Development of the fused filament fabrication, debinding, and sintering processes for the obtention of a WC-10 Co hardmetal
dc.contributor.advisor | Herrera Quintero, Liz Karen | spa |
dc.contributor.author | Rubiano Buitrago, Julian David | spa |
dc.contributor.cvlac | Rubiano Buitrago, Julian David [rh=0000077725] | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=SqCWVKoAAAAJ&hl=es | spa |
dc.contributor.orcid | Rubiano Buitrago, Julian David [0000000334918373] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Julian-Rubiano?ev=hdr_xprf | spa |
dc.contributor.researchgroup | Grupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies) | spa |
dc.date.accessioned | 2025-03-17T12:44:43Z | |
dc.date.available | 2025-03-17T12:44:43Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | Esta investigación explora la aplicación de la tecnología de fabricación de filamentos fundidos (FFF) para la impresión 3D de metales duros WC-10Co, centrándose en el desarrollo de formulaciones de sistemas poliméricos que incorporan polipropileno injertado con anhídrido maleico, elastómeros termoplásticos y aditivos como cera de parafina y ácido esteárico. El estudio ajusta las variables del proceso a través de las fases de impresión, despolimerización térmica y sinterización. Se realizaron experimentos preliminares para estandarizar variables, incluyendo el mantenimiento de un 48% de volumen de polvo en la materia prima desarrollada y utilizando polvos listos para prensar de grado industrial. Tras experimentar con las variables de impresión, se lograron densidades relativas en verde de hasta el 99.99%. Se obtuvieron conocimientos sobre los efectos de atmósferas de despolimerización, como el vacío y una mezcla de 75% H2 + 25% N2, permitiendo controlar eficazmente el carbono residual de la degradación de las cadenas poliméricas durante la despolimerización térmica mientras controlaban la microestructura de los metales duros sinterizados. Los experimentos demuestran que mediante FFF se puede producir metales duros con niveles de dureza que varían de 1300 HV30 a 1500 HV30 y una tenacidad a la fractura entre 12 y 24 MPa√m, comparable a los métodos convencionales. Los cambios dimensionales durante la sinterización se analizaron en respuesta al tiempo de sinterización y a la atmósfera de despolimerización, ayudando a predecir las desviaciones angulares, diametrales y longitudinales necesarias para escalar las muestras impresas a sus dimensiones finales, lo cual también mostró una correlación directa con los parámetros del proceso de despolimerización térmica. Los experimentos de corte con herramientas impresas en 3D y prensadas revelaron que no hay diferencias estadísticas en el comportamiento de desgaste, validando la competencia funcional de los metales duros impresos en 3D (Texto tomado de la fuente). | spa |
dc.description.abstract | This research explores the application of fused filament fabrication (FFF) technology for 3D printing WC-10Co hardmetals, focusing on developing binder formulations that incorporate polypropylene grafted with maleic anhydride, thermoplastic elastomers, and additives like wax and stearic acid. The study adjusts process variables across printing, thermal debinding, and sintering phases. Preliminary experiments were conducted to standardize variables, including maintaining a 48% powder volume in the feedstock and utilizing industrial-grade Ready-to-Press powders. After experimenting with printing variables, relative green densities up to 99.99 % were achieved. Insights were gained on optimal sintering times and the effects of debinding atmospheres, such as vacuum and a 75% H2 + 25% N2 mixture, which effectively removed residual carbon from polymer chain degradation during thermal debinding while controlling the microstructure of the sintered hardmetals. The experiments demonstrate that FFF can produce hardmetals with hardness levels ranging from 1300 HV30 to 1500 HV30 and fracture toughness between 12 to 24 MPa√m, comparable to conventional methods. Dimensional changes during sintering were analyzed in response to sintering time and debinding atmosphere, aiding in predicting angular, diametral, and longitudinal deviations necessary to scale printed samples to their final dimensions, which also showed a direct correlation with the thermal debinding processing parameters. Cutting experiments with both 3D printed and conventionally pressed tools revealed no statistical differences in wear behavior, validating the functional competence of 3D printed hardmetals. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingenieria | spa |
dc.description.researcharea | Procesos de Manufactura y Metalurgia | spa |
dc.description.sponsorship | Technological development for the manufacture of metal tools using additive manufacturing techniques based on extrusion for high temperature and wear applications used by the Colombian auto parts industry” with the code 82305—110189082305 and contingent recovery financing contract number 2021–1012 of 2021 celebrated between the Colombian institute of educational credit and technical studies abroad, “Mariano Ospina Pérez”—ICETEX, the Ministry of Science, Technology and Innovation, and the National University of Colombia | spa |
dc.description.sponsorship | • Implementation of additive manufacturing technologies for ceramic materials as a complement to R&D+i processes at Universidad Nacional de Colombia," supported by Hermes code: 57440 | spa |
dc.description.sponsorship | "Advanced Manufacturing and Society 5.0" research seedbed, with Hermes ID: 3965 | spa |
dc.format.extent | xix, 185 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87665 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | Farag, S.; Konyashin, I.; Ries, B. The Influence of Grain Growth Inhibitors on the Microstructure and Properties of Submicron, Ultrafine and Nano-Structured Hardmetals – A Review. Int. J. Refract. Met. Hard Mater. 2018, 77, 12–30, doi:10.1016/j.ijrmhm.2018.07.003. | spa |
dc.relation.references | Mahmoodan, M.; Aliakbarzadeh, H.; Gholamipour, R. Sintering of WC-10%Co Nano Powders Containing TaC and VC Grain Growth Inhibitors. Trans. Nonferrous Met. Soc. China (English Ed. 2011, 21, 1080–1084, doi:10.1016/S1003-6326(11)60825-X. | spa |
dc.relation.references | Upadhyaya, G.S. Classification and Applications of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 288–308 ISBN 978-0-8155-1417-6. | spa |
dc.relation.references | Upadhyaya, G.S. Consolidation of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 89–137 ISBN 978-0-8155-1417-6. | spa |
dc.relation.references | German, R.M.; Suri, P.; Park, S.J. Review: Liquid Phase Sintering. J. Mater. Sci. 2009, 44, 1–39, doi:10.1007/s10853-008-3008-0. | spa |
dc.relation.references | Nie, H.; Zhang, T. Development of Manufacturing Technology on WC–Co Hardmetals. Tungsten 2019, 1, 198–212, doi:10.1007/s42864-019-00025-6. | spa |
dc.relation.references | BONACHE BEZARES, M.V. Obtenci{ó}n, Procesado y Caracterizaci{ó}n de Carburos Cementados CW-Co Basados En Polvos Ultrafinos y Nanocristalinos (Obtaining, Processing and Characterization of WC-Co Cemented Carbides Based on Ultrafine and Nanocrystalline Powders). 2016, 500. | spa |
dc.relation.references | Quinlan, H.E.; Hasan, T.; Jaddou, J.; Hart, A.J. Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges. J. Ind. Ecol. 2017, 21, S15–S20, doi:10.1111/jiec.12609. | spa |
dc.relation.references | Kim, K.W.; Ham, G.S.; Park, S.H.; Cho, J.W.; Lee, K.A. Direct Energy Deposition of Ultrastrong WC-12Co Cemented Carbide: Fabrication, Microstructure and Compressive Properties. Int. J. Refract. Met. Hard Mater. 2021, 99, 105591, doi:10.1016/j.ijrmhm.2021.105591. | spa |
dc.relation.references | Kim, K.W.; Kale, A.B.; Cho, Y.H.; Park, S.H.; Lee, K.A. Microstructural and Wear Properties of WC-12Co Cemented Carbide Fabricated by Direct Energy Deposition. Wear 2023, 518–519, 204653, doi:10.1016/j.wear.2023.204653. | spa |
dc.relation.references | Ostolaza, M.; Arrizubieta, J.I.; Queguineur, A.; Valtonen, K.; Lamikiz, A.; Flores Ituarte, I. Influence of Process Parameters on the Particle–Matrix Interaction of WC-Co Metal Matrix Composites Produced by Laser-Directed Energy Deposition. Mater. Des. 2022, 223, 111172, doi:10.1016/j.matdes.2022.111172. | spa |
dc.relation.references | Xiong, Y.; Smugeresky, J.E.; Schoenung, J.M. The Influence of Working Distance on Laser Deposited WC-Co. J. Mater. Process. Technol. 2009, 209, 4935–4941, doi:10.1016/j.jmatprotec.2009.01.016. | spa |
dc.relation.references | Li, Y.; Bai, P.; Wang, Y.; Hu, J.; Guo, Z. Effect of Ni Contents on the Microstructure and Mechanical Properties of TiC-Ni Cermets Obtained by Direct Laser Fabrication. Int. J. Refract. Met. Hard Mater. 2009, 27, 552–555, doi:10.1016/j.ijrmhm.2008.07.006. | spa |
dc.relation.references | Zong, G.; Wu, Y.; Tran, N.; Lee, I.; Bourell, D.L.; Beaman, J.J.; Marcus, H.L. Direct Selective Laser Sintering of High Temperature Materials. Proc. Solid Free. Fabr. Symp. 1992, 72–85. | spa |
dc.relation.references | Kumar, S.; Czekanski, A. Optimization of Parameters for SLS of WC-Co. Rapid Prototyp. J. 2017, 23, 1202–1211, doi:10.1108/RPJ-10-2016-0168. | spa |
dc.relation.references | Uhlmann, E.; Bergmann, A.; Bolz, R.; Gridin, W. Application of Additive Manufactured Tungsten Carbide Tool Electrodes in EDM. Procedia CIRP 2018, 68, 86–90, doi:10.1016/j.procir.2017.12.027. | spa |
dc.relation.references | Vaezi, M.; Drescher, P.; Seitz, H. Beamless Metal Additive Manufacturing. Materials (Basel). 2020, 13, doi:10.3390/ma13040922. | spa |
dc.relation.references | Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials (Basel). 2018, 11, doi:10.3390/ma11050840. | spa |
dc.relation.references | Aramian, A.; Razavi, S.M.J.; Sadeghian, Z.; Berto, F. A Review of Additive Manufacturing of Cermets. Addit. Manuf. 2020, 33, 101130, doi:10.1016/j.addma.2020.101130. | spa |
dc.relation.references | Leary, M. Directed Energy Deposition; 2020; ISBN 9780128167212. | spa |
dc.relation.references | Tang, Y.; Chen, L.; Yang, Q.; Zhong, Z.; Xu, G. Effect of a Slight Change in Carbon Content near the Upper/Lower Limit on the Microstructure and Mechanical Properties of WC-10Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2021, 96, 105465, doi:10.1016/j.ijrmhm.2020.105465. | spa |
dc.relation.references | Kim, J.; Suh, Y.J.; Kang, I. First-Principles Calculations of the Phase Stability and the Elastic and Mechanical Properties of η-Phases in the WC–Co System. J. Alloys Compd. 2016, 656, 213–217, doi:10.1016/j.jallcom.2015.09.214. | spa |
dc.relation.references | García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68, doi:10.1016/j.ijrmhm.2018.12.004. | spa |
dc.relation.references | Upadhyaya, G.S. Mechanical Behavior of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 193–226 ISBN 978-0-8155-1417-6. | spa |
dc.relation.references | Exner, H.E. Physical and Chemical Nature of Cemented Carbides. Int. Met. Rev. 1979, 24, 149–173. | spa |
dc.relation.references | Rubiano Buitrago, J.D.J.D.; Gil Plazas, A.F.A.F.; Herrera Quintero, L.K.L.K. Influence of TiC and Cr3C2 Additions on the Mechanical Properties of a (W-Ti-Cr)C-Co Sintered Hardmetal. J. Mater. Res. Technol. 2019, 8, 5736–5744, doi:10.1016/j.jmrt.2019.09.042. | spa |
dc.relation.references | Konyashin, I.; Ries, B. Wear Damage of Cemented Carbides with Different Combinations of WC Mean Grain Size and Co Content. Part II: Laboratory Performance Tests on Rock Cutting and Drilling. Int. J. Refract. Met. Hard Mater. 2014, 45, 230–237, doi:10.1016/j.ijrmhm.2014.04.017. | spa |
dc.relation.references | Swab, J.J.; Wright, J.C.; Kurniawati, putri Application of ASTM C1421 to WC-Co Fracture Toughness Measurement. Int. J. Refract. Met. Hard Mater. 2016, 58, 8–13, doi:https://doi.org/10.1016/j.ijrmhm.2016.03.007. | spa |
dc.relation.references | Schubert, W.D.; Neumeister, H.; Kinger, G.; Lux, B. Hardness to Toughness Relationship of Fine-Grained WC-Co Hardmetals. Int. J. Refract. Met. Hard Mater. 1998, 16, 133–142, doi:https://doi.org/10.1016/S0263-4368(98)00028-6. | spa |
dc.relation.references | Lu, Z.; Wang, W.; Zeng, M.; Zhu, M. Breaking the Hardness–Toughness Trade-off in WC–Co Hardmetals: Introduction of Dual-Scale Plate-like WC and Modification of Prediction Models. Int. J. Refract. Met. Hard Mater. 2022, 108, 105910, doi:https://doi.org/10.1016/j.ijrmhm.2022.105910. | spa |
dc.relation.references | S. Scott APPARATUS AND METHOD FOR CREATING THREE-DIMENSIONAL OBJECTS. Bunseki Kagaku 1992, 28, 195–196. | spa |
dc.relation.references | Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. Handb. Res. Mass Cust. Pers. 2009, 568–580, doi:10.1142/9789814280280_0028. | spa |
dc.relation.references | Kukla, C.; Gonzalez-gutierrez, J.; Cano, S.; Hampel, S. Fused Filament Fabrication (FFF) of PIM Feedstocks. Proc. VI Congr. Nac. Pulvimetalurgia y I Congr. Iberoam. Pulvimetalurgia 2017. | spa |
dc.relation.references | Suwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals (Basel). 2022, 12. | spa |
dc.relation.references | Agarwala, M.K.; Bandyopadhyay, A.; Van Weeren, R. Fused Deposition of Ceramics (FDC) for Structural Silicon Nitride Components. Proc. Solid Free. Fabr. Symp. 1996, 336–344. | spa |
dc.relation.references | Thevirtualfoundry Available online: https://thevirtualfoundry.com/products/. | spa |
dc.relation.references | DesktopMetal Available online: https://www.desktopmetal.com/products/studio. | spa |
dc.relation.references | Thompson, Y.; Gonzalez-Gutierrez, J.; Kukla, C.; Felfer, P. Fused Filament Fabrication, Debinding and Sintering as a Low Cost Additive Manufacturing Method of 316L Stainless Steel. Addit. Manuf. 2019, 30, 100861, doi:10.1016/j.addma.2019.100861. | spa |
dc.relation.references | Cano, S.; Gonzalez-Gutierrez, J.; Sapkota, J.; Spoerk, M.; Arbeiter, F.; Schuschnigg, S.; Holzer, C.; Kukla, C. Additive Manufacturing of Zirconia Parts by Fused Filament Fabrication and Solvent Debinding: Selection of Binder Formulation. Addit. Manuf. 2019, 26, 117–128, doi:10.1016/j.addma.2019.01.001. | spa |
dc.relation.references | Lengauer, W.; Duretek, I.; Fürst, M.; Schwarz, V.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Kitzmantel, M.; Neubauer, E.; Lieberwirth, C.; et al. Fabrication and Properties of Extrusion-Based 3D-Printed Hardmetal and Cermet Components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149, doi:10.1016/j.ijrmhm.2019.04.011. | spa |
dc.relation.references | Agarwala, M.K.; Weeren, R. Van; Bandyopadhyay, A.; Safari, A.; Danforth, S.C.; Priedeman, W.R. Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals. In Proceedings of the Proceedings ofthe Solid Freeform Fabrication Symposium; 1996; pp. 451–458. | spa |
dc.relation.references | Momeni, V.; Shahroodi, Z.; Gonzalez-Gutierrez, J.; Hentschel, L.; Duretek, I.; Schuschnigg, S.; Kukla, C.; Holzer, C. Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF). Polymers (Basel). 2023, 15, 3007, doi:10.3390/polym15143007. | spa |
dc.relation.references | Gonzlez-Gutirrez, J.; Beulke, G.; Emri, I. Powder Injection Molding of Metal and Ceramic Parts. In Some Critical Issues for Injection Molding; 2012. | spa |
dc.relation.references | Agarwala, M.K.; Weeren, R. Van; Bandyopadhyayl, A.; Whalen, P.J.; Safari, A.; Danforth, S.C. Fused Deposition of Ceramics and Metals : An Overview. In Proceedings of the Proceedings of Solid Freeform Fabrication Symposium; 1996; pp. 385–392. | spa |
dc.relation.references | Danforth, S.C.; Agarwala, M. et al. Solid Freeform Fabrication Methods 1998, 186–192. | spa |
dc.relation.references | Kukla, C.; Gonzalez-Gutierrez, J.; Burkhardt, C.; Weber, O.; Holzer, C. The Production of Magnets by FFF-Fused Filament Fabrication. In Proceedings of the Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition; 2017. | spa |
dc.relation.references | Coelho, S.; Magro, A.; Texeira, P.; Ferreira, N.; Pereira, P.; Rodrigues, F.; Jorge, H.; Sacramento, J. Development of Formulations of WC-Co Filament for Fused Filament Fabrication.; 2020. | spa |
dc.relation.references | Liu, W.; Xie, Z.; Yang, X.; Wu, Y.; Jia, C.; Bo, T.; Wang, L. Surface Modification Mechanism of Stearic Acid to Zirconia Powders Induced by Ball Milling for Water-Based Injection Molding. J. Am. Ceram. Soc. 2011, 94, 1327–1330, doi:10.1111/j.1551-2916.2011.04475.x. | spa |
dc.relation.references | Blackham, B.L. The Development of a Binder System and Process for the Manufacture of Large Diameter Tungsten Carbide Drill Blanks. 2015. | spa |
dc.relation.references | Yang, M.J.; German, R.M. Nanophase and Superfine Cemented Carbides Processed by Powder Injection Molding. Int. J. Refract. Met. Hard Mater. 1998, 16, 107–117, doi:10.1016/S0263-4368(98)00016-X. | spa |
dc.relation.references | Lee, S.W.; Kim, Y.W.; Jang, K.M.; Lee, J.W.; Park, M.S.; Koo, H.Y.; Ha, G.H.; Kang, Y.C. Phase Control of WC–Co Hardmetal Using Additive Manufacturing Technologies. Powder Metall. 2022, 65, 13–21, doi:10.1080/00325899.2021.1937868. | spa |
dc.relation.references | Gil-Plazas, A.-F., Rubiano-Buitrago, J.-D., Boyacá-Mendivelso, L.-A., & Herrera-Quintero, L.-K. Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication. Rev. Fac. Ing. 2022, 31, e13913, doi:https://doi.org/10.19053/01211129.v31.n60.2022.13913. | spa |
dc.relation.references | Truxová, V.; Šafka, J.; Sobotka, J.; Macháček, J.; Ackermann, M. Alumina Manufactured by Fused Filament Fabrication: A Comprehensive Study of Mechanical Properties and Porosity. Polym. 2022, 14, 1–13, doi:10.3390/polym14050991. | spa |
dc.relation.references | Sadaf, M.; Cano, S.; Gonzalez-Gutierrez, J.; Bragaglia, M.; Schuschnigg, S.; Kukla, C.; Holzer, C.; Vály, L.; Kitzmantel, M.; Nanni, F. Influence of Binder Composition and Material Extrusion (MEX) Parameters on the 3D Printing of Highly Filled Copper Feedstocks. Polymers (Basel). 2022, 14, doi:10.3390/polym14224962. | spa |
dc.relation.references | Kan, X.; Yang, D.; Zhao, Z.; Sun, J. 316L FFF Binder Development and Debinding Optimization. Mater. Res. Express 2021, 8, 0–15, doi:10.1088/2053-1591/ac3b15. | spa |
dc.relation.references | Hanemann, T.; Heldele, R.; Mueller, T.; Hausselt, J. Influence of Stearic Acid Concentration on the Processing of ZrO 2-Containing Feedstocks Suitable for Micropowder Injection Molding. Int. J. Appl. Ceram. Technol. 2011, 8, 865–872, doi:10.1111/j.1744-7402.2010.02519.x. | spa |
dc.relation.references | Gorjan, L.; Galusca, C.; Sami, M.; Sebastian, T.; Clemens, F. Effect of Stearic Acid on Rheological Properties and Printability of Ethylene Vinyl Acetate Based Feedstocks for Fused Filament Fabrication of Alumina. Addit. Manuf. 2020, 36, 101391, doi:10.1016/j.addma.2020.101391. | spa |
dc.relation.references | Auscher, M.C.; Fulchiron, R.; Fougerouse, N.; Périé, T.; Cassagnau, P. Zirconia Based Feedstocks: Influence of Particle Surface Modification on the Rheological Properties. Ceram. Int. 2017, 43, 16950–16956, doi:10.1016/j.ceramint.2017.09.100. | spa |
dc.relation.references | Kukla, C.; Duretek, I.; Gonzalez-Gutierrez, J.; Holzer, C. Rheology of Highly Filled Polymers. Polym. Rheol. 2018, doi:10.5772/intechopen.75656. | spa |
dc.relation.references | Bek, M.; Gonzalez-Gutierrez, J.; Kukla, C.; Črešnar, K.P.; Maroh, B.; Perše, L.S. Rheological Behaviour of Highly Filled Materials for Injection Moulding and Additive Manufacturing: Effect of Particle Material and Loading. Appl. Sci. 2020, 10, 1–23, doi:10.3390/app10227993. | spa |
dc.relation.references | Hausnerova, B.; Kasparkova, V.; Hnatkova, E. Effect of Backbone Binders on Rheological Performance of Ceramic Injection Molding Feedstocks. Polym. Eng. Sci. 2017, 57, 739–745, doi:10.1002/pen.24621. | spa |
dc.relation.references | Venkataraman, N.; Rangarajan, S.; Matthewson, M.J.; Harper, B.; Safari, A.; Danforth, S.C.; Wu, G.; Langrana, N.; Guceri, S.; Yardimci, A. Feedstock Material Property - Process Relationships in Fused Deposition of Ceramics (FDC). Rapid Prototyp. J. 2000, 6, 244–252, doi:10.1108/13552540010373344. | spa |
dc.relation.references | Percoco, G.; Arleo, L.; Stano, G.; Bottiglione, F. Analytical Model to Predict the Extrusion Force as a Function of the Layer Height, in Extrusion Based 3D Printing. Addit. Manuf. 2021, 38, 101791, doi:10.1016/j.addma.2020.101791. | spa |
dc.relation.references | Mbow, M.M.; Marin, P.R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5, 139–152, doi:10.1007/s40964-019-00107-4. | spa |
dc.relation.references | Mbow, M.M.; Marin, P.R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5, 139–152, doi:10.1007/s40964-019-00107-4. | spa |
dc.relation.references | Anderegg, D.A.; Bryant, H.A.; Ruffin, D.C.; Skrip, S.M.; Fallon, J.J.; Gilmer, E.L.; Bortner, M.J. In-Situ Monitoring of Polymer Flow Temperature and Pressure in Extrusion Based Additive Manufacturing. Addit. Manuf. 2019, 26, 76–83, doi:10.1016/j.addma.2019.01.002. | spa |
dc.relation.references | Gonzalez-Gutierrez, J.; Guráň, R.; Spoerk, M.; Holzer, C.; Godec, D.; Kukla, C. 3D Printing Conditions Determination for Feedstock Used in Fused Filament Fabrication (FFF) of 17-4PH Stainless Steel Parts. Metalurgija 2018, 57, 117–120. | spa |
dc.relation.references | Singh, P.; Balla, V.K.; Tofangchi, A.; Atre, S. V.; Kate, K.H. Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3). Int. J. Refract. Met. Hard Mater. 2020, 91, 105249, doi:10.1016/j.ijrmhm.2020.105249. | spa |
dc.relation.references | Enneti, R.K.; Onbattuvelli, V.P.; Atre, S. V. Powder Binder Formulation and Compound Manufacture in Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 64–92, doi:10.1533/9780857096234.1.64. | spa |
dc.relation.references | Banerjee, S.; Joens, C.J. Debinding and Sintering of Metal Injection Molding (MIM) Components. Handb. Met. Inject. Molding 2012, 133–180, doi:10.1533/9780857096234.1.133. | spa |
dc.relation.references | Johnson, J.L. Metal Injection Molding (MIM) of Thermal Management Materials in Microelectronics. Handb. Met. Inject. Molding 2012, 446–486, doi:10.1533/9780857096234.4.446. | spa |
dc.relation.references | Hamidi, M.F.F.A.; Harun, W.S.W.; Khalil, N.Z.; Ghani, S.A.C.; Azir, M.Z. Study of Solvent Debinding Parameters for Metal Injection Moulded 316L Stainless Steel. IOP Conf. Ser. Mater. Sci. Eng. 2017, 257, doi:10.1088/1757-899X/257/1/012035. | spa |
dc.relation.references | Lotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion. Addit. Manuf. 2023, 61, 103335, doi:10.1016/j.addma.2022.103335. | spa |
dc.relation.references | Kukla, C.; Cano, S.; Kaylani, D.; Schuschnigg, S.; Holzer, C.; Gonzalez-Gutierrez, J. Debinding Behaviour of Feedstock for Material Extrusion Additive Manufacturing of Zirconia. Powder Metall. 2019, 62, 196–204, doi:10.1080/00325899.2019.1616139. | spa |
dc.relation.references | Enneti, R.K.; Park, S.J.; German, R.M.; Atre, S. V. Review: Thermal Debinding Process in Particulate Materials Processing. Mater. Manuf. Process. 2012, 27, 103–118, doi:10.1080/10426914.2011.560233. | spa |
dc.relation.references | Liu, L.; Loh, N.H.; Tay, B.Y.; Tor, S.B.; Murakoshi, Y.; Maeda, R. Effects of Thermal Debinding on Surface Roughness in Micro Powder Injection Molding. Mater. Lett. 2007, 61, 809–812, doi:10.1016/j.matlet.2006.05.070. | spa |
dc.relation.references | Xie, H.; Jiang, J.; Yang, X.; He, Q.; Zhou, Z.; Xu, X.; Zhang, L. Theory and Practice of Rapid and Safe Thermal Debinding in Ceramic Injection Molding. Int. J. Appl. Ceram. Technol. 2020, 17, 1098–1107, doi:10.1111/ijac.13349. | spa |
dc.relation.references | Hwang, K.S.; Lin, H.K.; Lee, S.C. Thermal, Solvent, and Vacuum Debinding Mechanisms of PIM Compacts. Mater. Manuf. Process. 1997, 12, 593–608, doi:10.1080/10426919708935169. | spa |
dc.relation.references | Gille, G.; Szesny, B.; Dreyer, K.; van den Berg, H.; Schmidt, J.; Gestrich, T.; Leitner, G. Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts. Int. J. Refract. Met. Hard Mater. 2002, 20, 3–22, doi:https://doi.org/10.1016/S0263-4368(01)00066-X. | spa |
dc.relation.references | Wu, Y.; German, R.M.; Blaine, D.; Marx, B.; Schlaefer, C. Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of Injection Molded 17-4 PH Stainless Steel. J. Mater. Sci. 2002, 37, 3573–3583, doi:10.1023/A:1016532418920. | spa |
dc.relation.references | Lengauer, W.; Duretek, I.; Fürst, M.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C. Filament-Extrusion 3D Printing of Hardmetal and Cermet Parts. In Proceedings of the 11th International Conference on the Science of Hard Materials; http://www.icshm11.org: Khao Lak, March 25 2019; p. 2. | spa |
dc.relation.references | Gille, G.; Bredthauer, J.; Gries, B.; Mende, B.; Heinrich, W. Advanced and New Grades of WC and Binder Powder - Their Properties and Application. Int. J. Refract. Met. Hard Mater. 2000, 18, 87–102, doi:10.1016/S0263-4368(00)00002-0. | spa |
dc.relation.references | Bounhoure, V.; Lay, S.; Coindeau, S.; Norgren, S.; Pauty, E.; Missiaen, J.M. Effect of Cr Addition on Solid State Sintering of WC-Co Alloys. Int. J. Refract. Met. Hard Mater. 2015, 52, 21–28, doi:10.1016/j.ijrmhm.2015.05.002. | spa |
dc.relation.references | Lengauer, W.; Duretek, I.; Fürst, M.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C. Fused-Filament Printing of Hardmetals and Cermets with Feedstock from RTP Powders.; 2019. | spa |
dc.relation.references | Elkins, K.; Nordby, H.; Janak, C.; Gray, R.W.; Bohn, J.H.; Baird, D.G. Soft Elastomers for Fused Deposition Modeling. In Proceedings of the Solid Freeform Fabrication Proceedings, September 1997; 1997; pp. 441–448. | spa |
dc.relation.references | Godec, D.; Cano, S.; Holzer, C.; Gonzalez-Gutierrez, J. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials (Basel). 2020, 13, doi:10.3390/ma13030774. | spa |
dc.relation.references | Cano, S.; Gooneie, A.; Kukla, C.; Rieb, G.; Holzer, C.; Gonzalez-Gutierrez, J. Modification of Interfacial Interactions in Ceramic-Polymer Nanocomposites by Grafting: Morphology and Properties for Powder Injection Molding and Additive Manufacturing. Appl. Sci. 2020, 10, doi:10.3390/app10041471. | spa |
dc.relation.references | Mukesh K. Agarwala; Vikram R. Jamalabad; Noshir A. Langrana; Ahmad Safari; Philip J. Whalen and; Stephen C. Danforth Structural Quality of Parts Processed by Fused Deposition. Rapid Prototyp. J. 1996, 2, 4–19. | spa |
dc.relation.references | Wang, H.; Song, X.; Wei, C.; Gao, Y.; Guo, G. Abrasion Resistance Enhancement of Ultrafine-Structured WC-Co Coating Fabricated by Using in Situ Synthesized Composite Powder. J. Mater. Sci. Technol. 2013, 29, 1067–1073, doi:10.1016/j.jmst.2013.08.020. | spa |
dc.relation.references | Prakash, L.J. Application of Fine Grained Tungsten Carbide Based Cemented Carbides. Int. J. Refract. Met. Hard Mater. 1995, 13, 257–264, doi:https://doi.org/10.1016/0263-4368(95)92672-7. | spa |
dc.relation.references | Pious, C. V.; Thomas, S. Polymeric Materials-Structure, Properties, and Applications. Print. Polym. Fundam. Appl. 2015, 21–39, doi:10.1016/B978-0-323-37468-2.00002-6. | spa |
dc.relation.references | Aldrich, S. PP Grafted with Maleich Anhydride Available online: https://www.sigmaaldrich.com/CO/es/product/aldrich/427845. | spa |
dc.relation.references | Fernando, A.; Plazas, G. Caracterización Microestructural de Componentes En Acero Obtenidos Mediante Manufactura Aditiva ., Universidad Nacional de Colombia, 2021. | spa |
dc.relation.references | Wang, H.; Qiu, Q.; Gee, M.; Hou, C.; Liu, X.; Song, X. Wear Resistance Enhancement of HVOF-Sprayed WC-Co Coating by Complete Densification of Starting Powder. Mater. Des. 2020, 191, 108586, doi:10.1016/j.matdes.2020.108586. | spa |
dc.relation.references | De Roover, B.; Sclavons, M.; Carlier, V.; Devaux, J.; Legras, R.; Momtaz, A. Molecular Characterization of Maleic Anhydride‐functionalized Polypropylene. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 829–842, doi:10.1002/pola.1995.080330509. | spa |
dc.relation.references | Ghasemi-Mobarakeh, L.; Cano, S.; Momeni, V.; Liu, D.; Duretek, I.; Riess, G.; Kukla, C.; Holzer, C. Effect of Increased Powder–Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding. Polymers (Basel). 2022, 14, doi:10.3390/polym14173653. | spa |
dc.relation.references | Tosto, C.; Tirill, J.; Sarasini, F.; Sergi, C.; Cicala, G. Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing. 2022, 1–22. | spa |
dc.relation.references | Wu, G.; Langrana, N.A.; Sadanji, R.; Danforth, S. Solid Freeform Fabrication of Metal Components Using Fused Deposition of Metals. Mater. Des. 2002, 23, 97–105, doi:10.1016/s0261-3069(01)00079-6. | spa |
dc.relation.references | Tarani, E.; Arvanitidis, I.; Christofilos, D.; Bikiaris, D.N.; Chrissafis, K.; Vourlias, G. Calculation of the Degree of Crystallinity of HDPE/GNPs Nanocomposites by Using Various Experimental Techniques: A Comparative Study. J. Mater. Sci. 2023, 58, 1621–1639, doi:10.1007/s10853-022-08125-4. | spa |
dc.relation.references | Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer-Verlag: Berlin/Heidelberg, 2005; ISBN 3-540-23629-5. | spa |
dc.relation.references | Mattos, B.D.; Misso, A.L.; De Cademartori, P.H.G.; De Lima, E.A.; Magalhães, W.L.E.; Gatto, D.A. Properties of Polypropylene Composites Filled with a Mixture of Household Waste of Mate-Tea and Wood Particles. Constr. Build. Mater. 2014, 61, 60–68, doi:10.1016/j.conbuildmat.2014.02.022. | spa |
dc.relation.references | Gonzalez-Gutierrez, J.; Duretek, I.; Kukla, C.; Poljšak, A.; Bek, M.; Emri, I.; Holzer, C. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation. Metals (Basel). 2016, 6, doi:10.3390/met6060129. | spa |
dc.relation.references | Fayyaz, A.; Muhamad, N.; Sulong, A.B.; Yunn, H.S.; Amin, S.Y.M.; Rajabi, J. Micro-Powder Injection Molding of Cemented Tungsten Carbide: Feedstock Preparation and Properties. Ceram. Int. 2015, 41, 3605–3612, doi:10.1016/j.ceramint.2014.11.022. | spa |
dc.relation.references | Kukla, C.; Gonzalez-Gutierrez, J.; Duretek, I.; Schuschnigg, S.; Holzer, C. Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication. In Proceedings of the AIP Conference Proceedings; 2017; Vol. 1914. | spa |
dc.relation.references | Hwang, K.S. Common Defects in Metal Injection Molding (MIM); Woodhead Publishing Limited, 2012; ISBN 9780857096234. | spa |
dc.relation.references | Hsueh, M.H.; Lai, C.J.; Wang, S.H.; Zeng, Y.S.; Hsieh, C.H.; Pan, C.Y.; Huang, W.C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3d-Printed Pla and Petg, Using Fused Deposition Modeling. Polymers (Basel). 2021, 13, doi:10.3390/polym13111758. | spa |
dc.relation.references | German, R.M. The Impact of Economic Batch Size on Cost of Powder Injection Molded (PIM) Products. Adv. Powder Metall. Part. Mater. 2003, 8, 146–159. | spa |
dc.relation.references | Herranz, G. Control of Carbon Content in Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 265–304, doi:10.1533/9780857096234.2.265. | spa |
dc.relation.references | Zhu, B.; Qu, X.; Tao, Y. Powder Injection Molding of WC-8%Co Tungsten Cemented Carbide. Int. J. Refract. Met. Hard Mater. 2002, 20, 389–394, doi:10.1016/S0263-4368(02)00015-X. | spa |
dc.relation.references | Mariani, M.; Goncharov, I.; Mariani, D.; De Gaudenzi, G. Pietro; Popovich, A.; Lecis, N.; Vedani, M. Mechanical and Microstructural Characterization of WC-Co Consolidated by Binder Jetting Additive Manufacturing. Int. J. Refract. Met. Hard Mater. 2021, 100, 105639, doi:https://doi.org/10.1016/j.ijrmhm.2021.105639. | spa |
dc.relation.references | Heaney, D.F. Designing for Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 29–49, doi:10.1533/9780857096234.1.29. | spa |
dc.relation.references | Hu, S.C.; Hwang, K.S. Length Change and Deformation of Powder Injection-Molded Compacts during Solvent Debinding. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2000, 31, 1473–1478, doi:10.1007/s11661-000-0265-1. | spa |
dc.relation.references | Lin, H.K.; Hwang, K.S. In Situ Dimensional Changes of Powder Injection-Molded Compacts during Solvent Debinding. Acta Mater. 1998, 46, 4303–4309, doi:10.1016/S1359-6454(98)00093-7. | spa |
dc.relation.references | Sammes, N.M.; Vohora, S.; Cartner, A.M. Swelling Parameter of Polypropylene Used in Household Appliances. J. Mater. Sci. 1994, 29, 6255–6258, doi:10.1007/BF00354568. | spa |
dc.relation.references | Greco, R.; Hopfenberg, H.B.; Martusgelli, E.; Ragosta, G.; Demma, G. Thermal and Swelling Properties of Polystyrene‐polyolefin Blends. Polym. Eng. Sci. 1978, 18, 654–659, doi:10.1002/pen.760180809. | spa |
dc.relation.references | Holmes, D.P.; Roché, M.; Sinha, T.; Stone, H.A. Bending and Twisting of Soft Materials by Non-Homogenous Swelling. Soft Matter 2011, 7, 5188–5193, doi:10.1039/c0sm01492c. | spa |
dc.relation.references | Lucantonio, A.; Nardinocchi, P.; Teresi, L. Transient Analysis of Swelling-Induced Large Deformations in Polymer Gels. J. Mech. Phys. Solids 2013, 61, 205–218, doi:10.1016/j.jmps.2012.07.010. | spa |
dc.relation.references | ASTM B276-21 Standard Test Method for Apparent Porosity in Cemented Carbides. ASTM Int. 2021, 1–19, doi:10.1520/B0276-21.2. | spa |
dc.relation.references | Li, C.-W.; Chang, K.-C.; Yeh, A.-C. On the Microstructure and Properties of an Advanced Cemented Carbide System Processed by Selective Laser Melting. J. Alloys Compd. 2019, 782, 440–450, doi:https://doi.org/10.1016/j.jallcom.2018.12.187. | spa |
dc.relation.references | Gu, L.; Huang, J.; Xie, C. Effects of Carbon Content on Microstructure and Properties of WC–20Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2014, 42, 228–232, doi:10.1016/j.ijrmhm.2013.09.010. | spa |
dc.relation.references | Marshall, J.M.; Giraudel, M. The Role of Tungsten in the Co Binder: Effects OnWC Grain Size and Hcp-Fcc Co in the Binder Phase. Int. J. Refract. Met. Hard Mater. 2015, 49, 57–66, doi:10.1016/j.ijrmhm.2014.09.028. | spa |
dc.relation.references | Lu, Z.; Du, J.; Sun, Y.; Su, G.; Zhang, C.; Kong, X. Effect of Ultrafine WC Contents on the Microstructures, Mechanical Properties and Wear Resistances of Regenerated Coarse Grained WC-10Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2021, 97, 105516, doi:10.1016/j.ijrmhm.2021.105516. | spa |
dc.relation.references | Upadhyaya, G.S. Microstructural Aspects of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 166–192 ISBN 978-0-8155-1417-6. | spa |
dc.relation.references | Sommer, M.; Schubert, W.D.; Zobetz, E.; Warbichler, P. On the Formation of Very Large WC Crystals during Sintering of Ultrafine WC-Co Alloys. Int. J. Refract. Met. Hard Mater. 2002, 20, 41–50, doi:10.1016/S0263-4368(01)00069-5. | spa |
dc.relation.references | Konyashin, I.; Hlawatschek, S.; Ries, B.; Lachmann, F.; Dorn, F.; Sologubenko, A.; Weirich, T. On the Mechanism of WC Coarsening in WC–Co Hardmetals with Various Carbon Contents. Int. J. Refract. Met. Hard Mater. 2009, 27, 234–243, doi:https://doi.org/10.1016/j.ijrmhm.2008.09.001. | spa |
dc.relation.references | Konyashin, I.; Straumal, B.B.; Ries, B.; Bulatov, M.F.; Kolesnikova, K.I. Contact Angles of WC/WC Grain Boundaries with Binder in Cemented Carbides with Various Carbon Content. Mater. Lett. 2017, 196, 1–3, doi:10.1016/j.matlet.2017.03.001. | spa |
dc.relation.references | Guo, J.; Fan, P.; Wang, X.; Fang, Z.Z. Formation of Co-Capping during Sintering of Straight WC-10 Wt% Co. Int. J. Refract. Met. Hard Mater. 2010, 28, 317–323, doi:10.1016/j.ijrmhm.2009.11.005. | spa |
dc.relation.references | Bertalan, C.; Moseley, S.; Pereira, L.; Useldinger, R. Influence of Sintering Parameters on the Microstructure and Mechanical Properties of WC-Co Hardmetals. Int. J. Refract. Met. Hard Mater. 2024, 118, 106439, doi:10.1016/j.ijrmhm.2023.106439. | spa |
dc.relation.references | Lin, D.; Xu, J.; Shan, Z.; Chung, S.T.; Park, S.J. Fabrication of WC-Co Cutting Tool by Powder Injection Molding. Int. J. Precis. Eng. Manuf. 2015, 16, 1435–1439, doi:10.1007/s12541-015-0189-8. | spa |
dc.relation.references | Johnson, J.L.; Heaney, D.F.; Myers, N.S. Metal Injection Molding (MIM) of Heavy Alloys, Refractory Metals, and Hardmetals; 2nd ed.; Elsevier Ltd., 2019; ISBN 9780081021521. | spa |
dc.relation.references | Seerane, M.; Chikwanda, H.; Focke, W.; Machaka, R. A Study of Solvent Debinding Variables on Ti6Al4V Green Bodies. Adv. Mater. Res. 2014, 1019, 204–209, doi:10.4028/www.scientific.net/AMR.1019.204. | spa |
dc.relation.references | CERATIZIT Additive Manufacturing at CERATIZIT Team Cutting Tools Available online: https://cuttingtools.ceratizit.com/gb/en/tool-solutions/additivemanufacturing.html. | spa |
dc.relation.references | Sandvik Sandvik Now Offers Additively Manufactured Cemented Carbide Components Available online: https://www.metal-am.com/sandvik-now-offers-additively-manufactured-cemented-carbide-components/. | spa |
dc.relation.references | Bose, A.; Reidy, J.P.; Pötschke, J. Sinter-Based Additive Manufacturing of Hardmetals: Review. Int. J. Refract. Met. Hard Mater. 2024, 119, doi:10.1016/j.ijrmhm.2023.106493. | spa |
dc.relation.references | Fortunato, A.; Valli, G.; Liverani, E.; Ascari, A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019, 6, 247–262, doi:10.1007/s40516-019-00092-0. | spa |
dc.relation.references | Enneti, R.K.; Prough, K.C. Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract. Met. Hard Mater. 2019, 78, 228–232, doi:10.1016/j.ijrmhm.2018.10.003. | spa |
dc.relation.references | Oliaei, S.N.B.; Karpat, Y. Investigating the Influence of Built-up Edge on Forces and Surface Roughness in Micro Scale Orthogonal Machining of Titanium Alloy Ti6Al4V. J. Mater. Process. Technol. 2016, 235, 28–40, doi:10.1016/j.jmatprotec.2016.04.010. | spa |
dc.relation.references | Oliaei, S.N.B.; Karpat, Y. Built-up Edge Effects on Process Outputs of Titanium Alloy Micro Milling. Precis. Eng. 2017, 49, 305–315, doi:10.1016/j.precisioneng.2017.02.019. | spa |
dc.relation.references | Dudzinski, D.; Devillez, A.; Moufki, A.; Larrouquère, D.; Zerrouki, V.; Vigneau, J. A Review of Developments towards Dry and High Speed Machining of Inconel 718 Alloy. Int. J. Mach. Tools Manuf. 2004, 44, 439–456, doi:10.1016/S0890-6955(03)00159-7. | spa |
dc.relation.references | Boing, D.; de Oliveira, A.J.; Schroeter, R.B. Limiting Conditions for Application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) Coated Cemented Carbide Grades in the Turning of Hardened Steels. Wear 2018, 416, 54–61. | spa |
dc.relation.references | Kudapa, S.; Narasimhan, K.; Boppana, P.; Russell, W.C. Characterization and Properties of MTCVD TiCN and MTCVD ZrCN Coatings. Surf. Coatings Technol. 1999, 120–121, 259–264, doi:https://doi.org/10.1016/S0257-8972(99)00484-3. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 670 - Manufactura::673 - Metales no ferrosos | spa |
dc.subject.lemb | ACABADO DE METALES | spa |
dc.subject.lemb | Metals - finishing | eng |
dc.subject.lemb | REPUJADO EN METALES | spa |
dc.subject.lemb | Embossing (metal-work) | eng |
dc.subject.lemb | COMPUESTOS POLIMERICOS | spa |
dc.subject.lemb | Polymeric composites | eng |
dc.subject.lemb | POLIMERIZACION | spa |
dc.subject.lemb | Polymerization | eng |
dc.subject.lemb | SINTERIZACION | spa |
dc.subject.lemb | Sintering | eng |
dc.subject.lemb | METALURGIA DE POLVOS | spa |
dc.subject.lemb | Powder metallurgy | eng |
dc.subject.proposal | Fused Filament Fabrication | eng |
dc.subject.proposal | FFF | eng |
dc.subject.proposal | Hardmetal | eng |
dc.subject.proposal | Additive Manufacturing | eng |
dc.subject.proposal | Thermal Debinding | eng |
dc.subject.proposal | Sintering | eng |
dc.subject.proposal | Machining | eng |
dc.subject.proposal | Fabricación por Filamentos Fundidos | spa |
dc.subject.proposal | Metal Duro | spa |
dc.subject.proposal | Manufactura Aditiva | spa |
dc.subject.proposal | Despolimerizado Térmico | spa |
dc.subject.proposal | Sinterización | spa |
dc.subject.proposal | Mecanizado | spa |
dc.subject.wikidata | Impresión 3D | spa |
dc.subject.wikidata | 3D printing | eng |
dc.title | Development of the fused filament fabrication, debinding, and sintering processes for the obtention of a WC-10 Co hardmetal | eng |
dc.title.translated | Desarrollo de los procesos de fabricación por filamentos fundidos, despolimerización y sinterización para la obtención de un metal duro WC-10 Co | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Becas de Excelencia Doctoral del Bicentenario - Corte 1 | spa |
oaire.fundername | Ministerio de Ciencias | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Doctorado (2).pdf
- Tamaño:
- 10.89 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: