Development of the fused filament fabrication, debinding, and sintering processes for the obtention of a WC-10 Co hardmetal

dc.contributor.advisorHerrera Quintero, Liz Karenspa
dc.contributor.authorRubiano Buitrago, Julian Davidspa
dc.contributor.cvlacRubiano Buitrago, Julian David [rh=0000077725]spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=SqCWVKoAAAAJ&hl=esspa
dc.contributor.orcidRubiano Buitrago, Julian David [0000000334918373]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Julian-Rubiano?ev=hdr_xprfspa
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.date.accessioned2025-03-17T12:44:43Z
dc.date.available2025-03-17T12:44:43Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEsta investigación explora la aplicación de la tecnología de fabricación de filamentos fundidos (FFF) para la impresión 3D de metales duros WC-10Co, centrándose en el desarrollo de formulaciones de sistemas poliméricos que incorporan polipropileno injertado con anhídrido maleico, elastómeros termoplásticos y aditivos como cera de parafina y ácido esteárico. El estudio ajusta las variables del proceso a través de las fases de impresión, despolimerización térmica y sinterización. Se realizaron experimentos preliminares para estandarizar variables, incluyendo el mantenimiento de un 48% de volumen de polvo en la materia prima desarrollada y utilizando polvos listos para prensar de grado industrial. Tras experimentar con las variables de impresión, se lograron densidades relativas en verde de hasta el 99.99%. Se obtuvieron conocimientos sobre los efectos de atmósferas de despolimerización, como el vacío y una mezcla de 75% H2 + 25% N2, permitiendo controlar eficazmente el carbono residual de la degradación de las cadenas poliméricas durante la despolimerización térmica mientras controlaban la microestructura de los metales duros sinterizados. Los experimentos demuestran que mediante FFF se puede producir metales duros con niveles de dureza que varían de 1300 HV30 a 1500 HV30 y una tenacidad a la fractura entre 12 y 24 MPa√m, comparable a los métodos convencionales. Los cambios dimensionales durante la sinterización se analizaron en respuesta al tiempo de sinterización y a la atmósfera de despolimerización, ayudando a predecir las desviaciones angulares, diametrales y longitudinales necesarias para escalar las muestras impresas a sus dimensiones finales, lo cual también mostró una correlación directa con los parámetros del proceso de despolimerización térmica. Los experimentos de corte con herramientas impresas en 3D y prensadas revelaron que no hay diferencias estadísticas en el comportamiento de desgaste, validando la competencia funcional de los metales duros impresos en 3D (Texto tomado de la fuente).spa
dc.description.abstractThis research explores the application of fused filament fabrication (FFF) technology for 3D printing WC-10Co hardmetals, focusing on developing binder formulations that incorporate polypropylene grafted with maleic anhydride, thermoplastic elastomers, and additives like wax and stearic acid. The study adjusts process variables across printing, thermal debinding, and sintering phases. Preliminary experiments were conducted to standardize variables, including maintaining a 48% powder volume in the feedstock and utilizing industrial-grade Ready-to-Press powders. After experimenting with printing variables, relative green densities up to 99.99 % were achieved. Insights were gained on optimal sintering times and the effects of debinding atmospheres, such as vacuum and a 75% H2 + 25% N2 mixture, which effectively removed residual carbon from polymer chain degradation during thermal debinding while controlling the microstructure of the sintered hardmetals. The experiments demonstrate that FFF can produce hardmetals with hardness levels ranging from 1300 HV30 to 1500 HV30 and fracture toughness between 12 to 24 MPa√m, comparable to conventional methods. Dimensional changes during sintering were analyzed in response to sintering time and debinding atmosphere, aiding in predicting angular, diametral, and longitudinal deviations necessary to scale printed samples to their final dimensions, which also showed a direct correlation with the thermal debinding processing parameters. Cutting experiments with both 3D printed and conventionally pressed tools revealed no statistical differences in wear behavior, validating the functional competence of 3D printed hardmetals.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieriaspa
dc.description.researchareaProcesos de Manufactura y Metalurgiaspa
dc.description.sponsorshipTechnological development for the manufacture of metal tools using additive manufacturing techniques based on extrusion for high temperature and wear applications used by the Colombian auto parts industry” with the code 82305—110189082305 and contingent recovery financing contract number 2021–1012 of 2021 celebrated between the Colombian institute of educational credit and technical studies abroad, “Mariano Ospina Pérez”—ICETEX, the Ministry of Science, Technology and Innovation, and the National University of Colombiaspa
dc.description.sponsorship• Implementation of additive manufacturing technologies for ceramic materials as a complement to R&D+i processes at Universidad Nacional de Colombia," supported by Hermes code: 57440spa
dc.description.sponsorship"Advanced Manufacturing and Society 5.0" research seedbed, with Hermes ID: 3965spa
dc.format.extentxix, 185 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87665
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesFarag, S.; Konyashin, I.; Ries, B. The Influence of Grain Growth Inhibitors on the Microstructure and Properties of Submicron, Ultrafine and Nano-Structured Hardmetals – A Review. Int. J. Refract. Met. Hard Mater. 2018, 77, 12–30, doi:10.1016/j.ijrmhm.2018.07.003.spa
dc.relation.referencesMahmoodan, M.; Aliakbarzadeh, H.; Gholamipour, R. Sintering of WC-10%Co Nano Powders Containing TaC and VC Grain Growth Inhibitors. Trans. Nonferrous Met. Soc. China (English Ed. 2011, 21, 1080–1084, doi:10.1016/S1003-6326(11)60825-X.spa
dc.relation.referencesUpadhyaya, G.S. Classification and Applications of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 288–308 ISBN 978-0-8155-1417-6.spa
dc.relation.referencesUpadhyaya, G.S. Consolidation of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 89–137 ISBN 978-0-8155-1417-6.spa
dc.relation.referencesGerman, R.M.; Suri, P.; Park, S.J. Review: Liquid Phase Sintering. J. Mater. Sci. 2009, 44, 1–39, doi:10.1007/s10853-008-3008-0.spa
dc.relation.referencesNie, H.; Zhang, T. Development of Manufacturing Technology on WC–Co Hardmetals. Tungsten 2019, 1, 198–212, doi:10.1007/s42864-019-00025-6.spa
dc.relation.referencesBONACHE BEZARES, M.V. Obtenci{ó}n, Procesado y Caracterizaci{ó}n de Carburos Cementados CW-Co Basados En Polvos Ultrafinos y Nanocristalinos (Obtaining, Processing and Characterization of WC-Co Cemented Carbides Based on Ultrafine and Nanocrystalline Powders). 2016, 500.spa
dc.relation.referencesQuinlan, H.E.; Hasan, T.; Jaddou, J.; Hart, A.J. Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges. J. Ind. Ecol. 2017, 21, S15–S20, doi:10.1111/jiec.12609.spa
dc.relation.referencesKim, K.W.; Ham, G.S.; Park, S.H.; Cho, J.W.; Lee, K.A. Direct Energy Deposition of Ultrastrong WC-12Co Cemented Carbide: Fabrication, Microstructure and Compressive Properties. Int. J. Refract. Met. Hard Mater. 2021, 99, 105591, doi:10.1016/j.ijrmhm.2021.105591.spa
dc.relation.referencesKim, K.W.; Kale, A.B.; Cho, Y.H.; Park, S.H.; Lee, K.A. Microstructural and Wear Properties of WC-12Co Cemented Carbide Fabricated by Direct Energy Deposition. Wear 2023, 518–519, 204653, doi:10.1016/j.wear.2023.204653.spa
dc.relation.referencesOstolaza, M.; Arrizubieta, J.I.; Queguineur, A.; Valtonen, K.; Lamikiz, A.; Flores Ituarte, I. Influence of Process Parameters on the Particle–Matrix Interaction of WC-Co Metal Matrix Composites Produced by Laser-Directed Energy Deposition. Mater. Des. 2022, 223, 111172, doi:10.1016/j.matdes.2022.111172.spa
dc.relation.referencesXiong, Y.; Smugeresky, J.E.; Schoenung, J.M. The Influence of Working Distance on Laser Deposited WC-Co. J. Mater. Process. Technol. 2009, 209, 4935–4941, doi:10.1016/j.jmatprotec.2009.01.016.spa
dc.relation.referencesLi, Y.; Bai, P.; Wang, Y.; Hu, J.; Guo, Z. Effect of Ni Contents on the Microstructure and Mechanical Properties of TiC-Ni Cermets Obtained by Direct Laser Fabrication. Int. J. Refract. Met. Hard Mater. 2009, 27, 552–555, doi:10.1016/j.ijrmhm.2008.07.006.spa
dc.relation.referencesZong, G.; Wu, Y.; Tran, N.; Lee, I.; Bourell, D.L.; Beaman, J.J.; Marcus, H.L. Direct Selective Laser Sintering of High Temperature Materials. Proc. Solid Free. Fabr. Symp. 1992, 72–85.spa
dc.relation.referencesKumar, S.; Czekanski, A. Optimization of Parameters for SLS of WC-Co. Rapid Prototyp. J. 2017, 23, 1202–1211, doi:10.1108/RPJ-10-2016-0168.spa
dc.relation.referencesUhlmann, E.; Bergmann, A.; Bolz, R.; Gridin, W. Application of Additive Manufactured Tungsten Carbide Tool Electrodes in EDM. Procedia CIRP 2018, 68, 86–90, doi:10.1016/j.procir.2017.12.027.spa
dc.relation.referencesVaezi, M.; Drescher, P.; Seitz, H. Beamless Metal Additive Manufacturing. Materials (Basel). 2020, 13, doi:10.3390/ma13040922.spa
dc.relation.referencesGonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials (Basel). 2018, 11, doi:10.3390/ma11050840.spa
dc.relation.referencesAramian, A.; Razavi, S.M.J.; Sadeghian, Z.; Berto, F. A Review of Additive Manufacturing of Cermets. Addit. Manuf. 2020, 33, 101130, doi:10.1016/j.addma.2020.101130.spa
dc.relation.referencesLeary, M. Directed Energy Deposition; 2020; ISBN 9780128167212.spa
dc.relation.referencesTang, Y.; Chen, L.; Yang, Q.; Zhong, Z.; Xu, G. Effect of a Slight Change in Carbon Content near the Upper/Lower Limit on the Microstructure and Mechanical Properties of WC-10Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2021, 96, 105465, doi:10.1016/j.ijrmhm.2020.105465.spa
dc.relation.referencesKim, J.; Suh, Y.J.; Kang, I. First-Principles Calculations of the Phase Stability and the Elastic and Mechanical Properties of η-Phases in the WC–Co System. J. Alloys Compd. 2016, 656, 213–217, doi:10.1016/j.jallcom.2015.09.214.spa
dc.relation.referencesGarcía, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68, doi:10.1016/j.ijrmhm.2018.12.004.spa
dc.relation.referencesUpadhyaya, G.S. Mechanical Behavior of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 193–226 ISBN 978-0-8155-1417-6.spa
dc.relation.referencesExner, H.E. Physical and Chemical Nature of Cemented Carbides. Int. Met. Rev. 1979, 24, 149–173.spa
dc.relation.referencesRubiano Buitrago, J.D.J.D.; Gil Plazas, A.F.A.F.; Herrera Quintero, L.K.L.K. Influence of TiC and Cr3C2 Additions on the Mechanical Properties of a (W-Ti-Cr)C-Co Sintered Hardmetal. J. Mater. Res. Technol. 2019, 8, 5736–5744, doi:10.1016/j.jmrt.2019.09.042.spa
dc.relation.referencesKonyashin, I.; Ries, B. Wear Damage of Cemented Carbides with Different Combinations of WC Mean Grain Size and Co Content. Part II: Laboratory Performance Tests on Rock Cutting and Drilling. Int. J. Refract. Met. Hard Mater. 2014, 45, 230–237, doi:10.1016/j.ijrmhm.2014.04.017.spa
dc.relation.referencesSwab, J.J.; Wright, J.C.; Kurniawati, putri Application of ASTM C1421 to WC-Co Fracture Toughness Measurement. Int. J. Refract. Met. Hard Mater. 2016, 58, 8–13, doi:https://doi.org/10.1016/j.ijrmhm.2016.03.007.spa
dc.relation.referencesSchubert, W.D.; Neumeister, H.; Kinger, G.; Lux, B. Hardness to Toughness Relationship of Fine-Grained WC-Co Hardmetals. Int. J. Refract. Met. Hard Mater. 1998, 16, 133–142, doi:https://doi.org/10.1016/S0263-4368(98)00028-6.spa
dc.relation.referencesLu, Z.; Wang, W.; Zeng, M.; Zhu, M. Breaking the Hardness–Toughness Trade-off in WC–Co Hardmetals: Introduction of Dual-Scale Plate-like WC and Modification of Prediction Models. Int. J. Refract. Met. Hard Mater. 2022, 108, 105910, doi:https://doi.org/10.1016/j.ijrmhm.2022.105910.spa
dc.relation.referencesS. Scott APPARATUS AND METHOD FOR CREATING THREE-DIMENSIONAL OBJECTS. Bunseki Kagaku 1992, 28, 195–196.spa
dc.relation.referencesSells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. Handb. Res. Mass Cust. Pers. 2009, 568–580, doi:10.1142/9789814280280_0028.spa
dc.relation.referencesKukla, C.; Gonzalez-gutierrez, J.; Cano, S.; Hampel, S. Fused Filament Fabrication (FFF) of PIM Feedstocks. Proc. VI Congr. Nac. Pulvimetalurgia y I Congr. Iberoam. Pulvimetalurgia 2017.spa
dc.relation.referencesSuwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals (Basel). 2022, 12.spa
dc.relation.referencesAgarwala, M.K.; Bandyopadhyay, A.; Van Weeren, R. Fused Deposition of Ceramics (FDC) for Structural Silicon Nitride Components. Proc. Solid Free. Fabr. Symp. 1996, 336–344.spa
dc.relation.referencesThevirtualfoundry Available online: https://thevirtualfoundry.com/products/.spa
dc.relation.referencesDesktopMetal Available online: https://www.desktopmetal.com/products/studio.spa
dc.relation.referencesThompson, Y.; Gonzalez-Gutierrez, J.; Kukla, C.; Felfer, P. Fused Filament Fabrication, Debinding and Sintering as a Low Cost Additive Manufacturing Method of 316L Stainless Steel. Addit. Manuf. 2019, 30, 100861, doi:10.1016/j.addma.2019.100861.spa
dc.relation.referencesCano, S.; Gonzalez-Gutierrez, J.; Sapkota, J.; Spoerk, M.; Arbeiter, F.; Schuschnigg, S.; Holzer, C.; Kukla, C. Additive Manufacturing of Zirconia Parts by Fused Filament Fabrication and Solvent Debinding: Selection of Binder Formulation. Addit. Manuf. 2019, 26, 117–128, doi:10.1016/j.addma.2019.01.001.spa
dc.relation.referencesLengauer, W.; Duretek, I.; Fürst, M.; Schwarz, V.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Kitzmantel, M.; Neubauer, E.; Lieberwirth, C.; et al. Fabrication and Properties of Extrusion-Based 3D-Printed Hardmetal and Cermet Components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149, doi:10.1016/j.ijrmhm.2019.04.011.spa
dc.relation.referencesAgarwala, M.K.; Weeren, R. Van; Bandyopadhyay, A.; Safari, A.; Danforth, S.C.; Priedeman, W.R. Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals. In Proceedings of the Proceedings ofthe Solid Freeform Fabrication Symposium; 1996; pp. 451–458.spa
dc.relation.referencesMomeni, V.; Shahroodi, Z.; Gonzalez-Gutierrez, J.; Hentschel, L.; Duretek, I.; Schuschnigg, S.; Kukla, C.; Holzer, C. Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF). Polymers (Basel). 2023, 15, 3007, doi:10.3390/polym15143007.spa
dc.relation.referencesGonzlez-Gutirrez, J.; Beulke, G.; Emri, I. Powder Injection Molding of Metal and Ceramic Parts. In Some Critical Issues for Injection Molding; 2012.spa
dc.relation.referencesAgarwala, M.K.; Weeren, R. Van; Bandyopadhyayl, A.; Whalen, P.J.; Safari, A.; Danforth, S.C. Fused Deposition of Ceramics and Metals : An Overview. In Proceedings of the Proceedings of Solid Freeform Fabrication Symposium; 1996; pp. 385–392.spa
dc.relation.referencesDanforth, S.C.; Agarwala, M. et al. Solid Freeform Fabrication Methods 1998, 186–192.spa
dc.relation.referencesKukla, C.; Gonzalez-Gutierrez, J.; Burkhardt, C.; Weber, O.; Holzer, C. The Production of Magnets by FFF-Fused Filament Fabrication. In Proceedings of the Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition; 2017.spa
dc.relation.referencesCoelho, S.; Magro, A.; Texeira, P.; Ferreira, N.; Pereira, P.; Rodrigues, F.; Jorge, H.; Sacramento, J. Development of Formulations of WC-Co Filament for Fused Filament Fabrication.; 2020.spa
dc.relation.referencesLiu, W.; Xie, Z.; Yang, X.; Wu, Y.; Jia, C.; Bo, T.; Wang, L. Surface Modification Mechanism of Stearic Acid to Zirconia Powders Induced by Ball Milling for Water-Based Injection Molding. J. Am. Ceram. Soc. 2011, 94, 1327–1330, doi:10.1111/j.1551-2916.2011.04475.x.spa
dc.relation.referencesBlackham, B.L. The Development of a Binder System and Process for the Manufacture of Large Diameter Tungsten Carbide Drill Blanks. 2015.spa
dc.relation.referencesYang, M.J.; German, R.M. Nanophase and Superfine Cemented Carbides Processed by Powder Injection Molding. Int. J. Refract. Met. Hard Mater. 1998, 16, 107–117, doi:10.1016/S0263-4368(98)00016-X.spa
dc.relation.referencesLee, S.W.; Kim, Y.W.; Jang, K.M.; Lee, J.W.; Park, M.S.; Koo, H.Y.; Ha, G.H.; Kang, Y.C. Phase Control of WC–Co Hardmetal Using Additive Manufacturing Technologies. Powder Metall. 2022, 65, 13–21, doi:10.1080/00325899.2021.1937868.spa
dc.relation.referencesGil-Plazas, A.-F., Rubiano-Buitrago, J.-D., Boyacá-Mendivelso, L.-A., & Herrera-Quintero, L.-K. Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication. Rev. Fac. Ing. 2022, 31, e13913, doi:https://doi.org/10.19053/01211129.v31.n60.2022.13913.spa
dc.relation.referencesTruxová, V.; Šafka, J.; Sobotka, J.; Macháček, J.; Ackermann, M. Alumina Manufactured by Fused Filament Fabrication: A Comprehensive Study of Mechanical Properties and Porosity. Polym. 2022, 14, 1–13, doi:10.3390/polym14050991.spa
dc.relation.referencesSadaf, M.; Cano, S.; Gonzalez-Gutierrez, J.; Bragaglia, M.; Schuschnigg, S.; Kukla, C.; Holzer, C.; Vály, L.; Kitzmantel, M.; Nanni, F. Influence of Binder Composition and Material Extrusion (MEX) Parameters on the 3D Printing of Highly Filled Copper Feedstocks. Polymers (Basel). 2022, 14, doi:10.3390/polym14224962.spa
dc.relation.referencesKan, X.; Yang, D.; Zhao, Z.; Sun, J. 316L FFF Binder Development and Debinding Optimization. Mater. Res. Express 2021, 8, 0–15, doi:10.1088/2053-1591/ac3b15.spa
dc.relation.referencesHanemann, T.; Heldele, R.; Mueller, T.; Hausselt, J. Influence of Stearic Acid Concentration on the Processing of ZrO 2-Containing Feedstocks Suitable for Micropowder Injection Molding. Int. J. Appl. Ceram. Technol. 2011, 8, 865–872, doi:10.1111/j.1744-7402.2010.02519.x.spa
dc.relation.referencesGorjan, L.; Galusca, C.; Sami, M.; Sebastian, T.; Clemens, F. Effect of Stearic Acid on Rheological Properties and Printability of Ethylene Vinyl Acetate Based Feedstocks for Fused Filament Fabrication of Alumina. Addit. Manuf. 2020, 36, 101391, doi:10.1016/j.addma.2020.101391.spa
dc.relation.referencesAuscher, M.C.; Fulchiron, R.; Fougerouse, N.; Périé, T.; Cassagnau, P. Zirconia Based Feedstocks: Influence of Particle Surface Modification on the Rheological Properties. Ceram. Int. 2017, 43, 16950–16956, doi:10.1016/j.ceramint.2017.09.100.spa
dc.relation.referencesKukla, C.; Duretek, I.; Gonzalez-Gutierrez, J.; Holzer, C. Rheology of Highly Filled Polymers. Polym. Rheol. 2018, doi:10.5772/intechopen.75656.spa
dc.relation.referencesBek, M.; Gonzalez-Gutierrez, J.; Kukla, C.; Črešnar, K.P.; Maroh, B.; Perše, L.S. Rheological Behaviour of Highly Filled Materials for Injection Moulding and Additive Manufacturing: Effect of Particle Material and Loading. Appl. Sci. 2020, 10, 1–23, doi:10.3390/app10227993.spa
dc.relation.referencesHausnerova, B.; Kasparkova, V.; Hnatkova, E. Effect of Backbone Binders on Rheological Performance of Ceramic Injection Molding Feedstocks. Polym. Eng. Sci. 2017, 57, 739–745, doi:10.1002/pen.24621.spa
dc.relation.referencesVenkataraman, N.; Rangarajan, S.; Matthewson, M.J.; Harper, B.; Safari, A.; Danforth, S.C.; Wu, G.; Langrana, N.; Guceri, S.; Yardimci, A. Feedstock Material Property - Process Relationships in Fused Deposition of Ceramics (FDC). Rapid Prototyp. J. 2000, 6, 244–252, doi:10.1108/13552540010373344.spa
dc.relation.referencesPercoco, G.; Arleo, L.; Stano, G.; Bottiglione, F. Analytical Model to Predict the Extrusion Force as a Function of the Layer Height, in Extrusion Based 3D Printing. Addit. Manuf. 2021, 38, 101791, doi:10.1016/j.addma.2020.101791.spa
dc.relation.referencesMbow, M.M.; Marin, P.R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5, 139–152, doi:10.1007/s40964-019-00107-4.spa
dc.relation.referencesMbow, M.M.; Marin, P.R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5, 139–152, doi:10.1007/s40964-019-00107-4.spa
dc.relation.referencesAnderegg, D.A.; Bryant, H.A.; Ruffin, D.C.; Skrip, S.M.; Fallon, J.J.; Gilmer, E.L.; Bortner, M.J. In-Situ Monitoring of Polymer Flow Temperature and Pressure in Extrusion Based Additive Manufacturing. Addit. Manuf. 2019, 26, 76–83, doi:10.1016/j.addma.2019.01.002.spa
dc.relation.referencesGonzalez-Gutierrez, J.; Guráň, R.; Spoerk, M.; Holzer, C.; Godec, D.; Kukla, C. 3D Printing Conditions Determination for Feedstock Used in Fused Filament Fabrication (FFF) of 17-4PH Stainless Steel Parts. Metalurgija 2018, 57, 117–120.spa
dc.relation.referencesSingh, P.; Balla, V.K.; Tofangchi, A.; Atre, S. V.; Kate, K.H. Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3). Int. J. Refract. Met. Hard Mater. 2020, 91, 105249, doi:10.1016/j.ijrmhm.2020.105249.spa
dc.relation.referencesEnneti, R.K.; Onbattuvelli, V.P.; Atre, S. V. Powder Binder Formulation and Compound Manufacture in Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 64–92, doi:10.1533/9780857096234.1.64.spa
dc.relation.referencesBanerjee, S.; Joens, C.J. Debinding and Sintering of Metal Injection Molding (MIM) Components. Handb. Met. Inject. Molding 2012, 133–180, doi:10.1533/9780857096234.1.133.spa
dc.relation.referencesJohnson, J.L. Metal Injection Molding (MIM) of Thermal Management Materials in Microelectronics. Handb. Met. Inject. Molding 2012, 446–486, doi:10.1533/9780857096234.4.446.spa
dc.relation.referencesHamidi, M.F.F.A.; Harun, W.S.W.; Khalil, N.Z.; Ghani, S.A.C.; Azir, M.Z. Study of Solvent Debinding Parameters for Metal Injection Moulded 316L Stainless Steel. IOP Conf. Ser. Mater. Sci. Eng. 2017, 257, doi:10.1088/1757-899X/257/1/012035.spa
dc.relation.referencesLotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion. Addit. Manuf. 2023, 61, 103335, doi:10.1016/j.addma.2022.103335.spa
dc.relation.referencesKukla, C.; Cano, S.; Kaylani, D.; Schuschnigg, S.; Holzer, C.; Gonzalez-Gutierrez, J. Debinding Behaviour of Feedstock for Material Extrusion Additive Manufacturing of Zirconia. Powder Metall. 2019, 62, 196–204, doi:10.1080/00325899.2019.1616139.spa
dc.relation.referencesEnneti, R.K.; Park, S.J.; German, R.M.; Atre, S. V. Review: Thermal Debinding Process in Particulate Materials Processing. Mater. Manuf. Process. 2012, 27, 103–118, doi:10.1080/10426914.2011.560233.spa
dc.relation.referencesLiu, L.; Loh, N.H.; Tay, B.Y.; Tor, S.B.; Murakoshi, Y.; Maeda, R. Effects of Thermal Debinding on Surface Roughness in Micro Powder Injection Molding. Mater. Lett. 2007, 61, 809–812, doi:10.1016/j.matlet.2006.05.070.spa
dc.relation.referencesXie, H.; Jiang, J.; Yang, X.; He, Q.; Zhou, Z.; Xu, X.; Zhang, L. Theory and Practice of Rapid and Safe Thermal Debinding in Ceramic Injection Molding. Int. J. Appl. Ceram. Technol. 2020, 17, 1098–1107, doi:10.1111/ijac.13349.spa
dc.relation.referencesHwang, K.S.; Lin, H.K.; Lee, S.C. Thermal, Solvent, and Vacuum Debinding Mechanisms of PIM Compacts. Mater. Manuf. Process. 1997, 12, 593–608, doi:10.1080/10426919708935169.spa
dc.relation.referencesGille, G.; Szesny, B.; Dreyer, K.; van den Berg, H.; Schmidt, J.; Gestrich, T.; Leitner, G. Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts. Int. J. Refract. Met. Hard Mater. 2002, 20, 3–22, doi:https://doi.org/10.1016/S0263-4368(01)00066-X.spa
dc.relation.referencesWu, Y.; German, R.M.; Blaine, D.; Marx, B.; Schlaefer, C. Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of Injection Molded 17-4 PH Stainless Steel. J. Mater. Sci. 2002, 37, 3573–3583, doi:10.1023/A:1016532418920.spa
dc.relation.referencesLengauer, W.; Duretek, I.; Fürst, M.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C. Filament-Extrusion 3D Printing of Hardmetal and Cermet Parts. In Proceedings of the 11th International Conference on the Science of Hard Materials; http://www.icshm11.org: Khao Lak, March 25 2019; p. 2.spa
dc.relation.referencesGille, G.; Bredthauer, J.; Gries, B.; Mende, B.; Heinrich, W. Advanced and New Grades of WC and Binder Powder - Their Properties and Application. Int. J. Refract. Met. Hard Mater. 2000, 18, 87–102, doi:10.1016/S0263-4368(00)00002-0.spa
dc.relation.referencesBounhoure, V.; Lay, S.; Coindeau, S.; Norgren, S.; Pauty, E.; Missiaen, J.M. Effect of Cr Addition on Solid State Sintering of WC-Co Alloys. Int. J. Refract. Met. Hard Mater. 2015, 52, 21–28, doi:10.1016/j.ijrmhm.2015.05.002.spa
dc.relation.referencesLengauer, W.; Duretek, I.; Fürst, M.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C. Fused-Filament Printing of Hardmetals and Cermets with Feedstock from RTP Powders.; 2019.spa
dc.relation.referencesElkins, K.; Nordby, H.; Janak, C.; Gray, R.W.; Bohn, J.H.; Baird, D.G. Soft Elastomers for Fused Deposition Modeling. In Proceedings of the Solid Freeform Fabrication Proceedings, September 1997; 1997; pp. 441–448.spa
dc.relation.referencesGodec, D.; Cano, S.; Holzer, C.; Gonzalez-Gutierrez, J. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials (Basel). 2020, 13, doi:10.3390/ma13030774.spa
dc.relation.referencesCano, S.; Gooneie, A.; Kukla, C.; Rieb, G.; Holzer, C.; Gonzalez-Gutierrez, J. Modification of Interfacial Interactions in Ceramic-Polymer Nanocomposites by Grafting: Morphology and Properties for Powder Injection Molding and Additive Manufacturing. Appl. Sci. 2020, 10, doi:10.3390/app10041471.spa
dc.relation.referencesMukesh K. Agarwala; Vikram R. Jamalabad; Noshir A. Langrana; Ahmad Safari; Philip J. Whalen and; Stephen C. Danforth Structural Quality of Parts Processed by Fused Deposition. Rapid Prototyp. J. 1996, 2, 4–19.spa
dc.relation.referencesWang, H.; Song, X.; Wei, C.; Gao, Y.; Guo, G. Abrasion Resistance Enhancement of Ultrafine-Structured WC-Co Coating Fabricated by Using in Situ Synthesized Composite Powder. J. Mater. Sci. Technol. 2013, 29, 1067–1073, doi:10.1016/j.jmst.2013.08.020.spa
dc.relation.referencesPrakash, L.J. Application of Fine Grained Tungsten Carbide Based Cemented Carbides. Int. J. Refract. Met. Hard Mater. 1995, 13, 257–264, doi:https://doi.org/10.1016/0263-4368(95)92672-7.spa
dc.relation.referencesPious, C. V.; Thomas, S. Polymeric Materials-Structure, Properties, and Applications. Print. Polym. Fundam. Appl. 2015, 21–39, doi:10.1016/B978-0-323-37468-2.00002-6.spa
dc.relation.referencesAldrich, S. PP Grafted with Maleich Anhydride Available online: https://www.sigmaaldrich.com/CO/es/product/aldrich/427845.spa
dc.relation.referencesFernando, A.; Plazas, G. Caracterización Microestructural de Componentes En Acero Obtenidos Mediante Manufactura Aditiva ., Universidad Nacional de Colombia, 2021.spa
dc.relation.referencesWang, H.; Qiu, Q.; Gee, M.; Hou, C.; Liu, X.; Song, X. Wear Resistance Enhancement of HVOF-Sprayed WC-Co Coating by Complete Densification of Starting Powder. Mater. Des. 2020, 191, 108586, doi:10.1016/j.matdes.2020.108586.spa
dc.relation.referencesDe Roover, B.; Sclavons, M.; Carlier, V.; Devaux, J.; Legras, R.; Momtaz, A. Molecular Characterization of Maleic Anhydride‐functionalized Polypropylene. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 829–842, doi:10.1002/pola.1995.080330509.spa
dc.relation.referencesGhasemi-Mobarakeh, L.; Cano, S.; Momeni, V.; Liu, D.; Duretek, I.; Riess, G.; Kukla, C.; Holzer, C. Effect of Increased Powder–Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding. Polymers (Basel). 2022, 14, doi:10.3390/polym14173653.spa
dc.relation.referencesTosto, C.; Tirill, J.; Sarasini, F.; Sergi, C.; Cicala, G. Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing. 2022, 1–22.spa
dc.relation.referencesWu, G.; Langrana, N.A.; Sadanji, R.; Danforth, S. Solid Freeform Fabrication of Metal Components Using Fused Deposition of Metals. Mater. Des. 2002, 23, 97–105, doi:10.1016/s0261-3069(01)00079-6.spa
dc.relation.referencesTarani, E.; Arvanitidis, I.; Christofilos, D.; Bikiaris, D.N.; Chrissafis, K.; Vourlias, G. Calculation of the Degree of Crystallinity of HDPE/GNPs Nanocomposites by Using Various Experimental Techniques: A Comparative Study. J. Mater. Sci. 2023, 58, 1621–1639, doi:10.1007/s10853-022-08125-4.spa
dc.relation.referencesWunderlich, B. Thermal Analysis of Polymeric Materials; Springer-Verlag: Berlin/Heidelberg, 2005; ISBN 3-540-23629-5.spa
dc.relation.referencesMattos, B.D.; Misso, A.L.; De Cademartori, P.H.G.; De Lima, E.A.; Magalhães, W.L.E.; Gatto, D.A. Properties of Polypropylene Composites Filled with a Mixture of Household Waste of Mate-Tea and Wood Particles. Constr. Build. Mater. 2014, 61, 60–68, doi:10.1016/j.conbuildmat.2014.02.022.spa
dc.relation.referencesGonzalez-Gutierrez, J.; Duretek, I.; Kukla, C.; Poljšak, A.; Bek, M.; Emri, I.; Holzer, C. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation. Metals (Basel). 2016, 6, doi:10.3390/met6060129.spa
dc.relation.referencesFayyaz, A.; Muhamad, N.; Sulong, A.B.; Yunn, H.S.; Amin, S.Y.M.; Rajabi, J. Micro-Powder Injection Molding of Cemented Tungsten Carbide: Feedstock Preparation and Properties. Ceram. Int. 2015, 41, 3605–3612, doi:10.1016/j.ceramint.2014.11.022.spa
dc.relation.referencesKukla, C.; Gonzalez-Gutierrez, J.; Duretek, I.; Schuschnigg, S.; Holzer, C. Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication. In Proceedings of the AIP Conference Proceedings; 2017; Vol. 1914.spa
dc.relation.referencesHwang, K.S. Common Defects in Metal Injection Molding (MIM); Woodhead Publishing Limited, 2012; ISBN 9780857096234.spa
dc.relation.referencesHsueh, M.H.; Lai, C.J.; Wang, S.H.; Zeng, Y.S.; Hsieh, C.H.; Pan, C.Y.; Huang, W.C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3d-Printed Pla and Petg, Using Fused Deposition Modeling. Polymers (Basel). 2021, 13, doi:10.3390/polym13111758.spa
dc.relation.referencesGerman, R.M. The Impact of Economic Batch Size on Cost of Powder Injection Molded (PIM) Products. Adv. Powder Metall. Part. Mater. 2003, 8, 146–159.spa
dc.relation.referencesHerranz, G. Control of Carbon Content in Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 265–304, doi:10.1533/9780857096234.2.265.spa
dc.relation.referencesZhu, B.; Qu, X.; Tao, Y. Powder Injection Molding of WC-8%Co Tungsten Cemented Carbide. Int. J. Refract. Met. Hard Mater. 2002, 20, 389–394, doi:10.1016/S0263-4368(02)00015-X.spa
dc.relation.referencesMariani, M.; Goncharov, I.; Mariani, D.; De Gaudenzi, G. Pietro; Popovich, A.; Lecis, N.; Vedani, M. Mechanical and Microstructural Characterization of WC-Co Consolidated by Binder Jetting Additive Manufacturing. Int. J. Refract. Met. Hard Mater. 2021, 100, 105639, doi:https://doi.org/10.1016/j.ijrmhm.2021.105639.spa
dc.relation.referencesHeaney, D.F. Designing for Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 29–49, doi:10.1533/9780857096234.1.29.spa
dc.relation.referencesHu, S.C.; Hwang, K.S. Length Change and Deformation of Powder Injection-Molded Compacts during Solvent Debinding. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2000, 31, 1473–1478, doi:10.1007/s11661-000-0265-1.spa
dc.relation.referencesLin, H.K.; Hwang, K.S. In Situ Dimensional Changes of Powder Injection-Molded Compacts during Solvent Debinding. Acta Mater. 1998, 46, 4303–4309, doi:10.1016/S1359-6454(98)00093-7.spa
dc.relation.referencesSammes, N.M.; Vohora, S.; Cartner, A.M. Swelling Parameter of Polypropylene Used in Household Appliances. J. Mater. Sci. 1994, 29, 6255–6258, doi:10.1007/BF00354568.spa
dc.relation.referencesGreco, R.; Hopfenberg, H.B.; Martusgelli, E.; Ragosta, G.; Demma, G. Thermal and Swelling Properties of Polystyrene‐polyolefin Blends. Polym. Eng. Sci. 1978, 18, 654–659, doi:10.1002/pen.760180809.spa
dc.relation.referencesHolmes, D.P.; Roché, M.; Sinha, T.; Stone, H.A. Bending and Twisting of Soft Materials by Non-Homogenous Swelling. Soft Matter 2011, 7, 5188–5193, doi:10.1039/c0sm01492c.spa
dc.relation.referencesLucantonio, A.; Nardinocchi, P.; Teresi, L. Transient Analysis of Swelling-Induced Large Deformations in Polymer Gels. J. Mech. Phys. Solids 2013, 61, 205–218, doi:10.1016/j.jmps.2012.07.010.spa
dc.relation.referencesASTM B276-21 Standard Test Method for Apparent Porosity in Cemented Carbides. ASTM Int. 2021, 1–19, doi:10.1520/B0276-21.2.spa
dc.relation.referencesLi, C.-W.; Chang, K.-C.; Yeh, A.-C. On the Microstructure and Properties of an Advanced Cemented Carbide System Processed by Selective Laser Melting. J. Alloys Compd. 2019, 782, 440–450, doi:https://doi.org/10.1016/j.jallcom.2018.12.187.spa
dc.relation.referencesGu, L.; Huang, J.; Xie, C. Effects of Carbon Content on Microstructure and Properties of WC–20Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2014, 42, 228–232, doi:10.1016/j.ijrmhm.2013.09.010.spa
dc.relation.referencesMarshall, J.M.; Giraudel, M. The Role of Tungsten in the Co Binder: Effects OnWC Grain Size and Hcp-Fcc Co in the Binder Phase. Int. J. Refract. Met. Hard Mater. 2015, 49, 57–66, doi:10.1016/j.ijrmhm.2014.09.028.spa
dc.relation.referencesLu, Z.; Du, J.; Sun, Y.; Su, G.; Zhang, C.; Kong, X. Effect of Ultrafine WC Contents on the Microstructures, Mechanical Properties and Wear Resistances of Regenerated Coarse Grained WC-10Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2021, 97, 105516, doi:10.1016/j.ijrmhm.2021.105516.spa
dc.relation.referencesUpadhyaya, G.S. Microstructural Aspects of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, 1998; pp. 166–192 ISBN 978-0-8155-1417-6.spa
dc.relation.referencesSommer, M.; Schubert, W.D.; Zobetz, E.; Warbichler, P. On the Formation of Very Large WC Crystals during Sintering of Ultrafine WC-Co Alloys. Int. J. Refract. Met. Hard Mater. 2002, 20, 41–50, doi:10.1016/S0263-4368(01)00069-5.spa
dc.relation.referencesKonyashin, I.; Hlawatschek, S.; Ries, B.; Lachmann, F.; Dorn, F.; Sologubenko, A.; Weirich, T. On the Mechanism of WC Coarsening in WC–Co Hardmetals with Various Carbon Contents. Int. J. Refract. Met. Hard Mater. 2009, 27, 234–243, doi:https://doi.org/10.1016/j.ijrmhm.2008.09.001.spa
dc.relation.referencesKonyashin, I.; Straumal, B.B.; Ries, B.; Bulatov, M.F.; Kolesnikova, K.I. Contact Angles of WC/WC Grain Boundaries with Binder in Cemented Carbides with Various Carbon Content. Mater. Lett. 2017, 196, 1–3, doi:10.1016/j.matlet.2017.03.001.spa
dc.relation.referencesGuo, J.; Fan, P.; Wang, X.; Fang, Z.Z. Formation of Co-Capping during Sintering of Straight WC-10 Wt% Co. Int. J. Refract. Met. Hard Mater. 2010, 28, 317–323, doi:10.1016/j.ijrmhm.2009.11.005.spa
dc.relation.referencesBertalan, C.; Moseley, S.; Pereira, L.; Useldinger, R. Influence of Sintering Parameters on the Microstructure and Mechanical Properties of WC-Co Hardmetals. Int. J. Refract. Met. Hard Mater. 2024, 118, 106439, doi:10.1016/j.ijrmhm.2023.106439.spa
dc.relation.referencesLin, D.; Xu, J.; Shan, Z.; Chung, S.T.; Park, S.J. Fabrication of WC-Co Cutting Tool by Powder Injection Molding. Int. J. Precis. Eng. Manuf. 2015, 16, 1435–1439, doi:10.1007/s12541-015-0189-8.spa
dc.relation.referencesJohnson, J.L.; Heaney, D.F.; Myers, N.S. Metal Injection Molding (MIM) of Heavy Alloys, Refractory Metals, and Hardmetals; 2nd ed.; Elsevier Ltd., 2019; ISBN 9780081021521.spa
dc.relation.referencesSeerane, M.; Chikwanda, H.; Focke, W.; Machaka, R. A Study of Solvent Debinding Variables on Ti6Al4V Green Bodies. Adv. Mater. Res. 2014, 1019, 204–209, doi:10.4028/www.scientific.net/AMR.1019.204.spa
dc.relation.referencesCERATIZIT Additive Manufacturing at CERATIZIT Team Cutting Tools Available online: https://cuttingtools.ceratizit.com/gb/en/tool-solutions/additivemanufacturing.html.spa
dc.relation.referencesSandvik Sandvik Now Offers Additively Manufactured Cemented Carbide Components Available online: https://www.metal-am.com/sandvik-now-offers-additively-manufactured-cemented-carbide-components/.spa
dc.relation.referencesBose, A.; Reidy, J.P.; Pötschke, J. Sinter-Based Additive Manufacturing of Hardmetals: Review. Int. J. Refract. Met. Hard Mater. 2024, 119, doi:10.1016/j.ijrmhm.2023.106493.spa
dc.relation.referencesFortunato, A.; Valli, G.; Liverani, E.; Ascari, A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019, 6, 247–262, doi:10.1007/s40516-019-00092-0.spa
dc.relation.referencesEnneti, R.K.; Prough, K.C. Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract. Met. Hard Mater. 2019, 78, 228–232, doi:10.1016/j.ijrmhm.2018.10.003.spa
dc.relation.referencesOliaei, S.N.B.; Karpat, Y. Investigating the Influence of Built-up Edge on Forces and Surface Roughness in Micro Scale Orthogonal Machining of Titanium Alloy Ti6Al4V. J. Mater. Process. Technol. 2016, 235, 28–40, doi:10.1016/j.jmatprotec.2016.04.010.spa
dc.relation.referencesOliaei, S.N.B.; Karpat, Y. Built-up Edge Effects on Process Outputs of Titanium Alloy Micro Milling. Precis. Eng. 2017, 49, 305–315, doi:10.1016/j.precisioneng.2017.02.019.spa
dc.relation.referencesDudzinski, D.; Devillez, A.; Moufki, A.; Larrouquère, D.; Zerrouki, V.; Vigneau, J. A Review of Developments towards Dry and High Speed Machining of Inconel 718 Alloy. Int. J. Mach. Tools Manuf. 2004, 44, 439–456, doi:10.1016/S0890-6955(03)00159-7.spa
dc.relation.referencesBoing, D.; de Oliveira, A.J.; Schroeter, R.B. Limiting Conditions for Application of PVD (TiAlN) and CVD (TiCN/Al2O3/TiN) Coated Cemented Carbide Grades in the Turning of Hardened Steels. Wear 2018, 416, 54–61.spa
dc.relation.referencesKudapa, S.; Narasimhan, K.; Boppana, P.; Russell, W.C. Characterization and Properties of MTCVD TiCN and MTCVD ZrCN Coatings. Surf. Coatings Technol. 1999, 120–121, 259–264, doi:https://doi.org/10.1016/S0257-8972(99)00484-3.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::673 - Metales no ferrososspa
dc.subject.lembACABADO DE METALESspa
dc.subject.lembMetals - finishingeng
dc.subject.lembREPUJADO EN METALESspa
dc.subject.lembEmbossing (metal-work)eng
dc.subject.lembCOMPUESTOS POLIMERICOSspa
dc.subject.lembPolymeric compositeseng
dc.subject.lembPOLIMERIZACIONspa
dc.subject.lembPolymerizationeng
dc.subject.lembSINTERIZACIONspa
dc.subject.lembSinteringeng
dc.subject.lembMETALURGIA DE POLVOSspa
dc.subject.lembPowder metallurgyeng
dc.subject.proposalFused Filament Fabricationeng
dc.subject.proposalFFFeng
dc.subject.proposalHardmetaleng
dc.subject.proposalAdditive Manufacturingeng
dc.subject.proposalThermal Debindingeng
dc.subject.proposalSinteringeng
dc.subject.proposalMachiningeng
dc.subject.proposalFabricación por Filamentos Fundidosspa
dc.subject.proposalMetal Durospa
dc.subject.proposalManufactura Aditivaspa
dc.subject.proposalDespolimerizado Térmicospa
dc.subject.proposalSinterizaciónspa
dc.subject.proposalMecanizadospa
dc.subject.wikidataImpresión 3Dspa
dc.subject.wikidata3D printingeng
dc.titleDevelopment of the fused filament fabrication, debinding, and sintering processes for the obtention of a WC-10 Co hardmetaleng
dc.title.translatedDesarrollo de los procesos de fabricación por filamentos fundidos, despolimerización y sinterización para la obtención de un metal duro WC-10 Cospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBecas de Excelencia Doctoral del Bicentenario - Corte 1spa
oaire.fundernameMinisterio de Cienciasspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado (2).pdf
Tamaño:
10.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: