G. S., Sekar, S., Ramasamy, P., Thinesh, T., Hassan, S., Lipton, A. N., … Selvin, J. (2018). Marine sponge microbial association: Towards disclosing unique symbiotic interactions. Marine Environmental Research, 140(November 2017), 169–179. https://doi.org/10.1016/j.marenvres.2018.04.017spa
dc.relation.referencesKirschner, C. M., & Brennan, A. B. (2012). Bio-Inspired Antifouling Strategies. Annual Review of Materials Research, 42(1), 211–229. https://doi.org/10.1146/annurev-matsci-070511-155012spa
dc.relation.referencesKlaus, J. S., Janse, I., & Fouke, B. W. (2011). Coral Black Band Disease Microbial Communities and Genotypic Variability of the Dominant Cyanobacteria (CD1C11). Bulletin of Marine Science, 87(4), 795–821. https://doi.org/10.5343/bms.2010.1050spa
dc.relation.referencesKoch, A. L., Busse, H., Wieser, M., & Buczolits, S. (2012). Arthrobacter. Bergey’s Manual of Systematic Bacteriology. https://doi.org/10.1002/9781118960608.gbm00118.spa
dc.relation.referencesKonstantinidis, K. T., Rosselló-móra, R., & Amann, R. (2017). Uncultivated microbes in need of their own taxonomy. Nature Publishing Group, 11(11), 2399–2406. https://doi.org/10.1038/ismej.2017.113spa
dc.relation.referencesKonstantinou, D., Gerovasileiou, V., Voultsiadou, E., & Gkelis, S. (2018). Sponges-cyanobacteria associations: Global diversity overview and new data from the Eastern Mediterranean. PLoS ONE, 13(3), 1–22. https://doi.org/10.1371/journal.pone.0195001spa
dc.relation.referencesKumar, S., Costantino, V., Venturi, V., & Steindler, L. (2017). Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. Marine Drugs, 15(3). https://doi.org/10.3390/md15030053spa
dc.relation.referencesKumar, V., Srijana, M., Chaitanya, K., Harish, Y., Reddy, K., & Reddy, G. (2011). Biodegradation of poultry feathers by a novel bacterial isolate Bacillus altitudinis GVC11. Indian Journal of Biotechnology (Vol. 10).spa
dc.relation.referencesKvennefors, C., Sampayo, E., Kerr, C., Vieira, G., Roff, G., & Barnes, A. C. (2012). Regulation of Bacterial Communities Through Antimicrobial Activity by the Coral Holobiont. Microbial Ecology, 63(3), 605–618. https://doi.org/10.1007/s00248-011-9946-0spa
dc.relation.referencesKvennefors, E. C. E., Sampayo, E., Ridgway, T., Barnes, A. C., & Hoegh-Guldberg, O. (2010). Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site-and Species-Specificity of Common Bacterial Associates. PLoS ONE, 5(4), 1–14. https://doi.org/10.1371/journal.pone.0010401spa
dc.relation.referencesLalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E., & Palleroni, N. J. (2006). Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Reviews, 70(2), 510–547. https://doi.org/10.1128/MMBR.00047-05spa
dc.relation.referencesLam, C., Cadelis, M., & Copp, B. (2017). Exploration of the influence of spiro-dienone moiety on biological activity of the cytotoxic marine alkaloid discorhabdin P. Tetrahedron, 73(32), 4779–4785. https://doi.org/10.1016/j.tet.2017.06.057spa
dc.relation.referencesLane, D. J. (1991). 16/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. John Wiley and Sons.spa
dc.relation.referencesLaSarre, B., & Federle, M. J. (2013). Exploiting Quorum Sensing To Confuse Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 77(1), 73–111. https://doi.org/10.1128/MMBR.00046-12spa
dc.relation.referencesLee, J., Lee, K., & Kuppusany, H. (2011). Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie van Leeuwenhoek, 100, 437–444. https://doi.org/10.1007/s10482-011-9600-3spa
dc.relation.referencesLee, J., & Zhang, L. (2014). The hierarchy quorum sensing network in Pseudomonas aeruginosa. https://doi.org/10.1007/s13238-014-0100-xspa
dc.relation.referencesLee, O., Wang, Y., Yang, J., Lafi, F., Al-Suwailem, A., & Qian, P. Y. (2011). Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME Journal, 5(4), 650–664. https://doi.org/10.1038/ismej.2010.165spa
dc.relation.referencesLee, Y. M., Cho, K. H., Hwang, K., Kim, E. H., Kim, M., Hong, S. G., & Lee, H. K. (2016). Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment. Korean Journal of Microbiology, 52(1), 49–58. https://doi.org/10.7845/kjm.2016.6005spa
dc.relation.referencesLeoni, L., & Rampioni, G. (2018). Quorum Sensing: Methods and Protocols (Vol. 1673). https://doi.org/10.1007/978-1-4939-7309-5spa
dc.relation.referencesLeyton, Y., Letelier, A., Mata, M. T., & Riquelme, C. (2017). Bacillus pumilus marinos inhibidores de la fijación de microalgas a sustratos artificiales. Informacion Tecnologica, 28(2), 181–190. https://doi.org/10.4067/S0718-07642017000200019spa
dc.relation.referencesLi, C. W., Chen, J., & Hua, T. (1998). Precambrian sponges with cellular structures. Science, 279(5352), 879–882. https://doi.org/10.1126/science.279.5352.879spa
dc.relation.referencesLi, Z. (2019). Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Symbiotic Microbiomes of Coral Reefs Sponges and Corals (Marine Bio). https://doi.org/10.1007/978-94-024-1612-1spa
dc.relation.referencesLin, Y., Xu, J., Hu, J., Wang, L., Ong, S. L., Leadbetter, J. R., & Zhang, L. (2003). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Molecular Microbiology, 47, 849–860.spa
dc.relation.referencesLiu, B., Liu, G., Sengonca, C., Schumann, P., Wang, J., Zhu, Y., … Wang, M. (2018). Bacillus praedii sp. nov., isolated from purplish paddy soil. Internationa Journal of Systematic Bacteriology, 67, 2823–2828. https://doi.org/10.1099/ijsem.0.002030spa
dc.relation.referencesLiu, Y., Du, J., Lai, Q., Zeng, R., Ye, D., Xu, J., & Shao, Z. (2019). Proposal of nine novel species of the Bacillus cereus group. Internationa Journal of Systematic Bacteriology, 67, 2499–2508. https://doi.org/10.1099/ijsem.0.001821spa
dc.relation.referencesLiu, Y., Lai, Q., Dong, C., Sun, F., Wang, L., Li, G., & Shao, Z. (2013). Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE, 8(11), 1–11. https://doi.org/10.1371/journal.pone.0080097spa
dc.relation.referencesLiu, Y., Lai, Q., Du, J., & Shao, Z. (2017). Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Scientific Reports, (March), 1–11. https://doi.org/10.1038/s41598-017-00817-1spa
dc.relation.referencesLiu, Y., Lai, Q., Du, J., & Shao, Z. (2018). Bacillus zhangzhouensis sp . nov . and Bacillus australimaris sp. nov. Journal of Systematic and Evolutionary Microbiology, (2016), 1193–1199. https://doi.org/10.1099/ijsem.0.000856spa
dc.relation.referencesLiu, Y., Lai, Q., & Shao, Z. (2019). Genome analysis-based reclassification of Bacillus weihenstephanensis as a later heterotypic synonym of Bacillus mycoides. Internationa Journal of Systematic Bacteriology, 68, 106–112. https://doi.org/10.1099/ijsem.0.002466spa
dc.relation.referencesLowery, C. A., Dickerson, T. J., & Janda, K. D. (2008). Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chemical Society Reviews, 37(7), 1337–1346. https://doi.org/10.1039/b702781hspa
dc.relation.referencesLuter, H. M., Bannister, R. J., Whalan, S., Kutti, T., Pineda, M. C., & Webster, N. S. (2017). Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti. FEMS Microbiology Ecology, 93(6), 1–6. https://doi.org/10.1093/femsec/fix074spa
dc.relation.referencesMadsen, J. S., Burmølle, M., Hansen, L. H., & Sørensen, S. J. (2012). The interconnection between biofilm formation and horizontal gene transfer. FEMS Microbiology Ecology, 65, 183–195. https://doi.org/10.1111/j.1574-695X.2012.00960.xspa
dc.relation.referencesMandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2014). Chemosphere Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101, 55–60. https://doi.org/10.1016/j.chemosphere.2013.11.043spa
dc.relation.referencesMangano, S., Caruso, C., Michaud, L., & Lo Giudice, A. (2018). First evidence of quorum sensing activity in bacteria associated with Antarctic sponges. Polar Biology, 41(7), 1435–1445. https://doi.org/10.1007/s00300-018-2296-3spa
dc.relation.referencesMangano, S., Michaud, L., Caruso, C., Brilli, M., Bruni, V., Fani, R., & Lo Giudice, A. (2009). Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Research in Microbiology, 160(1), 27–37. https://doi.org/10.1016/j.resmic.2008.09.013spa
dc.relation.referencesMcLean, R. J. C., Pierson, L. S., & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 58(3), 351–360. https://doi.org/10.1016/j.mimet.2004.04.016spa
dc.relation.referencesMehrshad, M., Amoozegar, M. A., Didari, M., Bagheri, M., Abolhassan, S., Fazeli, S., … Ventosa, A. (2018). Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Internationa Journal of Systematic Bacteriology, 63(2013), 2776–2781. https://doi.org/10.1099/ijs.0.046961-0spa
dc.relation.referencesMelander, R. J., & Melander, C. (2015). Innovative strategies for combating biofilm-based infections. Advances in Experimental Medicine and Biology (Vol. 831). https://doi.org/10.1007/978-3-319-09782-4_6spa
dc.relation.referencesMieszkin, S., Callow, M. E., & Callow, J. A. (2013). Interactions between microbial biofilms and marine fouling algae: A mini review. Biofouling, 29(9), 1097–1113. https://doi.org/10.1080/08927014.2013.828712spa
dc.relation.referencesMiller, A. W., Blackwelder, P., Al-Sayegh, H., & Richardson, L. L. (2011). Fine-structural analysis of black band disease infected coral reveals boring cyanobacteria and novel bacteria. Diseases of Aquatic Organisms, 93(3), 179–190. https://doi.org/10.3354/dao02305spa
dc.relation.referencesMiller, A. W., & Richardson, L. L. (2012). Fine Structure Analysis of Black Band Disease (BBD) Infected Coral and Coral Exposed to the BBD Toxins Microcystin and Sulfide. Journal of Invertebrate Pathology, 109(1), 27–33. https://doi.org/10.1016/j.jip.2011.09.007spa
dc.relation.referencesMiller, M. B., & Bassler, B. L. (2001). QUORUM SENSING IN BACTERIA. Annual Review of Microbiology, 55, 165–199.spa
dc.relation.referencesMireille, A., Bonnin-Jusserand, M., Brian-Jaisson, F., Ortalo-Magné, A., Culioli, G., Nevry, R. K., … Molmeret, M. (2015). Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology (United Kingdom), 161(10), 2039–2052. https://doi.org/10.1099/mic.0.000147spa
dc.relation.referencesMohamed, N. M., Jinjun, K., Chen, F., Fuqua, C., & Hill, R. T. (2008). Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environmental Microbiology, 10(1), 75–86. https://doi.org/10.1111/j.1462-2920.2007.01431.xspa
dc.relation.referencesMohamed, N. M., Saito, K., Tal, Y., & Hill, R. T. (2010). Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME Journal, 4(1), 38–48. https://doi.org/10.1038/ismej.2009.84spa
dc.relation.referencesMonnet, V., Juillard, V., & Gardan, R. (2016). Peptide conversations in Gram-positive bacteria. Critical Reviews in Microbiology, 42(3), 339–351. https://doi.org/10.3109/1040841X.2014.948804spa
dc.relation.referencesMuller, E. M., & van Woesik, R. (2011). Black-Band Disease Dynamics: Prevalence, Incidence, and Acclimatization to Light. Journal of Experimental Marine Biology and Ecology, 397(1), 52–57. https://doi.org/10.1016/j.jembe.2010.11.002spa
dc.relation.referencesMuller, W. E. G. (2009). Sponges (Porifera). Marine Molecular Biotechnology. https://doi.org/10.1007/978-3-642-55519-0spa
dc.relation.referencesMüller, W., Wang, X., Proksch, P., Perry, C., Osinga, R., Gardères, J., & Schröder, H. (2013). Principles of Biofouling Protection in Marine Sponges : A Model for the Design of Novel Biomimetic and Bio-inspired Coatings in the Marine Environment ? Marine Biotechnology, 24. https://doi.org/10.1007/s10126-013-9497-0spa
dc.relation.referencesNaik, D. N., Wahidullah, S., & Meena, R. M. (2012). Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate – derived Streptomyces sp ., 2, 197–207. https://doi.org/10.1111/lam.12034spa
dc.relation.referencesNishijima, M., Lindsay, D. J., Hata, J., Nakamura, A., Kasai, H., Ise, Y., … Maruyama, T. (2010). Association of thioautotrophic bacteria with deep-sea sponges. Marine Biotechnology, 12(3), 253–260. https://doi.org/10.1007/s10126-009-9253-7spa
dc.relation.referencesNithya, C., Aravindraja, C., & Pandian, S. K. (2010). Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Research in Microbiology, 161(4), 293–304. https://doi.org/10.1016/j.resmic.2010.03.002spa
dc.relation.referencesOkutsu, N., Morohoshi, T., Xie, X., Kato, N., & Ikeda, T. (2016). Characterization of N-acylhomoserine lactones produced by bacteria isolated from industrial cooling water systems. Sensors (Switzerland). https://doi.org/10.3390/s16010044spa
dc.relation.referencesOlson, J. B., Thacker, R. W., & Gochfeld, D. J. (2014). Molecular community profiling reveals impacts of time, space, and disease status on the bacterial community associated with the Caribbean sponge Aplysina cauliformis. FEMS Microbiology Ecology, 87(1), 268–279. https://doi.org/10.1111/1574-6941.12222spa
dc.relation.referencesOrsod, M., Joseph, M., & Huyop, F. (2012). Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian sea bass (Lates calcarifer). Malaysian Journal of Microbiology, 8(3), 170–174. https://doi.org/10.21161/mjm.04412spa
dc.relation.referencesPalmer, A. G., Streng, E., & Blackwell, H. E. (2011). Attenuation of Virulence in Pathogenic Bacteria Using Synthetic Quorum-Sensing Modulators under Native Conditions on Plant Hosts. Chemical Biology, 6, 1348–1356.spa
dc.relation.referencesPanek, M., Čipčić, H., Barešić, A., Mihaela, P., Matijašić, M., Der, D. V. Ben, … Verbanac, D. (2018). Methodology challenges in studying human gut microbiota – effects of collection , storage , DNA extraction and next generation sequencing technologies. Scientifi, (November 2017), 1–13. https://doi.org/10.1038/s41598-018-23296-4spa
dc.relation.referencesPanneerselvan, L., Krishnan, K., Subashchandrabose, S. R., & Naidu, R. (2018). Draft Genome Sequence of Microbacterium esteraromaticum MM1, a Bacterium That Hydrolyzes the Organophosphorus Pesticide Fenamiphos, Isolated from Golf Course Soil. Microbiology Resource Announcements, 7(4), 4–5.spa
dc.relation.referencesPapaleo, M. C., Fondi, M., Maida, I., Perrin, E., Lo Giudice, A., Michaud, L., … Fani, R. (2012). Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30(1), 272–293. https://doi.org/10.1016/j.biotechadv.2011.06.011spa
dc.relation.referencesPapenfort, K., & Bassler, B. L. (2016). Quorum sensing signal – response systems in Gram-negative bacteria. Nature Publishing Group, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89spa
dc.relation.referencesParray, J., Jan, S., Mir, M., Shameem, N., & Kamili, A. (2018). Quorum Sensing: Melody Beneath the Ground. In Plant Microbiome:Stress Response (p. 118).spa
dc.relation.referencesPawlik, J. R. (2011). The Chemical Ecology of Sponges on Caribbean Reefs: Natural Products Shape Natural Systems. BioScience, 61(11), 888–898. https://doi.org/10.1525/bio.2011.61.11.8spa
dc.relation.referencesPazzetto, R., De Oliveira Delani, T. C., Fenelon, V. C., & Matioli, G. (2011). Cyclodextrin production by Bacillus firmus strain 37 cells immobilized on loofa sponge. Process Biochemistry, 46(1), 46–51. https://doi.org/10.1016/j.procbio.2010.07.008spa
dc.relation.referencesPeterson, B. J., Chester, C. M., Jochem, F. J., & Fourqurean, J. W. (2006). Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Marine Ecology Progress Series, 328, 93–103. https://doi.org/10.3354/meps328093spa
dc.relation.referencesPfennig, D. W., Wund, M. A., Snell-rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity ’ s impacts on diversification and speciation. Trends in Ecology & Evolution, 25(8), 459–467. https://doi.org/10.1016/j.tree.2010.05.006spa
dc.relation.referencesPillai, A. B., Kumar, A. J., Thulasi, K., & Kumarapillai, H. (2017). Biotechnology and Industrial Microbiology Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai. Brazilian Journal of Microbiology, 48(3), 451–460. https://doi.org/10.1016/j.bjm.2017.01.005spa
dc.relation.referencesPimentel-Elardo, S., Wehrl, M., Friedrich, A. B., Jensen, P. R., & Hentschel, U. (2003). Isolation of planctomycetes from Aplysina sponges. Aquatic Microbial Ecology, 33(3), 239–245. https://doi.org/10.3354/ame033239spa
dc.relation.referencesPindi, P. K., Manorama, R., Begum, Z., & Shivaji, S. (2010). Arthrobacter antarcticus sp. nov., isolated from an Antarctic marine sediment. Internationa Journal of Systematic Bacteriology, 60, 2263–2266. https://doi.org/10.1099/ijs.0.012989-0spa
dc.relation.referencesPita, L., Fraune, S., Hentschel, U., Taylor, M., & Hill, R. T. (2016). Emerging Sponge Models of Animal-Microbe Symbioses, 7(December), 1–8. https://doi.org/10.3389/fmicb.2016.02102spa
dc.relation.referencesPitt, T. L., Malnick, H., Shah, J., Chattaway, M. A., Keys, C. J., Cooke, F. J., & Shah, H. N. (2007). Characterisation of Exiguobacterium aurantiacum isolates from blood cultures of six patients. Clinical Microbiology and Infection, 13(9), 946–948. https://doi.org/10.1111/j.1469-0691.2007.01779.xspa
dc.relation.referencesPopat, R., Harrison, F., Silva, A. C., Easton, S. A. S., Mcnally, L., Williams, P., & Diggle, S. P. (2017). Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production.spa
dc.relation.referencesPost, W., Zinke, P., & Stangenberger, A. (1982). Soil Carbon Pools and World Life Zones. Nature, 8(July), 156–160.spa
dc.relation.referencesPradhan, A. K., & Pradhan, N. (2013). Application of Lipopeptide Biosurfactant Isolated from a Halophile : Bacillus tequilensis CH for Inhibition of Biofilm. Appl Biochemistry Biotechnology. https://doi.org/10.1007/s12010-013-0428-3spa
dc.relation.referencesPrakash, O., Nimonkar, Y., Chavadar, M. S., & Bharti, N. (2017). Optimization of Nutrients and Culture Conditions for Alkaline Protease Production Using Two Endophytic Micrococci : Micrococcus aloeverae and Micrococcus yunnanensis. Indian Journal of Microbiology. https://doi.org/10.1007/s12088-017-0638-4spa
dc.relation.referencesPraveen Rao, J., Sashidhar, R. B., & Subramanyam, C. (1998). Inhibition of aflatoxin production by trifluoperazine in Aspergillus parasiticus NRRL 2999. World Journal of Microbiology and Biotechnology, 14(1), 71–75. https://doi.org/10.1023/A:1008876517450spa
dc.relation.referencesPrum, C., Dolphen, R., & Thiravetyan, P. (2018). Enhancing arsenic removal from arsenic-contaminated water by Echinodorus cordifolius À endophytic Arthrobacter creatinolyticus interactions. Journal of Environmental Management, 213, 11–19. https://doi.org/10.1016/j.jenvman.2018.02.060spa
dc.relation.referencesQuévrain, E., & Domart-coulon, I. (2014). Marine Natural Products – Chemical Defense / Chemical Communication in Sponges and Corals. Natural Products: Discourse, Diversity, and Design, First Edition, 39–66. https://doi.org/10.1002/9781118794623spa
dc.relation.referencesRailkin, A. (2004). MARINE BIOFOULING: Colonization, Processes and Defenses (CRC Press). New York.spa
dc.relation.referencesRaina, J. B., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Applied and Environmental Microbiology, 75(11), 3492–3501. https://doi.org/10.1128/AEM.02567-08spa
dc.relation.referencesRajesh, P. S., & Ravishankar Rai, V. (2014). Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiological Research, 169(7–8), 561–569. https://doi.org/10.1016/j.micres.2013.10.005spa
dc.relation.referencesRamanan, R., Kim, B., Cho, D., Oh, H., & Kim, H. (2016). Algae – bacteria interactions : Evolution , ecology and emerging applications. Biotechnology Advances, 34(1), 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003spa
dc.relation.referencesRamanauskas, R., Lugauskas, A., Juzeliuñas, E., Samuleviciene, M., & Leinartas, K. (2005). Microbially influenced corrosion acceleration and inhibition . EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans , Aspergillus niger and Bacillus mycoides. Electrochemistry Communications, 7, 305–311. https://doi.org/10.1016/j.elecom.2005.01.012spa
dc.relation.referencesRamesh, R., Puhazhendi, P., Kumar, J., Kuppuswami, M., Francis, S., Souza, D., & Ramudu, N. (2015). Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Materials Science & Engineering C, 49, 786–792. https://doi.org/10.1016/j.msec.2015.01.048spa
dc.relation.referencesRao, D., Webb, J. S., & Kjelleberg, S. (2005). Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 71(4), 1729–1736. https://doi.org/10.1128/AEM.71.4.1729-1736.2005spa
dc.relation.referencesRao, D., Webb, J. S., & Kjelleberg, S. (2006). Microbial colonization and competition on the marine alga Ulva australis. Applied and Environmental Microbiology, 72(8), 5547–5555. https://doi.org/10.1128/AEM.00449-06spa
dc.relation.referencesReveillaud, J., Maignien, L., Eren, M. A., Huber, J. A., Apprill, A., Sogin, M. L., & Vanreusel, A. (2014). Host-specificity among abundant and rare taxa in the sponge microbiome. ISME Journal, 8(6), 1198–1209. https://doi.org/10.1038/ismej.2013.227spa
dc.relation.referencesReverter, M., Perez, T., Ereskovsky, A. V., & Banaigs, B. (2016). Secondary Metabolome Variability and Inducible Chemical Defenses in the Mediterranean Sponge Aplysina cavernicola. Journal of Chemical Ecology, 42(1), 60–70. https://doi.org/10.1007/s10886-015-0664-9spa
dc.relation.referencesRibeiro, S., Rogers, R., Rubem, A., Da Gama, B., Muricy, G., & Pereira, R. (2013). Antifouling activity of twelve demosponges from Brazil. Brazilian Journal of Biology, 73(3), 501–506. https://doi.org/10.1590/s1519-69842013000300006spa
dc.relation.referencesRibes, M., & Jimenez, E. (2011). Mediated nitrification as a source of dissolved by inorganic nitrogen : Sponges temperate sponges. Limnology, 52(3), 948–958.spa
dc.relation.referencesRice, S. A., Mcdougald, D., & Givskov, M. (2008). Detection and Inhibition of Bacterial Cell-Cell Comunication. Methods in Molecular Biology, pp. 55–68.spa
dc.relation.referencesRipe, L., Diaz, E., & Arévalo-Ferro, C. (2016). Caracterización molecular de comunidades bacterianas cultivables de corales sanos y con enfermedad de Banda Negra del Caribe colombiano. Universidad Distrital Francisco José de Caldas. Universidad Nacional de Colombia.spa
dc.relation.referencesRitchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1–14. https://doi.org/10.3354/meps322001spa
dc.relation.referencesRobles-Escajeda, E., Das, U., Ortega, N. M., Parra, K., Francia, G., Dimmock, J. R., … Aguilera, R. J. (2016). A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cellular Oncology, 39(3), 265–277. https://doi.org/10.1007/s13402-016-0272-xspa
dc.relation.referencesRoder, C., Arif, C., Bayer, T., Aranda, M., Daniels, C., Shibl, A., … Voolstra, C. R. (2014). Bacterial Profiling of White Plague Disease in a Comparative Coral Species Framework. The ISME JournalISME Journal, 8(1), 31–39. https://doi.org/10.1038/ismej.2013.127spa
dc.relation.referencesRoder, C., Arif, C., Daniels, C., Weil, E., & Voolstra, C. R. (2014). Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Molecular Ecology, 23(4), 965–974. https://doi.org/10.1111/mec.12638spa
dc.relation.referencesRomaní, A. M., Guasch, H., & Balaguer, M. D. (2016). Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment. United Kingdom: Caister Academic Press.spa
dc.relation.referencesRomero, M., Martin-Cuadrado, A. B., Roca-Rivada, A., Cabello, A. M., & Otero, A. (2011). Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiology Ecology. https://doi.org/10.1111/j.1574-6941.2010.01011.xspa
dc.relation.referencesRose, H. L., Dewey, C. A., Ely, M. S., Willoughby, S. L., Parsons, T. M., Cox, V., … Weller, S. A. (2011). Comparison of Eight Methods for the Extraction of Bacillus atrophaeus Spore DNA from Eleven Common Interferents and a Common Swab. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0022668spa
dc.relation.referencesRosenberg, E., & Zilber-Rosenberg, I. (2014). Variation in Holobionts. In The Hologenome Concept: Human, Animal and Plant Microbiota (p. 178). sp. https://doi.org/10.1007/978-3-319-04241-1spa
dc.relation.referencesRosselló-móra, R., & Amann, R. (2015). Past and future species definitions for Bacteria and Archaea. Systematic and Applied Microbiology, 38(4), 209–216. https://doi.org/10.1016/j.syapm.2015.02.001spa
dc.relation.referencesRuginescu, R. M., Cojoc, R., Enache, M., & Lazăr, V. (2018). Preliminary Characterization of a Cellulase Producing Bacterial Strain Isolated from a Romanian Hypersaline Lake. Journal of Environmental Protection, 9, 1066–1081. https://doi.org/10.4236/jep.2018.910066spa
dc.relation.referencesRyall, B., Eydallin, G., & Ferenci, T. (2012). Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation : the Adaptomics of a Single Environmental Transition. Microbiology and Molecular Biology Reviews, 76(3), 597–625. https://doi.org/10.1128/MMBR.05028-11spa
dc.relation.referencesSabreen, B., & Paramasivam, N. (2014). Screening and evaluation of marine bacteriocins against aquaculture pathogens. International Journal of PharmTech Research, 6(5), 1482–1489.spa
dc.relation.referencesSaitou, N., & Nei, M. (1987). The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/citeulike-article-id:93683spa
dc.relation.referencesSandy, M., Carter-Franklin, J. N., Martin, J. D., & Butler, A. (2011). Vanadium bromoperoxidase from Delisea pulchra: Enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing. Chemical Communications, 47(44), 12086–12088. https://doi.org/10.1039/c1cc15605espa
dc.relation.referencesSanthi, S., Talluri, P., Sy, N., & Radha, K. (2017). Bioactive Compounds from Marine Sponge Associates: Antibiotics from Bacillus Sp. Natural Products Chemistry and Research, 5(4). https://doi.org/10.4172/2329-6836.1000266spa
dc.relation.referencesSathiyanarayanan, G., Saibaba, G., Kiran, G. S., Yang, Y. H., & Selvin, J. (2017). Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Critical Reviews in Microbiology, 43(3), 294–312. https://doi.org/10.1080/1040841X.2016.1206060spa
dc.relation.referencesSato, Y., Willis, B. L., & Bourne, D. G. (2013). Pyrosequencing-Based Profiling of Archaeal and Bacterial 16S rRNA Genes Identifies a Novel Archaeon Associated with Black Band Disease in Corals. Environmental Microbiology, 15(11), 2994–3007. https://doi.org/10.1111/1462-2920.12256spa
dc.relation.referencesSaurav, K., Burgsdorf, I., Teta, R., Esposito, G., & Bar-shalom, R. (2016). Isolation of Marine Paracoccus sp . Ss63 from the Sponge Sarcotragus sp . and Characterization of its Quorum- Sensing Chemical-Signaling Molecules by LC-MS / MS Analysis. Israel Journal of Chemistry, 80131, 330–340. https://doi.org/10.1002/ijch.201600003spa
dc.relation.referencesSayem, S. M. A., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., … Varcamonti, M. (2011). Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microbial Cell Factories, 10, 1–12. https://doi.org/10.1186/1475-2859-10-74spa
dc.relation.referencesSchmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., … Taylor, M. W. (2011). Assessing the complex sponge microbiota : core , variable and species-specific bacterial communities in marine sponges. The ISME Journal, 6(3), 564–576. https://doi.org/10.1038/ismej.2011.116spa
dc.relation.referencesSchultz, M. P., Bendick, J. A., Holm, E. R., & Hertel, W. M. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27(1), 87–98. https://doi.org/10.1080/08927014.2010.542809spa
dc.relation.referencesSchweizer, H. P. (1999). Characterization of Pseudomonas aeruginosa Enoyl-Acyl Carrier Protein Reductase ( FabI ): a Target for the Antimicrobial Triclosan and Its Role in Acylated Homoserine Lactone Synthesis. Journal of Bacteriology, 181(17), 5489–5497.spa
dc.relation.referencesSexton, D. J., & Schuster, M. (2017). Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nature Communications, 8(230). https://doi.org/10.1038/s41467-017-00222-2spa
dc.relation.referencesShaala, L. A., Youssef, D. T. A., Badr, J. M., Sulaiman, M., & Khedr, A. (2015). Bioactive secondary metabolites from the Red Sea marine Verongid sponge Suberea species. Marine Drugs, 13(4), 1621–1631. https://doi.org/10.3390/md13041621spa
dc.relation.referencesShivaji, S., Chaturvedi, P., Begum, Z., Pindi, P. K., Manorama, R., Padmanaban, D. A., … Narlikar, J. V. (2019). Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Internationa Journal of Systematic Bacteriology, 59(2009), 2977–2986. https://doi.org/10.1099/ijs.0.002527-0spa
dc.relation.referencesSiegl, A., Kamke, J., Hochmuth, T., Piel, J., Richter, M., Liang, C., … Hentschel, U. (2011). Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME Journal, 5(1), 61–70. https://doi.org/10.1038/ismej.2010.95spa
dc.relation.referencesSimister, R. L., Deines, P., Botté, E. S., Webster, N. S., & Taylor, M. W. (2012). Sponge-specific clusters revisited: A comprehensive phylogeny of sponge-associated microorganisms. Environmental Microbiology, 14(2), 517–524. https://doi.org/10.1111/j.1462-2920.2011.02664.xspa
dc.relation.referencesSingh, R., Paul, D., & Jain, R. K. (2006). Biofilms: implications in bioremediation. Trends in Microbiology, 14(9), 389–397. https://doi.org/10.1016/j.tim.2006.07.001spa
dc.relation.referencesSitarz, A. K., Mikkelsen, J. D., Meyer, A. S., Sitarz, A. K., Mikkelsen, J. D., & Structure, A. S. M. (2016). Critical Reviews in Biotechnology Structure , functionality and tuning up of laccases for lignocellulose and other industrial applications and other industrial applications. Critical Reviews in Biothecnology, 8551. https://doi.org/10.3109/07388551.2014.949617spa
dc.relation.referencesSlaby, B. M., Hackl, T., Horn, H., Bayer, K., & Hentschel, U. (2017a). Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME Journal, 11(11), 2465–2478. https://doi.org/10.1038/ismej.2017.101spa
dc.relation.referencesSlaby, B. M., Hackl, T., Horn, H., Bayer, K., & Hentschel, U. (2017b). Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME Journal, 11(11), 2465–2478. https://doi.org/10.1038/ismej.2017.101spa
dc.relation.referencesSnajdr, J., Urbanov, M., & Baldrian, P. (2015). Soil Biology & Biochemistry Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry Journal, 1(February), 1–13. https://doi.org/10.1016/j.soilbio.2015.02.011spa
dc.relation.referencesSolano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18(1), 96–104. https://doi.org/10.1016/j.mib.2014.02.008spa
dc.relation.referencesSonalkar, V. V, Mawlankar, R., Ramana, V. V., Joseph, N., Shouche, Y. S., & Dastager, S. G. (2015). Bacillus filamentosus sp. nov., isolated from sediment sample, 433–441. https://doi.org/10.1007/s10482-014-0341-yspa
dc.relation.referencesSondhi, S., Sharma, P., Saini, S., Puri, N., & Gupta, N. (2014). Purification and Characterization of an Extracellular , Thermo-Alkali-Stable , Metal Tolerant Laccase from Bacillus tequilensis SN4. PLoS ONE, 9(5), 1–10. https://doi.org/10.1371/journal.pone.0096951spa
dc.relation.referencesStackebrandt, A. L. (2015). Micrococcus. Bergey’s Manual of Systematic Bacteriology. https://doi.org/10.1002/9781118960608.gbm00121.spa
dc.relation.referencesSteindler, L., & Venturi, V. (2007). Detection of Quorum-Sensing N-acyl Homoserine Lactone Signal Molecules by Bacterial Biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/j.1574-6968.2006.00501.xspa
dc.relation.referencesStowe, S. D., Richards, J. J., Tucker, A. T., Thompson, R., Melander, C., & Cavanagh, J. (2011). Anti-biofilm compounds derived from marine sponges. Marine Drugs, 9(10), 2010–2035. https://doi.org/10.3390/md9102010spa
dc.relation.referencesStubler, A. D., Furman, B. T., & Peterson, B. J. (2015). Sponge erosion under acidification and warming scenarios: Differential impacts on living and dead coral. Global Change Biology, 21(11), 4006–4020. https://doi.org/10.1111/gcb.13002spa
dc.relation.referencesSu, J., Yang, X., Zhou, Y., & Zheng, T. (2011). Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biological Control, 56(2), 132–138. https://doi.org/10.1016/j.biocontrol.2010.10.004spa
dc.relation.referencesSun, B., Li, T., Xiao, J., Liu, L., Zhang, P., Murphy, R. W., … Huang, D. (2016). Contribution of multiple inter-kingdom horizontal gene transfers to evolution and adaptation of amphibian-killing chytrid, Batrachochytrium dendrobatidis. Frontiers in Microbiology, 7(AUG), 1–10. https://doi.org/10.3389/fmicb.2016.01360spa
dc.relation.referencesSunar, K., Dey, P., Chakraborty, U., & Chakraborty, B. (2013). Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills , India. Journal of Basic Microbiology, 53, 1–14. https://doi.org/10.1002/jobm.201300227spa
dc.relation.referencesSundaramanickam, S. S. A., Meena, K. S. M., & Balasubramanian, S. K. T. (2018). Production and characterization of biosurfactant by marine bacterium Pseudomonas stutzeri ( SSASM1 ). International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1915-4spa
dc.relation.referencesSwift, S., Winson, M. K., Chan, P. F., Bainton, N. J., Birdsall, M., Reeves, P. J., … Throup, J. P. (1993). A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Molecular Microbiology, 10(3), 511–520. https://doi.org/10.1111/j.1365-2958.1993.tb00923.xspa
dc.relation.referencesTait, K., Joint, I., Daykin, M., Milton, D. L., Williams, P., & Cámara, M. (2005). Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environmental Microbiology, 7(2), 229–240. https://doi.org/10.1111/j.1462-2920.2004.00706.xspa
dc.relation.referencesTambekar, D., Tambekar, S., Jadhav, D., & Bhule, P. (2017). Extraction and Partial characterization of thermostable , alkaline tolerant a-amylase from Bacillus oryzaecorticis. BioScience Discovery, 8(2), 206–210.spa
dc.relation.referencesTamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197spa
dc.relation.referencesTatli, H., & Dalfes, H. N. (2015). Defining Holdridge ’ s life zones over Turkey. International Journal of Climatology. https://doi.org/10.1002/joc.4600spa
dc.relation.referencesTaylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/MMBR.00040-06spa
dc.relation.referencesTaylor, M. W., Schupp, P. J., Baillie, H. J., Charlton, T. S., Nys, R. De, Kjelleberg, S., & Steinberg, P. D. (2004). Evidence for Acyl Homoserine Lactone Signal Production in Bacteria Associated with Marine Sponges Evidence for Acyl Homoserine Lactone Signal Production in Bacteria Associated with Marine Sponges. Applied and Environmental Microbilogy, 70(7), 4387–4389. https://doi.org/10.1128/AEM.70.7.4387spa
dc.relation.referencesaylor, P., Dobretsov, S., Dahms, H., & Qian, P. (2007). Biofouling : The Journal of Bioadhesion and Biofilm Inhibition of biofouling by marine microorganisms and their metabolites, (May 2013), 37–41. https://doi.org/10.1080/08927010500504784spa
dc.relation.referencesTaylor, P., & Inbakandan, D. (2010). 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship ’ s hull. Biofouling: The Journal of Bioadhesion and Biofilm Research, 26(8), 37–41. https://doi.org/10.1080/08927014.2010.530347spa
dc.relation.referencesThenmozhi, R., Nithyanand, P., Rathna, J., & Karutha Pandian, S. (2009). Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunology and Medical Microbiology, 57(3), 284–294. https://doi.org/10.1111/j.1574-695X.2009.00613.xspa
dc.relation.referencesThomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J. R., Easson, C., Astudillo-García, C., … Webster, N. S. (2016). Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications, 7(May). https://doi.org/10.1038/ncomms11870spa
dc.relation.referencesThompson, J., Gibson, T., & Higgins, D. (2002). Multiple Sequence Alignment Using ClustalW and ClustalX. Current Protocols in Bioinformatics, 2(3), 1–22. https://doi.org/10.1002/0471250953.bi0203s00spa
dc.relation.referencesThurber, R. V., Willner-Hall, D., Rodriguez-Mueller, B., Desnues, C., Edwards, R. A., Angly, F., … Rohwer, F. (2009). Metagenomic Analysis of Stressed Coral Holobionts. Environmental Microbiology, 11(8), 2148–2163. https://doi.org/10.1111/j.1462-2920.2009.01935.xspa
dc.relation.referencesToole, G. O., Kaplan, H. B., & Kolter, R. (2000). BIOFILM FORMATION ASMICROBIAL DEVELOPMENT. Annual Review of Microbiology, 54, 49–79.spa
dc.relation.referencesTopor, Z. M., Rasher, D. B., Duffy, J. E., & Brandl, S. J. (2019). Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conservation Letters, (November 2018), 1–9. https://doi.org/10.1111/conl.12638spa
dc.relation.referencesToyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry, 80(1), 7–12. https://doi.org/10.1080/09168451.2015.1058701spa
dc.relation.referencesTrivedi, N., Gupta, V., Kumar, M., Kumari, P., C.R.K.Reddy, & Jha, B. (2011). An Alkali-Halotolerant Cellulase From Bacillus flexus Isolated From Green Seaweed Ulva lactuca. Carbohydrate Polymers, 83(2), 891–897. https://doi.org/10.1016/J.CARBPOL.2010.08.069spa
dc.relation.referencesUrzì, C., De Leo, F., Krakova, L., Pangallo, D., & Bruno, L. (2016). Effects of biocide treatments on the biofilm community in Domitilla’s catacombs in Rome. Science of the Total Environment, 572, 252–262. https://doi.org/10.1016/j.scitotenv.2016.07.195spa
dc.relation.referencesVaishampayan, P., Miyashita, M., Ohnishi, A., Satomi, M., Rooney, A., Duc, M. T. La, & Venkateswaran, K. (2018). Description of Rummeliibacillus stabekisii gen . nov ., sp . nov . and reclassification of Bacillus pycnus Nakamura et al . 2002 as Rummeliibacillus pycnus. Internationa Journal of Systematic Bacteriology, 58(2009), 1094–1099. https://doi.org/10.1099/ijs.0.006098-0spa
dc.relation.referencesVaishampayan, P., Moissl-eichinger, C., Schumann, P., Spro, C., Augustus, A., Roberts, A. H., … Venkateswaran, K. (2019). Description of Tersicoccus phoenicis gen . nov ., sp . nov . isolated from spacecraft assembly clean room environments, (2013), 2463–2471. https://doi.org/10.1099/ijs.0.047134-0spa
dc.relation.referencesVenturi, V., & Keel, C. (2016). Signaling in the Rhizosphere. Trends in Plant Science, 21(3), 187–198. https://doi.org/10.1016/j.tplants.2016.01.005spa
dc.relation.referencesViswanath, G., Jegan, S., Baskaran, V., Kathiravan, R., & Prabavathy, V. R. (2015). Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves. Systematic and Applied Microbiology, 6–11. https://doi.org/10.1016/j.syapm.2015.03.008spa
dc.relation.referencesVoss, J. D., & Richardson, L. L. (2006). Nutrient Enrichment Enhances Black Band Disease Progression in Corals. Coral Reefs, 25(4), 569–576. https://doi.org/10.1007/s00338-006-0131-8spa
dc.relation.referencesVu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535–2554. https://doi.org/10.3390/molecules14072535spa
dc.relation.referencesWahl, M., Goecke, F., Labes, A., Dobretsov, S., & Weinberger, F. (2012). The second skin: Ecological role of epibiotic biofilms on marine organisms. Frontiers in Microbiology, 3(AUG), 1–21. https://doi.org/10.3389/fmicb.2012.00292spa
dc.relation.referencesWang, M., Schaefer, A. L., Dandekar, A. A., & Greenberg, E. P. (2015). Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. PNAS, 112(7), 2187–2191. https://doi.org/10.1073/pnas.1500704112spa
dc.relation.referencesWang, X., Bi, X., Hem, L. J., & Ratnaweera, H. (2018). Microbial community composition of a multi-stage moving bed biofilm reactor and its interaction with kinetic model parameters estimation. Journal of Environmental Management, 218, 340–347. https://doi.org/10.1016/j.jenvman.2018.04.015spa
dc.relation.referencesWanick, R., & Cunha, R. (2015). Screening for Cultivable Species of Marine Sponges (porifera) in an Ecologically Inspired ex situ System. Journal of Fisheires, 9(October), 11.spa
dc.relation.referencesWard-Paige, C. A., Risk, M. J., Sherwood, O. A., & Jaap, W. C. (2005). Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Marine Pollution Bulletin, 51(5–7), 570–579. https://doi.org/10.1016/j.marpolbul.2005.04.006spa
dc.relation.referencesWebster, N. S., & Taylor, M. W. (2012). Marine sponges and their microbial symbionts: Love and other relationships. Environmental Microbiology, 14(2), 335–346. https://doi.org/10.1111/j.1462-2920.2011.02460.xspa
dc.relation.referencesWebster, N. S., Taylor, M. W., Behnam, F., Lücker, S., Rattei, T., Whalan, S., … Wagner, M. (2010). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 12(8), 2070–2082. https://doi.org/10.1111/j.1462-2920.2009.02065.xspa
dc.relation.referencesWebster, N. S., & Thomas, T. (2016). The sponge hologenome. MBio, 7(2), 1–14. https://doi.org/10.1128/mBio.00135-16spa
dc.relation.referencesWechsler, T., & Kümmerli, R. (2019). Understanding policing as a mechanism of cheater control in cooperating bacteria, (October 2018), 412–424. https://doi.org/10.1111/jeb.13423spa
dc.relation.referencesWheeler, G. L., Tait, K., Taylor, A., Brownlee, C., & Joint, I. (2006). Acyl-homoserine Lactones Modulate the Settlement Rate of Zospores of the Marine Alga Ulva intestinalis Via a Novel Chemokinetic Mechanism. Plant, Cell and Environment, 29(4), 608–618. https://doi.org/10.1111/j.1365-3040.2005.01440.xspa
dc.relation.referencesWhiteley, M., Lee, K. M., & Greenberg, E. P. (1999). Identification of Genes Controlled by Quorum Sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 96(24), 13904–13909. https://doi.org/10.1073/pnas.96.24.13904spa
dc.relation.referencesWielinga, P. R., Heer, L. De, Groot, A. De, Hamidjaja, R. A., Bruggeman, G., Jordan, K., & Rotterdam, B. J. Van. (2011). Evaluation of DNA extraction methods for Bacillus anthracis spores spiked to food and feed matrices at biosafety level 3 conditions. International Journal of Food Microbiology, 150(2–3), 122–127. https://doi.org/10.1016/j.ijfoodmicro.2011.07.023spa
dc.relation.referencesWietz, M., Duncan, K., Patin, N. V., & Jensen, P. R. (2013). Antagonistic Interactions Mediated by Marine Bacteria: The Role of Small Molecules. Journal of Chemical Ecology, 39(7), 879–891. https://doi.org/10.1007/s10886-013-0316-xspa
dc.relation.referencesWolcott, R., Costerton, J. W., Raoult, D., & Cutler, S. J. (2012). The polymicrobial nature of biofilm infection. Clinical Microbiology and Infection, 19(2), 107–112. https://doi.org/10.1111/j.1469-0691.2012.04001.xspa
dc.relation.referencesWulff, J. L. (2001). Assessing and monithoring coral reef sponges: why and how? Bulletin of Marine Science, 69(2), 831–846.spa
dc.relation.referencesXi, J., He, L., Huang, Z., & Sheng, X. (2014). Bacillus qingshengii sp . nov ., a rock-weathering bacterium isolated from weathered rock surface. Internationa Journal of Systematic Bacteriology, 64, 2473–2479. https://doi.org/10.1099/ijs.0.061929-0spa
dc.relation.referencesXin, X., Huang, G., Zhou, X., Sun, W., Jin, C., Jiang, W., & Zhao, S. (2017). Potential antifouling compounds with antidiatom adhesion activities from the sponge-associated bacteria, Bacillus pumilus. Journal of Adhesion Science and Technology, 31(9), 1028–1043. https://doi.org/10.1080/01694243.2016.1242219spa
dc.relation.referencesYang, Q., Franco, C. M. M., & Zhang, W. (2015). Sponge-associated actinobacterial diversity: validation of the methods of actinobacterial DNA extraction and optimization of 16S rRNA gene amplification. Applied Microbiology and Biotechnology, 99(20), 8731–8740. https://doi.org/10.1007/s00253-015-6875-8spa
dc.relation.referencesYarza, P., Ludwig, W., Euzéby, J., Amann, R., Schleifer, K. H., Glöckner, F. O., & Rosselló-Móra, R. (2010). Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Systematic and Applied Microbiology, 33(6), 291–299. https://doi.org/10.1016/j.syapm.2010.08.001spa
dc.relation.referencesZhang, Z., Wilson, D. E., Reeder, D. M., Wen, T., Amrine, J. W., Beron, P., … Adrain, J. M. (2011). Animal biodiversity : An outline of higher-level classification and survey of taxonomic richness. Zootaxa (Vol. 3148). https://doi.org/10.1371/journal.pone.0005502.Franzspa
dc.relation.referencesZhu, J., Dai, W., Qiu, Q., Dong, C., & Zhang, J. (2016). Contrasting Ecological Processes and Functional Compositions Between Intestinal Bacterial Community in Healthy and Diseased Shrimp. Microbial Ecology. https://doi.org/10.1007/s00248-016-0831-8spa
dc.relation.referencesZiganshina, E. E., Mohammed, W. S., Shagimardanova, E. I., Shigapova, L. H., & Ziganshin, A. M. (2018). Draft genome sequence of Bacillus pumilus strain EZ ‑ C07 isolated from digested agricultural wastes. BMC Research Notes, 10–12. https://doi.org/10.1186/s13104-018-3710-1spa
dc.relation.referencesZimmer, B. L., May, A. L., Bhedi, C. D., Dearth, S. P., Prevatte, C. W., Pratte, Z., … Richardson, L. L. (2014). Quorum Sensing Signal Production and Microbial Interactions in a Polymicrobial Disease of Corals and the Coral Surface Mucopolysaccharide Layer. PLoS ONE, 9(9), 1–16. https://doi.org/10.1371/journal.pone.0108541spa
dc.relation.referencesZinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M. C., Huse, S. M., Welch, D. B. M., … Ramette, A. (2011). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6(9), 1–11. https://doi.org/10.1371/journal.pone.0024570spa
dc.relation.referencesde los Octocorales Eunicea sp ., y Pseudopterogorgia elisabethae. Universidad Nacional de Colombia.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc577 - Ecologíaspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc593 - Miscelánea Invertebrados marinos y costeros diversosspa
dc.subject.ddc579 - Historia natural microorganismos, hongos, algasspa
dc.subject.proposalcomunidades bacterianasspa
dc.subject.proposalbacterial communitieseng
dc.subject.proposalbiofoulingspa
dc.subject.proposalbiofoulingeng
dc.subject.proposalbiofilmeng
dc.subject.proposalbiofilmspa
dc.subject.proposalquorum sensingspa
dc.subject.proposalquorum sensingeng
dc.subject.proposalinhibición del quorum sensingspa
dc.subject.proposalquorum sensing inhibitioneng
dc.subject.proposalantagonismo bacterianospa
dc.subject.proposalbacterial antagonismeng
dc.titleAntagonismo e inhibición de la comunicación bacteriana en bacterias cultivables aisladas de esponjas del Caribe Colombiano con Biofouling y sin Biofoulingspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1147687914.2020.pdf
Tamaño:
2.66 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: