Evaluación de la capacidad de análisis de datos de las pymes desarrolladoras de software de la ciudad de Bogotá

dc.contributor.advisorSánchez-Torres, Jenny Marcela
dc.contributor.authorAngulo Romero, Carlos Aurelio
dc.contributor.researchgroupGRIEGO (Grupo Investigación en Gestión y Organizaciones)spa
dc.coverage.cityBogotá
dc.date.accessioned2021-09-09T14:51:28Z
dc.date.available2021-09-09T14:51:28Z
dc.date.issued2021
dc.descriptionIlustraciones y tablasspa
dc.description.abstractThe new Information and Communication Technologies have led to significant changes in the commercial and organizational dynamics of companies in the world, especially in terms of how data are analyzed for decision making. Due to the above, this master's thesis addresses the evaluation of the data analysis capacity of SMEs that operate in the software development sector in the city of Bogota, seeking to characterize the diagnostic models used in the environment, to determine the levels of maturity of the parameter observed in the entities studied, according to the dimensions of Organization, Infrastructure, Resource Management, Analysis and Governance. Thus, recommendations are made to strengthen this analytical capacity. To this end, a descriptive methodology was used, with a mixed approach, combining quantitative and qualitative techniques, with a non-experimental research design. Among the results obtained, it was possible to identify the level of maturity of the data analysis capacity of the companies that participated in the research, with reference points such as discrimination by income received by them. A detailed study of the findings was also carried out in relation to the organizational dimensions considered. Finally, actions are suggested that could be useful for closing the development gaps identified.eng
dc.description.abstractLas nuevas Tecnología de la Información y Comunicación han motivado cambios significativos en la dinámica comercial y organizacional de las empresas en el mundo, sobre todo en lo referente a la forma como se analizan los datos para la toma de decisiones. Debido a lo anterior, el presente trabajo de maestría aborda la evaluación de la capacidad de análisis de datos de las pymes que se desenvuelven en el sector de desarrollo de software de la ciudad de Bogotá, buscando caracterizar los modelos de diagnóstico empleados en el entorno, para determinar los niveles de madurez del parámetro observado en las entidades estudiadas, en función de las dimensiones de Organización, Infraestructura, Gestión de recursos, Análisis y Gobernanzas. Así las cosas, se plantean recomendaciones para fortalecer dicha capacidad de análisis. Para tal fin, se empleó una metodología de tipo descriptivo, de enfoque mixto, que combina técnicas cuantitativas y cualitativas, con un diseño de investigación no experimental. Dentro de los resultados obtenidos fue posible identificar el nivel de madurez de la capacidad de análisis de datos de las empresas que participaron en la investigación, con puntos de referencia como la discriminación por ingresos recibidos por las mismas. De igual manera se realizó un estudio minucioso de los hallazgos en relación con las dimensiones organizacionales consideradas. Finalmente se sugieren acciones que podrían ser de utilidad para el cierre de las brechas de desarrollo identificadas. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Administraciónspa
dc.description.methodsDescriptiva, de enfoque mixto, que combina técnicas cuantitativas y cualitativas, con un diseño de investigación no experimental.spa
dc.description.notesIncluye anexosspa
dc.description.researchareaEstrategia y Organizacionesspa
dc.format.extentxiv, 129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80142
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Administración y Contaduría Públicaspa
dc.publisher.facultyFacultad de Ciencias Económicasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Administraciónspa
dc.relation.referencesAlderson, P., Green, S., & Higgins, J. (2004). Cochrane reviewers’ handbook, version 4.2.2. (The Cochrane Collaboration (ed.)). https://www.mv.helsinki.fi/home/hemila/karlowski/handbook_4_2_2_Karlowski.pdfspa
dc.relation.referencesBean, R., & Davenport, T. (2019). Companies are failing in their efforts to become data-driven. Harvard Business Review.spa
dc.relation.referencesBedeley, R. T., & Nemati, H. (2014). Big Data Analytics: A key capability for competitive advantage. 20th Americas Conference on Information Systems, AMCIS 2014. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1536&context=amcis2014spa
dc.relation.referencesBihani, P., & Patil, S. (2014). A comparative study of data analysis techniques. International Journal of Emerging Trends & Technology in Computer Science, 3(2), 95–101. www.ijettcs.orgspa
dc.relation.referencesBonilla, J., & Rao, B. (2015). Decoding data analytics capabilities from topic modeling on press releases. Portland International Conference on Management of Engineering and Technology, 2015-Septe, 1959–1968. https://doi.org/10.1109/PICMET.2015.7273249spa
dc.relation.referencesBryman, A., & Cramer, D. (1992). Quantitative data analysis for social scientists. Estudios Geográficos, 53(207), 347. http://search.proquest.com/openview/71ba8781f88a269938b860d448e6e8d2/1?pq-origsite=gscholar&cbl=1818083spa
dc.relation.referencesCates, J. E., Gill, S. S., & Zeituny, N. (2005). The Ladder of Business Intelligence (LOBI): a framework for enterprise IT planning and architecture. International Journal of Business Information Systems, 1(1/2), 220. https://doi.org/10.1504/IJBIS.2005.007408spa
dc.relation.referencesColeman, S. (2016). Data-mining opportunities for small and medium enterprises with official statistics in the UK. Journal of Official Statistics. https://doi.org/10.1515/JOS-2016-0044spa
dc.relation.referencesCreswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.spa
dc.relation.referencesDavenport, T., & Harris, J. G. (2017). Competing on Analytics: The New Science of Winning. Harvard Business School Press.spa
dc.relation.referencesDenning, D. E., Nicholson, W., Sande, G., & Shoshani, A. (1984). Research topics in statistical database management. IEEE Database Eng. Bull., 7(1), 4–9.spa
dc.relation.referencesDinter, B. (2012). The maturing of a business intelligence maturity model. AMCIS 2012 Proceedings. http://elibrary.aisnet.org/Default.aspx?url=https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1083&context=amcis2012spa
dc.relation.referencesDu, X., Liu, B., & Zhang, J. (2019). Application of Business Intelligence Based on Big Data in E-commerce Data Analysis. Journal of Physics: Conference Series, 1395(1), 012011. https://doi.org/10.1088/1742-6596/1395/1/012011spa
dc.relation.referencesDulcé, H. J. (2016). Datos, información y conocimiento. Respuestas, 21(1), 4. https://revistas.ufps.edu.co/index.php/respuestas/article/download/642/646spa
dc.relation.referencesEason, K. D. (1989). Information technology and organisational change. CRC Press.spa
dc.relation.referencesEckerson, W. (2007). TDWI benchmark guide: interpreting benchmark scores using TDWI’s maturity model. TDWI Research, 3–14.spa
dc.relation.referencesGarmaki, M., & Boughzala, I. (2016). Conceptualization of Big data analytics Capability based on IT capability: Primary findings. 21st Symposium of the Association Information and Management 2016, AIM 2016.spa
dc.relation.referencesGrossman, R. L. (2018). A framework for evaluating the analytic maturity of an organization. International Journal of Information Management, 38(1), 45–51. https://doi.org/10.1016/j.ijinfomgt.2017.08.005spa
dc.relation.referencesGupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064.spa
dc.relation.referencesHalper, F. (2020). TDWI Analytics Maturity Model Guide: Assessment Guide.spa
dc.relation.referencesHalper, F., & Stodder, D. (2014). TDWI Analytics Maturity Model Guide. In TDWI Research. https://www3.microstrategy.com/getmedia/9b914607-084f-4869-ae64-e0b3f9e003de/TDWI_Analytics-Maturity-Guide_2014-2015.pdfspa
dc.relation.referencesHao, S., Zhang, H., & Song, M. (2019). Big data, big data analytics capability, and sustainable innovation performance. Sustainability, 11(24), 7145.spa
dc.relation.referencesHatta, N. N. M., Miskon, S., Ali, N. M., Abdullah, N. S., Ahmad, N., Hashim, H., Alias, R. A., & Maarof, M. A. (2015). Business intelligence system adoption theories in SMES: A literature review. ARPN Journal of Engineering and Applied Sciences.spa
dc.relation.referencesHicks, S. C., & Peng, R. D. (2019). Elements and Principles for Characterizing Variation between Data Analyses. ArXiv Preprint ArXiv:1903.07639. http://arxiv.org/abs/1903.07639spa
dc.relation.referencesHirvonen, J., & Majuri, M. (2020). Digital capabilities in manufacturing SMEs. Procedia Manufacturing, 51, 1283–1289. https://doi.org/10.1016/j.promfg.2020.10.179spa
dc.relation.referencesHumphrey, W. S. (1989). Managing the software process. Addison-Wesley Longman Publishing Co., Inc.spa
dc.relation.referencesIrwin, S. (2008). Data analysis and interpretation: emergent issues in linking qualitative and quantitative evidence. In Guilford Publications (Ed.), Handbook of emergent methods in social research (pp. 415–435).spa
dc.relation.referencesIslam, M. (2020). Data Analysis: Types, Process, Methods, Techniques and Tools. International Journal on Data Science and Technology, 6(1), 10. https://doi.org/10.11648/j.ijdst.20200601.12spa
dc.relation.referencesJoyanes, L. (2013). Big Data, Análisis de grandes volúmenes de datos en organizaciones (Alfaomega Grupo Editor (ed.)).spa
dc.relation.referencesKamioka, T., Hosoya, R., & Tapanainen, T. (2017). Effects of User IT Capabilities and Organized Big Data Analytics on Competitive Advantage. PACIS, 36.spa
dc.relation.referencesKhan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., & Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews.spa
dc.relation.referencesKitchenham, B. (2004). Procedures for performing systematic reviews. Keele University,UK and National ICT Australia. https://doi.org/10.1.1.122.3308spa
dc.relation.referencesKumar, V., Goyal, P., & Vandana, R. J. G. (2017). Stakeholder Classification: A Sustainability Marketing Perspective. EVIDENCE BASED MANAGEMENT, 111.spa
dc.relation.referencesLadley, J. (2010). Making enterprise information management (EIM) work for business: A guide to understanding information as an asset. Morgan Kaufmann.spa
dc.relation.referencesLetón, M., & Pedromingo, A. (2001). Introducción al Análisis de Datos en Meta-Análisis. Ediciones Díaz de Santos.spa
dc.relation.referencesLuhn, H. P. (1958). A Business Intelligence System. IBM Journal of Research and Development, 2(4), 314–319. https://doi.org/10.1147/rd.24.0314spa
dc.relation.referencesMartínez, C. (2014). Técnicas e Instrumentos de Recogida y Análisis de Datos. Editorial UNED.spa
dc.relation.referencesMarulanda, C. E., López, M., & Mejía, M. H. (2013). Minería de datos en gestión del conocimiento de pymes de Colombia. Revista Virtual Universidad Católica Del Norte, 1(38), 158-170–170. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/821/1339spa
dc.relation.referencesMasood, T., & Sonntag, P. (2020). Industry 4.0: Adoption challenges and benefits for SMEs. Computers in Industry, 121, 103261. https://doi.org/10.1016/j.compind.2020.103261spa
dc.relation.referencesMaxwell, J. A., & Chmiel, M. (2014). Notes toward a theory of qualitative data analysis. In The SAGE handbook of qualitative data analysis (pp. 21–34). Sage Thousand Oaks, CA.spa
dc.relation.referencesMeyer, S. L. (1975). Data Analysis For Scientists And Engineers (Wiley (ed.)). https://doi.org/10.1007/978-3-319-03762-2__1spa
dc.relation.referencesMikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2018). Complementarities between information governance and big data analytics capabilities on innovation. 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Change, ECIS 2018.spa
dc.relation.referencesMikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information and Management, 57(2). https://doi.org/10.1016/j.im.2019.05.004spa
dc.relation.referencesNagappan, M., Sam, S., Sangeetha, S., Nithya Priya, S., Suguna, N., & Scholar, U. G. (2019). Heart Disease Prediction Using Data Mining Technique. In Shodhshauryam, International Scientific Refereed Research Journal © 2019 SHISRRJ (Vol. 2, Issue 10). www.shisrrj.comspa
dc.relation.referencesOlszak, C. M. (2013). Assessment of business intelligence maturity in the selected organizations. 2013 Federated Conference on Computer Science and Information Systems, 951–958.spa
dc.relation.referencesPartners New Vantage, L. (2019). Big data and AI executive survey 2019. Data and Innovation. How Big Data and AI are Accelerating Business Transformation. http://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-Updated-010219-1.pdfspa
dc.relation.referencesPrieto, R., Meneses, C., & Vega, V. (2015). Análisis comparativo de modelos de madurez en inteligencia de negocio. Ingeniare. Revista Chilena de Ingeniería, 23(3), 361–371. https://doi.org/10.4067/S0718-33052015000300005spa
dc.relation.referencesRamamurthy, A. (2017). Effective information management - A - big- data driven road map for enterprise decision making. Water Environment Federation Technical Exhibition and Conference 2017, WEFTEC 2017, 3, 1854–1865.spa
dc.relation.referencesRamesh, G. S., Rajini Kanth, T. V., & Vasumathi, D. (2020). A Comparative Study of Data Mining Tools and Techniques for Business Intelligence (Springer (ed.); pp. 163–173). https://doi.org/10.1007/978-981-13-8253-6_15spa
dc.relation.referencesRamsay, J. O. (2006). Functional Data Analysis. In Encyclopedia of Statistical Sciences. John Wiley & Sons, Inc. https://doi.org/10.1002/0471667196.ess3138spa
dc.relation.referencesReio, T. G. (2016). Nonexperimental research: strengths, weaknesses and issues of precision. European Journal of Training and Development, 40(8/9), 676–690. https://doi.org/10.1108/EJTD-07-2015-0058spa
dc.relation.referencesRutkowski, L., Jaworski, M., & Duda, P. (2020). Basic Concepts of Data Stream Mining (pp. 13–33). https://doi.org/10.1007/978-3-030-13962-9_2spa
dc.relation.referencesSampieri, H. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta (M. Hill (ed.)).spa
dc.relation.referencesSchab, E., Rivera, R., Bracco, L., Coto, F., Cristaldo, P., Ramos, L., Rapesta, N., Pablo Núñez, J., Retamar, S., Casanova, C., De Battista, A., & Herrera, N. E. (2018). Minería de Datos y Visualización de Información. XX Workshop de Investigadores En Ciencias de La Computaci´on. http://hdl.handle.net/20.500.12272/3567spa
dc.relation.referencesSen, D., Ozturk, M. &, & Vayvay, O. (2016). An Overview of Big Data for Growth in SMEs. Procedia - Social and Behavioral Sciences, 235(2016), 159–167. https://doi.org/10.1016/j.sbspro.2016.11.011spa
dc.relation.referencesShaaban, E., Helmy, Y., Khedr, A., Nasr, M., & others. (2011). Business intelligence maturity models: Toward new integrated model. The International Arab Conference on Information Technology (ACIT 2011), Organized by Naif Arab University for Security Science (NAUSS), Riyadh, Saudi Arabia, 11–14.spa
dc.relation.referencesShuradze, G., & Wagner, H. T. (2016). Governing for agility and innovation in data-rich environments: The role of data analytics capabilities. 24th European Conference on Information Systems, ECIS 2016.spa
dc.relation.referencesSong, M., Zhang, H., & Heng, J. (2020). Creating sustainable innovativeness through big data and big data analytics capability: From the perspective of the information processing theory. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051984spa
dc.relation.referencesTan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Pearson Education India.spa
dc.relation.referencesTukey, J., & Wilk, M. (1966). Data analysis and statistics: an expository overview. Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, 695–709. https://dl.acm.org/doi/abs/10.1145/1464291.1464366spa
dc.relation.referencesVilla, A., & Taurino, T. (2019). SME Innovation and Development in the Context of Industry 4.0. Procedia Manufacturing, 39, 1415–1420. https://doi.org/10.1016/j.promfg.2020.01.311spa
dc.relation.referencesWamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365.spa
dc.relation.referencesWeber, C., Königsberger, J., Kassner, L., & Mitschang, B. (2017). M2DDM – A Maturity Model for Data-Driven Manufacturing. Procedia CIRP, 63, 173–178. https://doi.org/10.1016/j.procir.2017.03.309spa
dc.relation.referencesXiao, X., Tian, Q., & Mao, H. (2020). How the Interaction of Big Data Analytics Capabilities and Digital Platform Capabilities Affects Service Innovation: A Dynamic Capabilities View. IEEE Access, 8, 18778–18796.spa
dc.relation.referencesYasmin, M., Tatoglu, E., Kilic, H. S., Zaim, S., & Delen, D. (2020). Big data analytics capabilities and firm performance: An integrated MCDM approach. Journal of Business Research, 114, 1–15. https://doi.org/10.1016/j.jbusres.2020.03.028spa
dc.relation.referencesYe, F. Y. (2017). Measuring knowledge: A quantitative approach to knowledge theory. In Understanding Complex Systems (Issue 9789811059353, pp. 155–162). Springer Verlag. https://doi.org/10.1007/978-981-10-5936-0_13spa
dc.relation.referencesAlderson, P., Green, S., & Higgins, J. (2004). Cochrane reviewers’ handbook, version 4.2.2. (The Cochrane Collaboration (ed.)). https://www.mv.helsinki.fi/home/hemila/karlowski/handbook_4_2_2_Karlowski.pdfspa
dc.relation.referencesBean, R., & Davenport, T. (2019). Companies are failing in their efforts to become data-driven. Harvard Business Review.spa
dc.relation.referencesBedeley, R. T., & Nemati, H. (2014). Big Data Analytics: A key capability for competitive advantage. 20th Americas Conference on Information Systems, AMCIS 2014. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1536&context=amcis2014spa
dc.relation.referencesBihani, P., & Patil, S. (2014). A comparative study of data analysis techniques. International Journal of Emerging Trends & Technology in Computer Science, 3(2), 95–101. www.ijettcs.orgspa
dc.relation.referencesBonilla, J., & Rao, B. (2015). Decoding data analytics capabilities from topic modeling on press releases. Portland International Conference on Management of Engineering and Technology, 2015-Septe, 1959–1968. https://doi.org/10.1109/PICMET.2015.7273249spa
dc.relation.referencesBryman, A., & Cramer, D. (1992). Quantitative data analysis for social scientists. Estudios Geográficos, 53(207), 347. http://search.proquest.com/openview/71ba8781f88a269938b860d448e6e8d2/1?pq-origsite=gscholar&cbl=1818083spa
dc.relation.referencesCates, J. E., Gill, S. S., & Zeituny, N. (2005). The Ladder of Business Intelligence (LOBI): a framework for enterprise IT planning and architecture. International Journal of Business Information Systems, 1(1/2), 220. https://doi.org/10.1504/IJBIS.2005.007408spa
dc.relation.referencesColeman, S. (2016). Data-mining opportunities for small and medium enterprises with official statistics in the UK. Journal of Official Statistics. https://doi.org/10.1515/JOS-2016-0044spa
dc.relation.referencesCreswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.spa
dc.relation.referencesDavenport, T., & Harris, J. G. (2017). Competing on Analytics: The New Science of Winning. Harvard Business School Press.spa
dc.relation.referencesDenning, D. E., Nicholson, W., Sande, G., & Shoshani, A. (1984). Research topics in statistical database management. IEEE Database Eng. Bull., 7(1), 4–9.spa
dc.relation.referencesDinter, B. (2012). The maturing of a business intelligence maturity model. AMCIS 2012 Proceedings. http://elibrary.aisnet.org/Default.aspx?url=https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1083&context=amcis2012spa
dc.relation.referencesDu, X., Liu, B., & Zhang, J. (2019). Application of Business Intelligence Based on Big Data in E-commerce Data Analysis. Journal of Physics: Conference Series, 1395(1), 012011. https://doi.org/10.1088/1742-6596/1395/1/012011spa
dc.relation.referencesDulcé, H. J. (2016). Datos, información y conocimiento. Respuestas, 21(1), 4. https://revistas.ufps.edu.co/index.php/respuestas/article/download/642/646spa
dc.relation.referencesEason, K. D. (1989). Information technology and organisational change. CRC Press.spa
dc.relation.referencesEckerson, W. (2007). TDWI benchmark guide: interpreting benchmark scores using TDWI’s maturity model. TDWI Research, 3–14.spa
dc.relation.referencesGarmaki, M., & Boughzala, I. (2016). Conceptualization of Big data analytics Capability based on IT capability: Primary findings. 21st Symposium of the Association Information and Management 2016, AIM 2016.spa
dc.relation.referencesGrossman, R. L. (2018). A framework for evaluating the analytic maturity of an organization. International Journal of Information Management, 38(1), 45–51. https://doi.org/10.1016/j.ijinfomgt.2017.08.005spa
dc.relation.referencesGupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064.spa
dc.relation.referencesHalper, F. (2020). TDWI Analytics Maturity Model Guide: Assessment Guide.spa
dc.relation.referencesHalper, F., & Stodder, D. (2014). TDWI Analytics Maturity Model Guide. In TDWI Research. https://www3.microstrategy.com/getmedia/9b914607-084f-4869-ae64-e0b3f9e003de/TDWI_Analytics-Maturity-Guide_2014-2015.pdfspa
dc.relation.referencesHao, S., Zhang, H., & Song, M. (2019). Big data, big data analytics capability, and sustainable innovation performance. Sustainability, 11(24), 7145.spa
dc.relation.referencesHatta, N. N. M., Miskon, S., Ali, N. M., Abdullah, N. S., Ahmad, N., Hashim, H., Alias, R. A., & Maarof, M. A. (2015). Business intelligence system adoption theories in SMES: A literature review. ARPN Journal of Engineering and Applied Sciences.spa
dc.relation.referencesHicks, S. C., & Peng, R. D. (2019). Elements and Principles for Characterizing Variation between Data Analyses. ArXiv Preprint ArXiv:1903.07639. http://arxiv.org/abs/1903.07639spa
dc.relation.referencesHirvonen, J., & Majuri, M. (2020). Digital capabilities in manufacturing SMEs. Procedia Manufacturing, 51, 1283–1289. https://doi.org/10.1016/j.promfg.2020.10.179spa
dc.relation.referencesHumphrey, W. S. (1989). Managing the software process. Addison-Wesley Longman Publishing Co., Inc.spa
dc.relation.referencesIrwin, S. (2008). Data analysis and interpretation: emergent issues in linking qualitative and quantitative evidence. In Guilford Publications (Ed.), Handbook of emergent methods in social research (pp. 415–435).spa
dc.relation.referencesIslam, M. (2020). Data Analysis: Types, Process, Methods, Techniques and Tools. International Journal on Data Science and Technology, 6(1), 10. https://doi.org/10.11648/j.ijdst.20200601.12spa
dc.relation.referencesJoyanes, L. (2013). Big Data, Análisis de grandes volúmenes de datos en organizaciones (Alfaomega Grupo Editor (ed.)).spa
dc.relation.referencesKamioka, T., Hosoya, R., & Tapanainen, T. (2017). Effects of User IT Capabilities and Organized Big Data Analytics on Competitive Advantage. PACIS, 36.spa
dc.relation.referencesKhan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., & Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews.spa
dc.relation.referencesKitchenham, B. (2004). Procedures for performing systematic reviews. Keele University,UK and National ICT Australia. https://doi.org/10.1.1.122.3308spa
dc.relation.referencesKumar, V., Goyal, P., & Vandana, R. J. G. (2017). Stakeholder Classification: A Sustainability Marketing Perspective. EVIDENCE BASED MANAGEMENT, 111.spa
dc.relation.referencesLadley, J. (2010). Making enterprise information management (EIM) work for business: A guide to understanding information as an asset. Morgan Kaufmann.spa
dc.relation.referencesLetón, M., & Pedromingo, A. (2001). Introducción al Análisis de Datos en Meta-Análisis. Ediciones Díaz de Santos.spa
dc.relation.referencesLuhn, H. P. (1958). A Business Intelligence System. IBM Journal of Research and Development, 2(4), 314–319. https://doi.org/10.1147/rd.24.0314spa
dc.relation.referencesMartínez, C. (2014). Técnicas e Instrumentos de Recogida y Análisis de Datos. Editorial UNED.spa
dc.relation.referencesMarulanda, C. E., López, M., & Mejía, M. H. (2013). Minería de datos en gestión del conocimiento de pymes de Colombia. Revista Virtual Universidad Católica Del Norte, 1(38), 158-170–170. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/821/1339spa
dc.relation.referencesMasood, T., & Sonntag, P. (2020). Industry 4.0: Adoption challenges and benefits for SMEs. Computers in Industry, 121, 103261. https://doi.org/10.1016/j.compind.2020.103261spa
dc.relation.referencesMaxwell, J. A., & Chmiel, M. (2014). Notes toward a theory of qualitative data analysis. In The SAGE handbook of qualitative data analysis (pp. 21–34). Sage Thousand Oaks, CA.spa
dc.relation.referencesMeyer, S. L. (1975). Data Analysis For Scientists And Engineers (Wiley (ed.)). https://doi.org/10.1007/978-3-319-03762-2__1spa
dc.relation.referencesMikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2018). Complementarities between information governance and big data analytics capabilities on innovation. 26th European Conference on Information Systems: Beyond Digitization - Facets of Socio-Technical Change, ECIS 2018.spa
dc.relation.referencesMikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information and Management, 57(2). https://doi.org/10.1016/j.im.2019.05.004spa
dc.relation.referencesNagappan, M., Sam, S., Sangeetha, S., Nithya Priya, S., Suguna, N., & Scholar, U. G. (2019). Heart Disease Prediction Using Data Mining Technique. In Shodhshauryam, International Scientific Refereed Research Journal © 2019 SHISRRJ (Vol. 2, Issue 10). www.shisrrj.comspa
dc.relation.referencesOlszak, C. M. (2013). Assessment of business intelligence maturity in the selected organizations. 2013 Federated Conference on Computer Science and Information Systems, 951–958.spa
dc.relation.referencesPartners New Vantage, L. (2019). Big data and AI executive survey 2019. Data and Innovation. How Big Data and AI are Accelerating Business Transformation. http://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-Updated-010219-1.pdfspa
dc.relation.referencesPrieto, R., Meneses, C., & Vega, V. (2015). Análisis comparativo de modelos de madurez en inteligencia de negocio. Ingeniare. Revista Chilena de Ingeniería, 23(3), 361–371. https://doi.org/10.4067/S0718-33052015000300005spa
dc.relation.referencesRamamurthy, A. (2017). Effective information management - A - big- data driven road map for enterprise decision making. Water Environment Federation Technical Exhibition and Conference 2017, WEFTEC 2017, 3, 1854–1865.spa
dc.relation.referencesRamesh, G. S., Rajini Kanth, T. V., & Vasumathi, D. (2020). A Comparative Study of Data Mining Tools and Techniques for Business Intelligence (Springer (ed.); pp. 163–173). https://doi.org/10.1007/978-981-13-8253-6_15spa
dc.relation.referencesRamsay, J. O. (2006). Functional Data Analysis. In Encyclopedia of Statistical Sciences. John Wiley & Sons, Inc. https://doi.org/10.1002/0471667196.ess3138spa
dc.relation.referencesReio, T. G. (2016). Nonexperimental research: strengths, weaknesses and issues of precision. European Journal of Training and Development, 40(8/9), 676–690. https://doi.org/10.1108/EJTD-07-2015-0058spa
dc.relation.referencesRutkowski, L., Jaworski, M., & Duda, P. (2020). Basic Concepts of Data Stream Mining (pp. 13–33). https://doi.org/10.1007/978-3-030-13962-9_2spa
dc.relation.referencesSampieri, H. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta (M. Hill (ed.)).spa
dc.relation.referencesSchab, E., Rivera, R., Bracco, L., Coto, F., Cristaldo, P., Ramos, L., Rapesta, N., Pablo Núñez, J., Retamar, S., Casanova, C., De Battista, A., & Herrera, N. E. (2018). Minería de Datos y Visualización de Información. XX Workshop de Investigadores En Ciencias de La Computaci´on. http://hdl.handle.net/20.500.12272/3567spa
dc.relation.referencesSen, D., Ozturk, M. &, & Vayvay, O. (2016). An Overview of Big Data for Growth in SMEs. Procedia - Social and Behavioral Sciences, 235(2016), 159–167. https://doi.org/10.1016/j.sbspro.2016.11.011spa
dc.relation.referencesShaaban, E., Helmy, Y., Khedr, A., Nasr, M., & others. (2011). Business intelligence maturity models: Toward new integrated model. The International Arab Conference on Information Technology (ACIT 2011), Organized by Naif Arab University for Security Science (NAUSS), Riyadh, Saudi Arabia, 11–14.spa
dc.relation.referencesShuradze, G., & Wagner, H. T. (2016). Governing for agility and innovation in data-rich environments: The role of data analytics capabilities. 24th European Conference on Information Systems, ECIS 2016.spa
dc.relation.referencesSong, M., Zhang, H., & Heng, J. (2020). Creating sustainable innovativeness through big data and big data analytics capability: From the perspective of the information processing theory. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051984spa
dc.relation.referencesTan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Pearson Education India.spa
dc.relation.referencesTukey, J., & Wilk, M. (1966). Data analysis and statistics: an expository overview. Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, 695–709. https://dl.acm.org/doi/abs/10.1145/1464291.1464366spa
dc.relation.referencesVilla, A., & Taurino, T. (2019). SME Innovation and Development in the Context of Industry 4.0. Procedia Manufacturing, 39, 1415–1420. https://doi.org/10.1016/j.promfg.2020.01.311spa
dc.relation.referencesWamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365.spa
dc.relation.referencesWeber, C., Königsberger, J., Kassner, L., & Mitschang, B. (2017). M2DDM – A Maturity Model for Data-Driven Manufacturing. Procedia CIRP, 63, 173–178. https://doi.org/10.1016/j.procir.2017.03.309spa
dc.relation.referencesXiao, X., Tian, Q., & Mao, H. (2020). How the Interaction of Big Data Analytics Capabilities and Digital Platform Capabilities Affects Service Innovation: A Dynamic Capabilities View. IEEE Access, 8, 18778–18796.spa
dc.relation.referencesYasmin, M., Tatoglu, E., Kilic, H. S., Zaim, S., & Delen, D. (2020). Big data analytics capabilities and firm performance: An integrated MCDM approach. Journal of Business Research, 114, 1–15. https://doi.org/10.1016/j.jbusres.2020.03.028spa
dc.relation.referencesYe, F. Y. (2017). Measuring knowledge: A quantitative approach to knowledge theory. In Understanding Complex Systems (Issue 9789811059353, pp. 155–162). Springer Verlag. https://doi.org/10.1007/978-981-10-5936-0_13spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembComputer software development
dc.subject.lembDesarrollo de programas para computador
dc.subject.proposalCapacidad de análisisspa
dc.subject.proposalAnalytics Maturity (TDWI)eng
dc.subject.proposalPymesspa
dc.subject.proposalAnalysis capacityeng
dc.subject.unescoData analysis
dc.subject.unescoAnálisis de datos
dc.subject.unescoData processing
dc.subject.unescoProcesamiento de datos
dc.titleEvaluación de la capacidad de análisis de datos de las pymes desarrolladoras de software de la ciudad de Bogotáspa
dc.title.translatedEvaluation of the data analysis capacity of software development SMEs in the city of Bogotaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
73429364.2021.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Administración

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: