En 4 día(s), 11 hora(s) y 50 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Determinación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus

dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.authorTrujillo Morales, Paula Camila
dc.date.accessioned2022-08-05T19:44:34Z
dc.date.available2022-08-05T19:44:34Z
dc.date.issued2022
dc.descriptionfotografías a color, gráficas, ilustraciones, tablasspa
dc.description.abstractStaphylococcus aureus es una bacteria gram positiva, patógeno oportunista con capacidad de generar infecciones potencialmente mortales en humanos por la producción de varios factores de virulencia, del mismo modo muchos procesos biológicos de esta bacteria no son completamente entendidos, como por ejemplo el procesamiento de su ARN. Recientemente, en nuestro laboratorio, se identificó la proteína Qrp/YheA la cual posee el dominio Com_YlbF, la deleción del gen qrp produce un aumento en la hemólisis de eritrocitos y disminución en la formación de biofilm, posiblemente asociada a la desregulación en la transcripción de algunos factores de virulencia de la bacteria. Otra proteína con dominio Com_YlbF es YmcA, cuya ausencia en Bacillus subtilis inhibe la formación de biofilm, a través de la alteración de la actividad de la RNasa Y, con quien también interactúa. En S. aureus no se conoce el rol de YmcA. Por lo cual el objetivo de este trabajo fue determinar la interacción de la proteína YmcA con RNasa Y y determinar su participación en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus. Para ello se realizó la mutación delecional del gen ymcA, que causó un descenso en la capacidad hemolítica de la bacteria y un incremento en la capacidad de formación de biofilm de esta. Por otro lado, con el ensayo de Far Western Blot se demostró la interacción de la proteína YmcA con la ribonucleasa RNasa Y. Concluyendo así que la proteína YmcA participa en la hemólisis y biofilm de S. aureus probablemente debido a la interacción de YmcA con la RNasa Y. (Texto tomado de la fuente)spa
dc.description.abstractStaphylococcus aureus is a gram-positive bacterium, an opportunistic pathogen with the capacity to generate life-threatening infections in humans due to the production of various virulence factors. Currently, many biological processes of this bacterium are not fully understood, such as the processing of its RNA. Recently, in our laboratory, the Qrp/YheA protein was identified, which has the Com_YlbF domain. The deletion of the qrp gene produces an increase in erythrocyte hemolysis and a decrease in biofilm formation, possibly associated with transcription deregulation. some bacterial virulence factors. Another protein with a Com_YlbF domain is YmcA, whose absence in Bacillus subtilis inhibits biofilm formation by altering the activity of RNase Y, with which it also interacts. In S. aureus the role of YmcA is not known. Therefore, the objective of this work is to determine the interaction of the YmcA protein with RNase Y and to determine its participation in the regulation of hemolysis and biofilm formation in Staphylococcus aureus. For this, the deletional mutation of the ymcA gene was carried out, obtaining a decrease in the hemolytic capacity of the bacteria and an increase in its biofilm formation capacity. The Far Western Blot assay also demonstrated the interaction of the YmcA protein with ribonuclease RNase Y. Concluding that the YmcA protein participates in the hemolysis and biofilm of S. aureus and this is possibly due to the interaction of YmcA with RNase Y (Text taken of source)eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaEstudio de factores de virulencia y elementos genéticos móviles bacterianos.spa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81796
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). General characteristics of Staphylococcus aureus. Revista latinoamericana de patología clínica y medicina de laboratorio, 61(1), 28-40spa
dc.relation.referencesVelázquez-Meza, Maria Elena. (2005). Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. Salud Pública de México, 47(5), 381- 387.spa
dc.relation.referencesPaganini, Hugo R., Della Latta, Paula, Soto, Adriana, Casimir, Lidia, Mónaco, Andrea, Verdaguer, Virginia, Berberian, Griselda, Rosanova, María T., González, Fernando, & Sarkis, Claudia. (2010). Bacteriemias por Staphylococcus aureus adquiridas en la comunidad: 17 años de experiencia en niños de la Argentina. Archivos argentinos de pediatría, 108(4), 311-317spa
dc.relation.referencesCalderini, M., Sanabria, B. G., Taboada, A., Samaniego, S., Irala, B. J., & Estigarribia, G. B. (2015). Colonización nasal de Staphylococcus aureus y su relación con afectación sistémica en pacientes adultos intearndos en el Instituto de Medicina Tropical. de Medicina Tropical, 13.spa
dc.relation.referencesDalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., ... & Prévost, G. (2005). Staphylococcus aureus bicomponent γ-hemolysins, HlgA, HlgB, and HlgC, can form mixed pores containing all components. Jouarnl of chemical information and modeling, 45(6), 1539-1545.spa
dc.relation.referencesArcher, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2(5), 445-459.spa
dc.relation.referencesBeenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., ... & Smeltzer, M. S. (2004). Global gene expression in Staphylococcus aureus biofilms. Jouarnl of bacteriology, 186(14), 4665-4684.spa
dc.relation.referencesOtto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).spa
dc.relation.referencesGauliard, E., Ouellette, S. P., Rueden, K. J., & Ladant, D. (2015). Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Frontiers in cellular and infection microbiology, 5, 13.spa
dc.relation.referencesOtto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine, 64, 175- 188.spa
dc.relation.referencesAbee T, Kovács ÁT, Kuipers OP, van der Veen S. (2011) Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology.spa
dc.relation.referencesValle, J., Toledo‐Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penadés, J. R., & Lasa, I. (2003). SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular microbiology, 48(4), 1075-1087.spa
dc.relation.referencesBeenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and immunity, 71(7), 4206-4211.spa
dc.relation.referencesChan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Jouarnl of medicinal chemistry, 47(19), 4633-4641.spa
dc.relation.referencesBeenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., ... & Smeltzer, M. S. (2010). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS one, 5(5).spa
dc.relation.referencesKong, K. F., Vuong, C., & Otto, M. (2006). Staphylococcus quorum sensing in biofilm formation and infection. Intearntional Jouarnl of Medical Microbiology, 296(2-3), 133-139.spa
dc.relation.referencesLiu, Q., Yeo, W. S., & Bae, T. (2016). The SaeRS two‐component system of Staphylococcus aureus. Genes, 7(10), 81.spa
dc.relation.referencesNicholas, R. O., Li, T., McDevitt, D., Marra, A., Sucoloski, S., Demarsh, P. L., & Gentry, D. R. (1999). Isolation and Characterization of a sigBDeletion Mutant of Staphylococcus aureus. Infection and immunity, 67(7), 3667-3669.spa
dc.relation.referencesRachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M., & Ziebuhr, W. (2000). Altearntive Transcription Factor ςB Is Involved in Regulation of Biofilm Expression in a Staphylococcus aureus Mucosal Isolate. Jouarnl of bacteriology, 182(23), 6824-6826.spa
dc.relation.referencesKennedy, A. D., Wardenburg, J. B., Gardner, D. J., Long, D., Whitney, A. R., Braughton, K. R., ... & DeLeo, F. R. (2010). Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. The Jouarnl of infectious diseases, 202(7), 1050-1058.spa
dc.relation.referencesBerube, B. J., & Wardenburg, J. B. (2013). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5(6), 1140-1166.spa
dc.relation.referencesCamussone, C. M., & Calvinho, L. F. (2013). Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevanciay rol como agentes inmunógenos. 11.Revista Argentina de Microbiología, 45(2), 119–130. https://doi.org/10.1016/S0325-7541(13)70011-7spa
dc.relation.referencesVandenesch, F., Lina, G., & Henry, T. (2012). Staphylococcus aureus Hemolysins, bicomponent Leukocidins, and Cytolytic Peptides: ¿A Redundant Arsenal of MembraneDamaging Virulence Factors? Frontiers in Cellular and Infection Microbiology, 2, 12. https://doi.org/10.3389/fcimb.2012.00012spa
dc.relation.referencesOtto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32– 37. https://doi.org/10.1016/j.mib.2013.11.004.spa
dc.relation.referencesVerdon, J., Girardin, N., Lacombe, C., Berjeaud, J. M., & Héchard, Y. (2009). δHemolysin, an update on a membrane-interacting peptide. Peptides, 30(4), 817-823.spa
dc.relation.referencesSpaan, A. N., Vrieling, M., Wallet, P., Badiou, C., Reyes-Robles, T., Ohneck, E. A., ... & Lina, G. (2014). The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature communications, 5(1), 1- 11spa
dc.relation.referencesKessel, C. (2017). molecular subtyping of Staphylococcus aureus isolates from the u.p. community for the presence of toxin-encoding genes. All NMU Master’s Theses. Retrieved from https://commons.nmu.edu/theses/133spa
dc.relation.referencesCarabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.spa
dc.relation.referencesTanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837– 850.spa
dc.relation.referencesKearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 55(3), 739-749.spa
dc.relation.referencesDubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol. 2016;101(4):606–24. Epub 2016/08/09. pmid:27501195; PubMed Central PMCID: PMCPMC4978174.spa
dc.relation.referencesDeLoughery A, Dengler V, Chai Y, Losick R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mARN levels for the matrix gene repressor SinR. Mol Microbiol 2016; 99(2): 425- 37.[http://dx.doi.org/10.1111/mmi.13240] [PMID: 26434553]spa
dc.relation.referencesDeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mARNs by the endoribonuclease ARNse Y and its associated Y- complex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 115(24), E5585-E5594.spa
dc.relation.referencesHamouche, L., Billaudeau, C., Rocca, A., Chastanet, A., Ngo, S., Laalami, S., & Putzer, H. (2020). Dynamic membrane localization of RNase Y in Bacillus subtilis. MBio, 11(1), e03337-19.spa
dc.relation.referencesEscobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus aureus. The Open Bioinformatics Jouarnl, 12(1).spa
dc.relation.referencesAdusei-Danso, F., Khaja, F. T., DeSantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., ... & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis RicProteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and ARN Processing. mBio, 10(5), e01841-19.spa
dc.relation.referencesReverdy, A., Chen, Y., Hunter, E., Gozzi, K., & Chai, Y. (2018). Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PloS one, 13(9), e0204687.spa
dc.relation.referencesKaito, C., Kurokawa, K., Matsumoto, Y., Terao, Y., Kawabata, S., Hamada, S., & Sekimizu, K. (2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Molecular microbiology, 56(4), 934-944.spa
dc.relation.referencesNumata, S., Nagata, M., Mao, H., Sekimizu, K., & Kaito, C. (2014). CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. Jouarnl of Biological Chemistry, 289(12), 8420- 8431.spa
dc.relation.referencesKaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K., & Sekimizu, K. (2006). Novel ADN binding protein SarZ contributes to virulence in Staphylococcus aureus. Molecular microbiology, 62(6), 1601-1617.spa
dc.relation.referencesNagata, M., Kaito, C., & Sekimizu, K. (2008). Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. Jouarnl of Biological Chemistry, 283(4), 2176-2184.spa
dc.relation.referencesMarincola, G., Schäfer, T., Behler, J., Bernhardt, J., Ohlsen, K., Goerke, C., & Wolz, C. (2012). ARNse Y of Staphylococcus aureus and its role in the activation of virulence genes. Molecular microbiology, 85(5), 817-832spa
dc.relation.referencesArnaud, M., Chastanet, A., & Débarbouillé, M. (2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and environmental microbiology, 70(11), 6887-6891.spa
dc.relation.referencesCharpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 2004; 70: 6076-85.spa
dc.relation.referencesChristensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006 (1985).spa
dc.relation.referencesMoreno-González, P. A., Diaz, G. J., & Ramírez-Hernández, M. H. (2013). Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+.Revista colombiana de quimica, 42(2), 12-20.spa
dc.relation.referencesWalsh, B. W., Lenhart, J. S., Schroeder, J. W., & Simmons, L. A. (2012). Far Western Blotting as a rapid and efficient method for detecting interactions between ADN replication and ADN repair proteins. In Single-Stranded ADN Binding Proteins (pp. 161-168). Humana Press, Totowa, NJ.spa
dc.relation.referencesRodríguez Tamayo, E. A., & Jiménez Quiceno, J. N. (2015). Factors related with colonization by Staphylococcus aureus. Iatreia, 28(1), 66-77.spa
dc.relation.referencesDeinhardt-Emmer, S., Sachse, S., Geraci, J., Fischer, C., Kwetkat, A., Dawczynski, K., ... & Löffler, B. (2018). Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. Jouarnl of Hospital Infection, 100(3), 309-315.spa
dc.relation.referencesVan Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus bacteremia. Clinical microbiology reviews, 25(2), 362-386.spa
dc.relation.referencesCramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67:5427-33.spa
dc.relation.referencesSingh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010; 65:1955- 8.spa
dc.relation.referencesEscobar Pérez, J. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureusspa
dc.relation.referencesOhniwa, R. L., Ushijima, Y., Saito, S. & Morikawa, K. Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 6, e19172 (2011).spa
dc.relation.referencesVergara-Irigaray, M. et al. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections †.Infect. Immun. 77, 3978–3991 (2009).spa
dc.relation.referencesO’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008).spa
dc.relation.referencesCarabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.spa
dc.relation.referencesRamos, J.L., Martinez-Bueno, M., Molina-Henares, A.J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., Tobes, R., 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356.spa
dc.relation.referencesSeidl, K., Goerke, C., Wolz, C., Mack, D., Berger-Bachi, B., Bischoff, M., 2008. Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 76, 2044–2050.spa
dc.relation.referencesO’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D.A.; O’Gara, J.P. Association between Methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J. Clin. Microbiol. 2007, 45, 1379–1388.spa
dc.relation.referencesRegassa, L.B.; Novick, R.P.; Betley, M.J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect. Immun. 1992, 60, 3381–3388spa
dc.relation.referencesBoles, B.R.; Horswill, A.R. Staphylococcal biofilm disassembly. Trends Microbiol. 2011, 19, 449–455.spa
dc.relation.referencesFoulston, L.; Elsholz, A.K.W.; DeFrancesco, A.S.; Losick, R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 2014, 5, e01667-14.spa
dc.relation.referencesDengler, V.; Foulston, L.; DeFrancesco, A.S.; Losick, R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J. Bacteriol. 2015, 197, 3779–3787.spa
dc.relation.referencesWang, B., & Muir, T. W. (2016). Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chemical Biology, 23(2), 214– 224. https://doi.org/10.1016/j.chembiol.2016.01.004spa
dc.relation.referencesLi, T., He, L., Song, Y., Villaruz, A. E., Joo, H.-S., Liu, Q., … Li, M. (2015). AraC-Type Regulator Rsp Adapts Staphylococcus aureus Gene Expression to Acute Infection. Infection and Immunity, 84(3), 723–734. https://doi.org/10.1128/IAI.01088-15spa
dc.relation.referencesTsompanidou, E., Sibbald, M. J. J. B., Chlebowicz, M. A., Dreisbach, A., Back, J. W., van Dijl, J. M., … Denham, E. L. (2011). Requirement of the agr Locus for Colony 54 Spreading of Staphylococcus aureus. JouARNl of Bacteriology, 193(5), 1267–1272. https://doi.org/10.1128/JB.01276-10spa
dc.relation.referencesHanada, Y., Sekimizu, K., & Kaito, C. (2011). Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. The JouARNl of Biological Chemistry, 286(45), 39360–39369. https://doi.org/10.1074/jbc.M111.278416spa
dc.relation.referencesOmae, Y., Hanada, Y., Sekimizu, K., & Kaito, C. (2013). Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. The JouARNl of Biological Chemistry, 288(35), 25542–25550. https://doi.org/10.1074/jbc.M113.495051spa
dc.relation.referencesRogasch, K., Ruhmling, V., Pane-Farre, J., Hoper, D., Weinberg, C., Fuchs, S., … Engelmann, S. (2006). Influence of the Two-Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 188(22), 7742–7758. https://doi.org/10.1128/JB.00555-06spa
dc.relation.referencesNguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334.spa
dc.relation.referencesLee, S., Kim, S., Lee, H., Ha, J., Lee, J., Choi, Y., ... & Choi, K. H. (2018). icaA gene of Staphylococcus aureus responds to NaCl, leading to increased biofilm formation. Journal of food protection, 81(3), 412-416.spa
dc.relation.referencesJenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology spectrum, 7(2), 7-2.spa
dc.relation.referencesMorales L, Velandia M, Calderón M. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue. Biomédica [Internet]. 2017;37:131–40. Available from: http://www.scielo.org.co/pdf/bio/v37n1/0120-4157-bio-37-01-00131.pdfspa
dc.relation.referencesCossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28:2151–6.spa
dc.relation.referencesTortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol. 2000;35(5).spa
dc.relation.referencesBerka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, et al. Microarray analysis of the Bacillus subtilis K-state: Genome-wide expression changes dependent on ComK. Mol Microbiol. 2002;43(5).spa
dc.relation.referencesHamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Vol. 30, Nucleic Acids Research. 2002.spa
dc.relation.referencesOgura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol. 2002;184(9).spa
dc.relation.referencesKhemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet. 2015;11(10).spa
dc.relation.referencesCho KH. The structure and function of the gram-positive bacterial RNA degradosome. Vol. 8, Frontiers in Microbiology. 2017.spa
dc.relation.referencesTucker AT, Bobay BG, Banse A V., Olson AL, Soderblom EJ, Moseley MA, et al. A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol. 2014;426(9).spa
dc.relation.referencesDeutscher MP. The metabolic role of RNases. Trends Biochem Sci. 1988;13(4).spa
dc.relation.referencesDurand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of bacillus subtilis mRNAs. PLoS Genet. 2012;8(3).spa
dc.relation.referencesRichards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, et al. An RNAspa
dc.relation.referencesBonnin RA, Bouloc P. RNA degradation in Staphylococcus aureus: Diversity of ribonucleases and their impact. Vol.2015, International Journal of Genomics. 2015spa
dc.relation.referencesMarincola G, Wolz C. Downstream element determines RNase y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 2017;45(10).spa
dc.relation.referencesGeiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10).spa
dc.relation.referencesAdhikari RP, Novick RP. Regulatory organization of the staphylococcal sae locus. Microbiology. 2008;154(3).spa
dc.relation.referencesSteinhuber A, Goerke C, Bayer MG, Döring G, Wolz C. Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors. J Bacteriol. 2003;185(21).spa
dc.relation.referencesBoles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 4(4), e1000052.spa
dc.relation.referencesO'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D. A., & O'Gara, J. P. (2007). Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. Journal of clinical microbiology, 45(5), 1379-1388.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.proposalStaphylococcus aureusspa
dc.subject.proposalhemólisisspa
dc.subject.proposalbiofilmspa
dc.subject.proposalCom_YlbFspa
dc.subject.proposalYmcAspa
dc.titleDeterminación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureusspa
dc.title.translatedDETERMINATION OF THE PARTICIPATION OF THE YmcA PROTEIN IN THE REGULATION OF HEMOLYSIS AND BIOFILM FORMATION IN Staphylococcus aureuseng
dc.title.translatedDetermination of the participation of the YmcA protein in the regulation of hemolysis and biofilm formation in Staphylococcus aureuseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014293569.2022.pdf
Tamaño:
1.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: