Intercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombia

dc.contributor.advisorRamirez Villegas, Julian Armando
dc.contributor.advisorMejía de Tafur, Maria Sara
dc.contributor.authorRodriguez Espinoza, Jeferson
dc.contributor.orcid0000-0001-5914-6571spa
dc.contributor.scopus57217764588spa
dc.coverage.countryColombia
dc.date.accessioned2024-02-08T16:37:41Z
dc.date.available2024-02-08T16:37:41Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractEste estudio aborda la intercomparación de tres modelos ecofisiológicos del cultivo de arroz (ORYZA v3, DSSAT-CERES-Rice y Aquacrop), evaluados en tres ambientes de producción en Colombia: Zona Centro, Llanos Orientales y Bajo Cauca. Se implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regiones. Los resultados mostraron variaciones en las predicciones de los modelos, indicando una interacción significativa entre las variaciones climáticas y el sistema de cultivo. La intercomparación proporcionó conocimientos valiosos sobre las fortalezas y debilidades de cada modelo, esencial para futuras aplicaciones en la planificación agronómica y la adaptación al cambio climático. (Texto tomado de la fuente)spa
dc.description.abstractThis study addresses the intercomparison of three ecophysiological models of rice cultivation (ORYZA v3, DSSAT-CERES-Rice, and Aquacrop), evaluated with three cultivars in three production environments in Colombia: Central Zone, Eastern Plains, and Lower Cauca. A Genetic Algorithm was implemented for parameter optimization, and the models' predictions were evaluated in variables such as phenology, aerial biomass, leaf area, and grain yield. Additionally, the models' response to ENSO climatic variability conditions was analyzed using the dataset of the Fedearroz 2000 cultivar, planted in all regions. The results showed variations in the models' predictions, indicating a significant interaction between climatic variations and the cultivation system. In conclusion, the intercomparison provided valuable insights into the strengths and weaknesses of each model, essential for future applications in agronomic planning and adaptation to climate change.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.methodsSe implementó un Algoritmo Genético para la optimización de parámetros y se evaluaron las predicciones de los modelos en variables como fenología, biomasa aérea, área foliar y rendimiento en grano. Además, se analizó la respuesta de los modelos a las condiciones de variabilidad climática ENSO utilizando el conjunto de datos del cultivar Fedearroz 2000, sembrado en todas las regionesspa
dc.description.researchareaFisiologia de Cultivosspa
dc.description.researchareaModelacion de Cultivosspa
dc.description.researchareaCiencia de Datosspa
dc.description.sponsorshipMADRspa
dc.description.sponsorshipFEDEARROZ-FNAspa
dc.description.sponsorshipGobernacion del Valle del Cauca-FANspa
dc.description.technicalinfoLos desarrollos derivados de esta investigación, se encuentran alojados en los repositorios de Github (https://github.com/jrodriguez88/agroclimR, https://jrodriguez88.github.io/agroclimR/), siendo de libre acceso para los investigadores que busquen replicar las metodologías y flujos de datos.spa
dc.format.extentxii, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85667
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAhmed, M., Asif, M., Hirani, A. H., Akram, M. N., & Goyal, A. (2013). Modeling for agricultural sustainability: A review. Agricultural Sustainability. Elsevier Inc. http://doi.org/10.1016/B978-0-12-404560-6.00007-1spa
dc.relation.referencesAli, M. H., & Talukder, M. S. U. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management, 95(11), 1201–1213. http://doi.org/10.1016/j.agwat.2008.06.008spa
dc.relation.referencesAmiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of Crop Density and Irrigation Management on Water Productivity of Rice Production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42(17), 2085–2099. http://doi.org/10.1080/00103624.2011.596238spa
dc.relation.referencesAmiri, E., Rezaei, M., Rezaei, E. E., & Bannayan, M. (2014). Evaluation of Ceres-Rice, Aquacrop and Oryza2000 Models in Simulation of Rice Yield Response to Different Irrigation and Nitrogen Management Strategies. Journal of Plant Nutrition, 37(11), 1749–1769. http://doi.org/10.1080/01904167.2014.888750spa
dc.relation.referencesAnwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: A review. Theoretical and Applied Climatology, 113(1–2), 225–245. http://doi.org/10.1007/s00704-012-0780-1spa
dc.relation.referencesBelder, P., Bouman, B. A. M., & Spiertz, J. H. J. (2007). Exploring options for water savings in lowland rice using a modelling approach. Agricultural Systems, 92(1–3), 91–114. http://doi.org/10.1016/j.agsy.2006.03.001spa
dc.relation.referencesBoote, K. J., Jones, J. W., White, J. W., Asseng, S., & Lizaso, J. I. (2013). Putting mechanisms into crop production models. Plant, Cell and Environment, 36(9), 1658–1672. http://doi.org/10.1111/pce.12119spa
dc.relation.referencesBouman, B. a. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249–273. http://doi.org/10.1016/j.agsy.2004.09.011spa
dc.relation.referencesBouman, B. a M., Kropff, M., Tuong, T., Wopereis, M., Ten Berge, H., & van Laar, H. (2001). ORYZA2000: Modeling lowland rice.spa
dc.relation.referencesBrouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133(4), 705–724. http://doi.org/10.1111/j.1399-3054.2008.01136.xspa
dc.relation.referencesCai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 5(2), 1–6. http://doi.org/10.1038/nclimate2100spa
dc.relation.referencesCamargo, G. G. T., & Kemanian, A. R. (2016). Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. http://doi.org/10.1016/j.agrformet.2016.01.013spa
dc.relation.referencesCao, H., Hanan, J. S., Liu, Y., Liu, Y., Yue, Y., Zhu, D., … Bao, T. (2012). Comparison of Crop Model Validation Methods. Journal of Integrative Agriculture, 11(8), 1274–1285. http://doi.org/10.1016/S2095-3119(12)60124-5spa
dc.relation.referencesCleves Leguízamo, J. A., Martínez Bernal, L. F., & Toro C., J. (2016). Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Revista Colombiana de Ciencias Hortícolas, 10(1), 149–163. http://doi.org/10.17584/rcch.2016v10i1.4460spa
dc.relation.referencesDelerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Pati??o, V. H., … Jimenez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PLoS ONE, 11(8). http://doi.org/10.1371/journal.pone.0161620spa
dc.relation.referencesCortés, C., Bernal, J., Díaz, E., & Méndez, J. (2013). uso del modelo AquaCrop para estimar rendimientos para el cultivo de arroz en los Departamentos de Tolima y Meta, 53. Retrieved from http://www.fao.org/docrep/field/009/i3430s/i3430s.pdfspa
dc.relation.referencesDANE, & FEDEARROZ. (2016). 4 ° Censo Nacional Arrocero 2016. Retrieved from http://www.dane.gov.co/spa
dc.relation.referencesElliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., … Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. http://doi.org/10.5194/gmd-8-261-2015spa
dc.relation.referencesEwert, F., Ro??tter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 72. http://doi.org/10.1016/j.envsoft.2014.12.003spa
dc.relation.referencesFAO. (2009). How to Feed the World in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. http://doi.org/10.1111/j.1728-4457.2009.00312.xspa
dc.relation.referencesGe, H., Ma, F., Li, Z., & Du, C. (2021). Global sensitivity analysis for ceres-rice model under different cultivars and specific-stage variations of climate parameters. Agronomy, 11(12). https://doi.org/10.3390/agronomy11122446spa
dc.relation.referencesGonzalez-Dugo, V., Durand, J.-L., & Gastal, F. (2010). Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development, 30(3), 529–544. http://doi.org/10.1051/agro/2009059spa
dc.relation.referencesGuo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115–1133. https://doi.org/10.1080/03650340.2019.1657845spa
dc.relation.referencesHolzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., … Thorburn, P. (2015). Environmental Modelling & Software Agricultural production systems modelling and software : Current status and future prospects *, (2014), 1–11.spa
dc.relation.referencesIizumi, T., Luo, J.-J., Challinor, A. J., Sakurai, G., Yokozawa, M., Sakuma, H., … Yamagata, T. (2014). Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature Communications, 5(May), 3712. http://doi.org/10.1038/ncomms4712spa
dc.relation.referencesIPCC. (2014). Cambio Climático 2014: Informe de síntesis / Resumen para responsables de políticas. Cambio Climático 2001: Informe de Síntesis, 2–38. http://doi.org/10.1016/S1353-8020(09)70300-1spa
dc.relation.referencesJanssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.017spa
dc.relation.referencesJin, X. L., Feng, H. K., Zhu, X. K., Li, Z. H., Song, S. N., Song, X. Y., ... & Guo, W. S. (2014). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PloS one, 9(1), e86938.spa
dc.relation.referencesJing, Q. (2007). Improving resource use efficiency in rice-based cropping systems: Experimentation and modelling. Production Ecology and Resource Conservation (Vol. Ph.D.).spa
dc.relation.referencesJones, J. ., Hoogenboom, G., Porter, C. ., Boote, K. J., Batchelor, W. ., Hunt, L. ., … Ritchie, J. . (2003). The DSSAT cropping system model. European Journal of Agronomy (Vol. 18). http://doi.org/10.1016/S1161-0301(02)00107-7spa
dc.relation.referencesJones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Brief history of agricultural systems modeling. Agsy. http://doi.org/10.1016/j.agsy.2016.05.014spa
dc.relation.referencesJones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., … Wheeler, T. R. (2016). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems. http://doi.org/10.1016/j.agsy.2016.09.021spa
dc.relation.referencesKadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2012). Identifying irrigation and nitrogen best management practices for aerobic rice-maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32. http://doi.org/10.1016/j.agwat.2014.10.019spa
dc.relation.referencesKar, G., Kumar, A., & Chandra Bhaskar Burla, B. (2009). Simulation of growth and productivity of rice (Oryza sativa) under tropical monsoon climate. Indian Journal of Agronomy, 54(1), 52–57.spa
dc.relation.referencesKrishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy (1st ed., Vol. 111). Elsevier Inc. http://doi.org/10.1016/B978-0-12-387689-8.00004-7spa
dc.relation.referencesLarijani, B. A., Sarvestani, Z. T., Nematzadeh, G., Manschadi, a. M., & Amiri, E. (2011). Simulating Phenology, Growth and Yield of Transplanted Rice at Different Seedling Ages in Northern Iran Using ORYZA2000. Rice Science, 18(4), 321–334. http://doi.org/10.1016/S1672-6308(12)60011-0spa
dc.relation.referencesLi, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A., & Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246–256. http://doi.org/10.1016/j.agrformet.2017.02.025spa
dc.relation.referencesLi, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K. J., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. http://doi.org/10.1111/gcb.12758spa
dc.relation.referencesLi, T., Raman, A. K., Marcaida, M., Kumar, A., Angeles, O., & Radanielson, A. M. (2013). Simulation of genotype performances across a larger number of environments for rice breeding using ORYZA2000. Field Crops Research, 149, 312–321. http://doi.org/10.1016/j.fcr.2013.05.006spa
dc.relation.referencesLiu, J., Liu, Z., Zhu, A. X., Shen, F., Lei, Q., & Duan, Z. (2019). Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of the Total Environment, 651, 953–968. https://doi.org/10.1016/j.scitotenv.2018.09.254spa
dc.relation.referencesLovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548–549, 236–251. http://doi.org/10.1016/j.scitotenv.2016.01.022spa
dc.relation.referencesManiruzzaman, M., Talukder, M. S. U., Khan, M. H., Biswas, J. C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331–340. http://doi.org/10.1016/j.agwat.2015.06.022spa
dc.relation.referencesMatthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24–28. http://doi.org/10.1016/j.gfs.2012.11.009spa
dc.relation.referencesMcCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.spa
dc.relation.referencesMishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. The Science of the Total Environment, 468–469 Su, S132-8. http://doi.org/10.1016/j.scitotenv.2013.05.080spa
dc.relation.referencesMuthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production , supply , trade , and consumption, 7–14. http://doi.org/10.1111/nyas.12540spa
dc.relation.referencesNeto, D. D. (2010). Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil 1 Calibration and evaluation of the ORYZA-APSIM crop model for upland rice in Material e métodos, 605–613.spa
dc.relation.referencesNissanka, S. P., Karunaratne, A. S., Perera, R., Weerakoon, W. M. W., Thorburn, P. J., & Wallach, D. (2015). Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling and Software, 70, 128–137. http://doi.org/10.1016/j.envsoft.2015.04.007spa
dc.relation.referencesPorter, C. H., Villalobos, C., Holzworth, D., Nelson, R., White, J. W., Athanasiadis, I. N., … Jones, J. W. (2014). Harmonization and translation of crop modeling data to ensure interoperability. Environmental Modelling and Software, 62, 495–508. http://doi.org/10.1016/j.envsoft.2014.09.004spa
dc.relation.referencesRaes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. http://doi.org/10.2134/agronj2008.0140sspa
dc.relation.referencesRay, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. http://doi.org/10.1038/ncomms6989spa
dc.relation.referencesRosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2012). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 1–17. http://doi.org/10.1016/j.agrformet.2012.09.011spa
dc.relation.referencesSaadati, Z., Pirmoradian, N., & Rezaei, M. (2011). CALIBRATION AND EVALUATION OF AquaCrop MODEL IN RICE GROWTH SIMULATION UNDER DIFFERENT IRRIGATIONspa
dc.relation.referencesSánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), 408–417. http://doi.org/10.1111/gcb.12389spa
dc.relation.referencesSanint, L. (2010). Nuevos retos y grandes oportunidades tecnológicas para los sistemas arroceros: Produccion, seguridad alimentaria y disminucion de la pobreza en América Latina y el Caribe. Produccion eco-eficiente del arroz en América latina. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdfspa
dc.relation.referencesScrucca L (2013). “GA: A Package for Genetic Algorithms in R.” Journal of Statistical Software, 53(4), 1–37. doi:10.18637/jss.v053.i04.spa
dc.relation.referencesScrucca L (2017). “On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution.” The R Journal, 9(1), 187–206. doi:10.32614/RJ-2017-008.spa
dc.relation.referencesSemenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283. http://doi.org/10.1016/0168-1923(94)05078-Kspa
dc.relation.referencesSingh, U., Tsuji, G.Y., Godwin, D.C. 1990. Planting new ideas in DSSAT: the CERES-Rice model. Agrotechnology Transfer, 10:1-7. University of Hawaii, Honolulu, Hawaii, USA.spa
dc.relation.referencesSotelo, S., Guevara, E., Llanos-Herrera, L., Agudelo, D., Esquivel, A., Rodriguez, J., ... & Ramirez-Villegas, J. (2020). Pronosticos AClimateColombia: A system for the provision of information for climate risk reduction in Colombia. Computers and Electronics in Agriculture, 174, 105486. https://doi.org/10.1016/j.compag.2020.105486spa
dc.relation.referencesSubash, N., & Ram Mohan, H. S. (2012). Evaluation of the impact of climatic trends and variability in rice–wheat system productivity using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology, 164, 71–81. http://doi.org/10.1016/j.agrformet.2012.05.008spa
dc.relation.referencesSoundharajan, B., & Sudheer, K. P. (2013). Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework. Paddy and Water Environment, 11(1–4), 59–71. https://doi.org/10.1007/s10333-011-0293-zspa
dc.relation.referencesTan, J., Cui, Y., & Luo, Y. (2017). Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 91(August), 54–62. https://doi.org/10.1016/j.eja.2017.09.001spa
dc.relation.referencesTan, J., Zhao, S., Liu, B., Luo, Y., & Cui, Y. (2021). Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 113(2), 1407–1419. https://doi.org/10.1002/agj2.20580spa
dc.relation.referencesTan, J., Cui, Y., & Luo, Y. (2016). Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 83, 36–46. https://doi.org/10.1016/j.envsoft.2016.05.001spa
dc.relation.referencesVan Nguyen, N., & Ferrero, A. (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1), 1–9. http://doi.org/10.1007/s10333-005-0031-5spa
dc.relation.referencesYang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81–89. http://doi.org/10.1016/j.agsy.2014.01.008spa
dc.relation.referencesXING, H. min, XU, X. gang, LI, Z. hai, CHEN, Y. jin, FENG, H. kuan, YANG, G. jun, & CHEN, Z. xia. (2017). Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16(11), 2444–2458. https://doi.org/10.1016/S2095-3119(16)61626-Xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocArroz
dc.subject.agrovocRice
dc.subject.agrovocEcofisiología
dc.subject.agrovocEcophysiology
dc.subject.agrovocModelos vegetales
dc.subject.agrovocPlant models
dc.subject.agrovocProductividad agrícola
dc.subject.agrovocAgricultural productivity
dc.subject.agrovocModelos de simulación
dc.subject.agrovocSimulation models
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalModelos de Cultivospa
dc.subject.proposalORYZAeng
dc.subject.proposalDSSATeng
dc.subject.proposalAquacropeng
dc.subject.proposalAlgoritmo geneticospa
dc.subject.proposalagroclimReng
dc.subject.proposalVariabilidad climáticaspa
dc.subject.proposalCrop Modelingeng
dc.subject.proposalClimate Variabilityspa
dc.subject.proposalGenetic Algorithmeng
dc.titleIntercomparación de modelos ecofisiológicos para el análisis de la productividad del cultivo de arroz en Colombiaspa
dc.title.translatedIntercomparison of ecophysiological models for the analysis of rice crop productivity in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameAllianza CIAT-Bioversityspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113635771_2023.pdf
Tamaño:
5.1 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: