Cuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodilla

dc.contributor.advisorRojas Rojas, Angela Patricia
dc.contributor.advisorRondón Herrera, Federico
dc.contributor.authorRoa Bohórquez, María Alejandra
dc.contributor.cvlacMaría Alejandra Roa Bohórquezspa
dc.contributor.orcidRoa Bohórquez, María Alejandra [0009000122169224]spa
dc.date.accessioned2024-07-29T19:35:46Z
dc.date.available2024-07-29T19:35:46Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa osteoartritis (OA) es la enfermedad articular más frecuente a nivel mundial y una de las principales enfermedades degenerativas que causan discapacidad. Su origen es multifactorial, siendo más habitual en la etapa de envejecimiento y en pacientes que padecen obesidad, por lo que constituyen dos aspectos que en la actualidad y a corto plazo se mantienen en aumento. La OA se diagnostica con una base clínica apoyada de la evaluación sintomática y de herramientas de imagen. Sin embargo, a pesar de su alta prevalencia suele diagnosticarse cuando el daño en la articulación es importante y no se obtiene una respuesta terapéutica satisfactoria con el tratamiento farmacológico establecido, conllevando a requerir intervenciones quirúrgicas que en la mayoría de los casos implican reemplazo articular para mejorar la calidad de vida del paciente en términos de alivio del dolor además de mantener la independencia en la realización de sus actividades diarias. Por esta razón, surge la necesidad de proponer alternativas que permitan establecer un pronóstico de la enfermedad en etapas tempranas, facilitando el inicio de un tratamiento oportuno cuando todavía no se ha extendido el daño en toda la articulación, al igual que monitorear la respuesta al tratamiento en función del tiempo tomando como base dos características importantes de la OA que corresponden a la degeneración del cartílago y al proceso inflamatorio subyacente que promueven su cronicidad e involucra la secreción de diferentes citoquinas proinflamatorias en el microambiente sinovial dentro de las cuales están interleuquina 17A (IL-17A) e interleuquina 20 (IL-20), las cuales son componentes proinflamatorios del sistema inmune que participan en la comunicación intercelular y desempeñan funciones específicas según el sistema y proceso orgánico en el que estén implicadas. De acuerdo con lo anterior, el objetivo de este trabajo fue determinar el componente inflamatorio relacionado con los niveles de IL-17A e IL-20 mediante la estandarización de cultivos de sinoviocitos similares a fibroblastos (FLS) y de células mesenquimales (MSC) a partir de muestras de tejido sinovial provenientes de pacientes con OA temprana de rodilla. Posteriormente, se evaluó la localización y distribución de IL-17A e IL-20 por técnica de microscopía de fluorescencia y luego se llevó a cabo la cuantificación de los niveles de IL-17A e IL-20 en sobrenadantes de cultivo de FLS y MSC. En conjunto, los resultados presentados demuestran mediante técnicas de microscopía y de inmunoensayo que las células FLS y MSC son componentes que ejercen un rol importante en el proceso inflamatorio generado en la OA temprana de rodilla, pues se evidenció la producción de IL-17A e IL-20 en FLS y MSC en respuesta al estímulo inflamatorio inducido con TNF-α comparado con células control de acuerdo con las diferencias en la intensidad media de fluorescencia; la distribución de IL-17A, IL-20 y de CD-90 mediante microscopía de fluorescencia se observó a nivel citoplasmático y perinuclear evidenciando una variación en la intensidad de fluorescencia en las que contenían el anticuerpo de interés. Respecto a la cuantificación por técnica ELISA se obtuvo una concentración promedio de 0,0850 pg/mL para IL-17A; y de 0,0157 pg/mL para IL-20. A partir de los resultados con la prueba ELISA no se identificaron diferencias entre los niveles de las muestras evaluadas con o sin estímulo de TNF-α, en tanto, la intensidad de producción a nivel intracelular de IL-17A e IL-20 por técnica de microscopía de fluorescencia permitieron evidenciar la presencia de estas citoquinas en un ambiente inflamatorio, así que considerando la participación de IL-17A e IL-20 durante la etapa temprana de la OA, podrían ser marcadores de apoyo pronóstico cuyos niveles son indicativo de la inflamación de bajo grado de la articulación. Estudios posteriores que contemplen un mayor número de pacientes serían necesarios para establecer su utilidad (Texto tomado de la fuente).spa
dc.description.abstractOsteoarthritis (OA) is the most common joint disease worldwide and one of the main degenerative diseases that cause disability. Its origin is multifactorial, being more common in the aging stage and in patients who suffer from obesity, which is why they constitute two aspects that currently and in the short term continue to increase. OA is diagnosed on a clinical basis supported by symptomatic evaluation and imaging tools. However, despite its high prevalence, it is usually diagnosed when the damage to the joint is significant and a satisfactory therapeutic response is not obtained with the established pharmacological treatment, leading to the need for surgical interventions that in most cases involve joint replacement to improve. the patient's quality of life in terms of pain relief as well as maintaining independence in carrying out daily activities. For this reason, the need arises to propose alternatives that allow establishing a prognosis of the disease in early stages, facilitating the start of timely treatment when the damage has not yet spread throughout the joint, as well as monitoring the response to treatment. as a function of time based on two important characteristics of OA that correspond to the degeneration of the cartilage and the underlying inflammatory process that promote its chronicity and involves the secretion of different proinflammatory cytokines in the synovial microenvironment within which are interleukin 17A (IL -17A) and interleukin 20 (IL-20), which are pro-inflammatory components of the immune system that participate in intercellular communication and perform specific functions depending on the system and organic process in which they are involved. In accordance with the above, the objective of this work was to determine the inflammatory component related to the levels of IL-17A and IL-20 by standardizing cultures of fibroblast-like synoviocytes (FLS) and mesenchymal cells (MSC) from of synovial tissue samples from patients with early knee OA. Subsequently, the localization and distribution of IL-17A and IL-20 was evaluated by fluorescence microscopy technique and then quantification of the levels of IL-17A and IL-20 in FLS and MSC culture supernatants was carried out. Altogether, the results presented demonstrate through microscopy and immunoassay techniques that FLS and MSC cells are components that play an important role in the inflammatory process generated in early knee OA, since the production of IL-17A and IL was evident. -20 in FLS and MSC in response to the inflammatory stimulus induced with TNF-α compared to control cells according to the differences in the mean fluorescence intensity; the distribution of IL-17A, IL-20 and CD-90 by microscopy Fluorescence was observed at the cytoplasmic and perinuclear level, evidencing a variation in the fluorescence intensity in those that contained the antibody of interest. Regarding the quantification by ELISA technique, an average concentration of 0.0850 pg/mL was obtained for IL-17A; and 0.0157 pg/mL for IL-20 from the results with the ELISA test, no differences were identified between the levels of the samples evaluated with or without TNF-α stimulation, meanwhile, the intensity of production at intracellular level of IL-17A and IL-20 by fluorescence microscopy technique allowed us to demonstrate the presence of these cytokines in an inflammatory environment, so considering the participation of IL-17A and IL-20 during the early stage of OA, they could be prognostic supportive markers whose levels are indicative of low-grade inflammation of the joint. Subsequent studies that include a larger number of patients would be necessary to establish its usefulness.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Farmacologíaspa
dc.description.methodsLa toma de muestras de tejido sinovial en pacientes con OA temprana de rodilla estuvo a cargo de un médico especialista en reumatología en el Hospital Universitario Nacional de Colombia y los ensayos celulares se realizaron en el Departamento de Farmacia de la Universidad Nacional de Colombia para establecer la caracterización fisiopatológica de las muestras obtenidas a partir de cada paciente correspondientes a: Estandarización de cultivos primarios de sinoviocitos (FLS) y células mesenquimales (MSC) provenientes de tejido sinovial, fibroblastos de piel, análisis por microscopía de luz, microscopía de fluorescencia y Prueba ELISA.spa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86644
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.references1. Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y., & Lu, H. (2020). Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine, 29-30, 100587. https://doi.org/10.1016/j.eclinm.2020.100587spa
dc.relation.references2. Nota Estadística de personas mayores en Colombia: hacia la inclusión y la participación (DANE y Fundación Saldarriaga Concha). Disponible en: https://www.dane.gov.co/files/investigaciones/notas-estadisticas/oct-2022-nota-estadistica-personas-mayores-en-colombia.pdfspa
dc.relation.references3. WHO. Osteoarthritis. Fecha de consulta: 04 de agosto del 2023. Disponible en: https://www.who.int/news-room/fact-sheets/detail/osteoarthritisspa
dc.relation.references4. Abdel-Naby, H. M., El-Tawab, S. S., Rizk, M. M., & Aboeladl, N. A. (2022). Is interleukin-17 implicated in early knee osteoarthritis pathogenesis as in rheumatoid arthritis? Egyptian Rheumatology and Rehabilitation, 49(1), 29. https://doi.org/10.1186/s43166-022-00130-4spa
dc.relation.references5. Attur, M., Krasnokutsky-Samuels, S., Samuels, J., & Abramson, S. B. (2013). Prognostic biomarkers in osteoarthritis. Current opinion in rheumatology, 25(1), 136–144. https://doi.org/10.1097/BOR.0b013e32835a9381spa
dc.relation.references6. Ahmed, U., Anwar, A., Savage, R. S., Costa, M. L., Mackay, N., Filer, A., Raza, K., Watts, R. A., Winyard, P. G., Tarr, J., Haigh, R. C., Thornalley, P. J., & Rabbani, N. (2015). Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. Scientific reports, 5, 9259. https://doi.org/10.1038/srep09259spa
dc.relation.references7. Hashimoto M. Th17 in Animal Models of Rheumatoid Arthritis. J Clin Med. 2017 Jul 21;6(7):73. doi: 10.3390/jcm6070073.spa
dc.relation.references8. Arya RK, Jain V. Osteoarthritis of the knee joint: An overview. JIACM. 2013;14(2):154-62.spa
dc.relation.references9. Vargas E Silva, N. C. O., Dos Anjos, R. L., Santana, M. M. C., Battistella, L. R., & Marcon Alfieri, F. (2020). Discordance between radiographic findings, pain, and superficial temperature in knee osteoarthritis. Reumatologia, 58(6), 375–380. https://doi.org/10.5114/reum.2020.102002spa
dc.relation.references10. Lourido, L., Ayoglu, B., Fernández-Tajes, J., Oreiro, N., Henjes, F., Hellström, C., Schwenk, J. M., Ruiz-Romero, C., Nilsson, P., & Blanco, F. J. (2017). Discovery of circulating proteins associated to knee radiographic osteoarthritis. Scientific Reports, 7(1), 137. https://doi.org/10.1038/s41598-017-00195-8spa
dc.relation.references11. Tschon, M., Contartese, D., Pagani, S., Borsari, V., & Fini, M. (2021). Gender and sex are key determinants in osteoarthritis not only confounding variables. A systematic review of clinical data. Journal of Clinical Medicine, 10(14), 3178. https://doi.org/10.3390/jcm10143178spa
dc.relation.references12. De Sousa, E. B., Casado, P. L., Neto, V. M., Duarte, M. E. L., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5(5), 112. https://doi.org/10.1186/scrt501spa
dc.relation.references13. Gallo Vallejo, F. J., & Ruiz, V. G. (2014). Diagnóstico. Examen del líquido sinovial. Atención Primaria, 46, 29-31. https://doi.org/10.1016/S0212-6567(14)70041-1spa
dc.relation.references14. Køster, D., Egedal, J. H., Lomholt, S., Hvid, M., Jakobsen, M. R., Müller-Ladner, U., Eibel, H., Deleuran, B., Kragstrup, T. W., Neumann, E., & Nielsen, M. A. (2021). Phenotypic and functional characterization of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis. Scientific Reports, 11(1), 22168. https://doi.org/10.1038/s41598-021-01692-7spa
dc.relation.references15. Hsu, Y.-H., & Chang, M.-S. (2017). IL-20 in rheumatoid arthritis. Drug Discovery Today, 22(6), 960-964. https://doi.org/10.1016/j.drudis.2015.08.002spa
dc.relation.references16. Van Dooren, F. H., Duijvis, N. W., & Te Velde, A. A. (2013). Analysis of cytokines and chemokines produced by whole blood, peripheral mononuclear and polymorphonuclear cells. Journal of Immunological Methods, 396(1-2), 128-133. https://doi.org/10.1016/j.jim.2013.08.006spa
dc.relation.references17. Brzustewicz, E., & Bryl, E. (2015). The role of cytokines in the pathogenesis of rheumatoid arthritis – Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine, 76(2), 527-536. https://doi.org/10.1016/j.cyto.2015.08.260spa
dc.relation.references18. Bettencourt, R. B., & Linder, M. M. (2010). Arthrocentesis and therapeutic joint injection: An overview for the primary care physician. Primary Care: Clinics in Office Practice, 37(4), 691-702. https://doi.org/10.1016/j.pop.2010.07.002spa
dc.relation.references19. Choi, M.-C., Jo, J., Park, J., Kang, H. K., & Park, Y. (2019). Nf-κb signaling pathways in osteoarthritic cartilage destruction. Cells, 8(7), 734. https://doi.org/10.3390/cells8070734spa
dc.relation.references20. Nees, T. A., Rosshirt, N., Zhang, J. A., Reiner, T., Sorbi, R., Tripel, E., Walker, T., Schiltenwolf, M., Hagmann, S., & Moradi, B. (2019). Synovial cytokines significantly correlate with osteoarthritis-related knee pain and disability: Inflammatory mediators of potential clinical relevance. Journal of Clinical Medicine, 8(9), 1343. https://doi.org/10.3390/jcm8091343spa
dc.relation.references21. Ge, Y., Huang, M., & Yao, Y. (2020). Biology of interleukin-17 and its pathophysiological significance in sepsis. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01558spa
dc.relation.references22. Francisco, V., Pérez, T., Pino, J., López, V., Franco, E., Alonso, A., Gonzalez‐Gay, M. A., Mera, A., Lago, F., Gómez, R., & Gualillo, O. (2018). Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research, 36(2), 594-604. https://doi.org/10.1002/jor.23788spa
dc.relation.references23. Sun, L., Wang, L., Moore, B. B., Zhang, S., Xiao, P., Decker, A. M., & Wang, H.-L. (2023). Il-17: Balancing protective immunity and pathogenesis. Journal of Immunology Research, 2023, 1-9. https://doi.org/10.1155/2023/3360310spa
dc.relation.references24. Kragstrup, T. W., Andersen, T., Heftdal, L. D., Hvid, M., Gerwien, J., Sivakumar, P., Taylor, P. C., Senolt, L., & Deleuran, B. (2018). The il-20 cytokine family in rheumatoid arthritis and spondyloarthritis. Frontiers in Immunology, 9, 2226. https://doi.org/10.3389/fimmu.2018.02226spa
dc.relation.references25. Kouri, V.-P., Olkkonen, J., Nurmi, K., Peled, N., Ainola, M., Mandelin, J., Nordström, D. C., & Eklund, K. K. (2023). IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology, 62(2), 872-885. https://doi.org/10.1093/rheumatology/keac385spa
dc.relation.references26. Van Hamburg, J. P., & Tas, S. W. (2018). Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity, 87, 69-81. https://doi.org/10.1016/j.jaut.2017.12.006spa
dc.relation.references27. Tschammer, N. (2015). Interleukins in cancer biology: Their heterogeneous role. By arseniy e. Yuzhalin, anton g. Kutikhin. ChemMedChem, 10(8), 1442-1442. https://doi.org/10.1002/cmdc.201500253spa
dc.relation.references28. Hsu, Y., Li, H., Hsieh, M., Liu, M., Huang, K., Chin, L., Chen, P., Cheng, H., & Chang, M. (2006). Function of interleukin‐20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis & Rheumatism, 54(9), 2722-2733. https://doi.org/10.1002/art.22039spa
dc.relation.references29. Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H., & Shimoda, T. (2010). Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford, England), 49(7), 1215–1228. https://doi.org/10.1093/rheumatology/keq031spa
dc.relation.references30. Li, H., Xie, S., Qi, Y., Li, H., Zhang, R., & Lian, Y. (2018). TNF-α increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Experimental and therapeutic medicine, 16(6), 4737–4744. https://doi.org/10.3892/etm.2018.6770spa
dc.relation.references31. Ayhan, E. (2014). Intraarticular injections (Corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World Journal of Orthopedics, 5(3), 351. https://doi.org/10.5312/wjo.v5.i3.351spa
dc.relation.references32. Shioda, M., Muneta, T., Tsuji, K., Mizuno, M., Komori, K., Koga, H., & Sekiya, I. (2017). TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLOS ONE, 12(5), e0177771. https://doi.org/10.1371/journal.pone.0177771spa
dc.relation.references33. Stocco, E., Barbon, S., Piccione, M., Belluzzi, E., Petrelli, L., Pozzuoli, A., Ramonda, R., Rossato, M., Favero, M., Ruggieri, P., Porzionato, A., Di Liddo, R., De Caro, R., & Macchi, V. (2019). Infrapatellar fat pad stem cells responsiveness to microenvironment in osteoarthritis: From morphology to function. Frontiers in Cell and Developmental Biology, 7, 323. https://doi.org/10.3389/fcell.2019.00323spa
dc.relation.references34. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050-1056. https://doi.org/10.1002/stem.37spa
dc.relation.references35. Tarte, K., Gaillard, J., Lataillade, J.-J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N.-C., Sensebé, L., & on behalf of Société Française de Greffe de Moelle et Thérapie Cellulaire. (2010). Clinical-grade production of human mesenchymal stromal cells: Occurrence of aneuploidy without transformation. Blood, 115(8), 1549-1553. https://doi.org/10.1182/blood-2009-05-219907spa
dc.relation.references36. Leung, G. J., Rainsford, K. D., & Kean, W. F. (2014). Osteoarthritis of the hand I: Aetiology and pathogenesis, risk factors, investigation and diagnosis. Journal of Pharmacy and Pharmacology, 66(3), 339-346. https://doi.org/10.1111/jphp.12196spa
dc.relation.references37. Haj-Mirzaian, A., Mohajer, B., Guermazi, A., Conaghan, P. G., Lima, J. A. C., Blaha, M. J., Bingham, C. O., Roemer, F. W., Cao, X., & Demehri, S. (2019). Statin use and knee osteoarthritis outcome measures according to the presence of heberden nodes: Results from the osteoarthritis initiative. Radiology, 293(2), 396-404. https://doi.org/10.1148/radiol.2019190557spa
dc.relation.references38. Chang, J., Liao, Z., Lu, M., Meng, T., Han, W., & Ding, C. (2018). Systemic and local adipose tissue in knee osteoarthritis. Osteoarthritis and Cartilage, 26(7), 864-871. https://doi.org/10.1016/j.joca.2018.03.004spa
dc.relation.references39. Wisniewska, E., Laue, D., Spinnen, J., Kuhrt, L., Kohl, B., Bußmann, P., Meier, C., Schulze-Tanzil, G., Ertel, W., & Jagielski, M. (2023). Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes. Cells, 12(24), 2850. https://doi.org/10.3390/cells12242850spa
dc.relation.references40. Stannus, O. P., Jones, G., Blizzard, L., Cicuttini, F. M., & Ding, C. (2013). Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study. Annals of the Rheumatic Diseases, 72(4), 535-540. https://doi.org/10.1136/annrheumdis-2011-201047spa
dc.relation.references41. Silva, L. B., Dos Santos Neto, A. P., Maia, S. M. A. S., Dos Santos Guimarães, C., Quidute, I. L., Carvalho, A. D. A. T., Júnior, S. A., & Leão, J. C. (2019). The role of tnf-α as a proinflammatory cytokine in pathological processes. The Open Dentistry Journal, 13(1), 332-338. https://doi.org/10.2174/1874210601913010332spa
dc.relation.references42. Svensson, M. N. D., Zoccheddu, M., Yang, S., Nygaard, G., Secchi, C., Doody, K. M., Slowikowski, K., Mizoguchi, F., Humby, F., Hands, R., Santelli, E., Sacchetti, C., Wakabayashi, K., Wu, D. J., Barback, C., Ai, R., Wang, W., Sims, G. P., Mydel, P., Bottini, N. (2020). Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Science Advances, 6(26), eaba4353. https://doi.org/10.1126/sciadv.aba4353spa
dc.relation.references43. Kasamatsu A, Satoh M, Yoshida T, Kosaka T. (2010). Response of human fibroblast-like synoviocytes derived from rheumatoid arthritis to inflammatory stimulation: Quality control findings (2+3+4). The Japanese Tissue Culture Association. https://doi.org/10.11418/jtca.29.167spa
dc.relation.references44. Wang, Y., & Gao, W. (2021). Effects of TNF-α on autophagy of rheumatoid arthritis fibroblast-like synoviocytes and regulation of the NF-κB signaling pathway. Immunobiology, 226(2), 152059. https://doi.org/10.1016/j.imbio.2021.152059spa
dc.relation.references45. Mattei, B., Lira, R. B., Perez, K. R., & Riske, K. A. (2017). Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension. Chemistry and Physics of Lipids, 202, 28-37. https://doi.org/10.1016/j.chemphyslip.2016.11.009spa
dc.relation.references46. Zhang, Z., Fan, H., Richardson, W., Gao, B. Z., & Ye, T. (2023). Management of autofluorescence in formaldehyde-fixed myocardium: Choosing the right treatment. European Journal of Histochemistry, 67(4). https://doi.org/10.4081/ejh.2023.3812spa
dc.relation.references47. Orozco, Danny Joan et al. Arthritis in elderly. Rev.Colomb.Reumatol. [online]. 2007, vol.14, n.1, pp.66-84. ISSN 0121-8123.spa
dc.relation.references48. Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.002spa
dc.relation.references49. Scarpa E, Mayor R. Collective cell migration in development. J Cell Biol. 2016 Jan 18;212(2):143-55. doi: 10.1083/jcb.201508047.spa
dc.relation.references50. Theveneau, E., & Mayor, R. (2011). Can mesenchymal cells undergo collective cell migration? The case of the neural crest: The case of the neural crest. Cell Adhesion & Migration, 5(6), 490-498. https://doi.org/10.4161/cam.5.6.18623spa
dc.relation.references51. Álvarez, E. (2011). Los fibroblastos sinoviales en la patogenia de la angiogénesis reumatoide.Universidad Complutense de Madrid,spa
dc.relation.references52. Benz, K., Schöbel, A., Dietz, M., Maurer, P., & Jackowski, J. (2019). Adhesion behaviour of primary human osteoblasts and fibroblasts on polyether ether ketone compared with titanium under in vitro lipopolysaccharide incubation. Materials, 12(17), 2739. https://doi.org/10.3390/ma12172739spa
dc.relation.references53. Campbell, K., & Casanova, J. (2016). A common framework for EMT and collective cell migration. Development, 143(23), 4291-4300. https://doi.org/10.1242/dev.139071spa
dc.relation.references54. Shreiber, D. I., Barocas, V. H., & Tranquillo, R. T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical Journal, 84(6), 4102-4114. https://doi.org/10.1016/S0006-3495(03)75135-2spa
dc.relation.references55. Munevar, S., Wang, Y., & Dembo, M. (2001). Traction force microscopy of migrating normal and h-ras transformed 3t3 fibroblasts. Biophysical Journal, 80(4), 1744-1757. https://doi.org/10.1016/S0006-3495(01)76145-0spa
dc.relation.references56. Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 128(4), 1238-1246. https://doi.org/10.1172/JCI95148spa
dc.relation.references57. Denoyelle, C., Abou-Rjaily, G., Bezrookove, V., Verhaegen, M., Johnson, T. M., Fullen, D. R., Pointer, J. N., Gruber, S. B., Su, L. D., Nikiforov, M. A., Kaufman, R. J., Bastian, B. C., & Soengas, M. S. (2006). Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biology, 8(10), 1053-1063. https://doi.org/10.1038/ncb1471spa
dc.relation.references58. Del Rey, M. J., Izquierdo, E., Caja, S., Usategui, A., Santiago, B., Galindo, M., & Pablos, J. L. (2009). Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia‐inducible transcription factor 1α/vascular endothelial growth factor–mediated pathway in immunodeficient mice. Arthritis & Rheumatism, 60(10), 2926-2934. https://doi.org/10.1002/art.24844spa
dc.relation.references59. Gauthier, V., Kyriazi, M., Nefla, M., Pucino, V., Raza, K., Buckley, C. D., & Alsaleh, G. (2023). Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Frontiers in Immunology, 14, 1137659. https://doi.org/10.3389/fimmu.2023.1137659spa
dc.relation.references60. Zha, K., Sun, Z., Yang, Y., Chen, M., Gao, C., Fu, L., Li, H., Sui, X., Guo, Q., & Liu, S. (2021). Recent developed strategies for enhancing chondrogenic differentiation of msc: Impact on msc-based therapy for cartilage regeneration. Stem Cells International, 2021, 1-15. https://doi.org/10.1155/2021/8830834spa
dc.relation.references61. Agar, G., Blumenstein, S., Bar-Ziv, Y., Kardosh, R., Schrift-Tzadok, M., Gal-Levy, R., Fischler, T., Goldschmid, R., & Yayon, A. (2011). The chondrogenic potential of mesenchymal cells and chondrocytes from osteoarthritic subjects: A comparative analysis. CARTILAGE, 2(1), 40-49. https://doi.org/10.1177/1947603510380899spa
dc.relation.references62. Jones, E. (2011). Synovial mesenchymal stem cells in vivo: Potential key players for joint regeneration. World Journal of Rheumatology, 1(1), 4. https://doi.org/10.5499/wjr.v1.i1.4spa
dc.relation.references63. Lee, J. H., Park, A., Oh, K.-J., Lee, S. C., Kim, W. K., & Bae, K.-H. (2019). The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. International Journal of Molecular Sciences, 20(19), 4924. https://doi.org/10.3390/ijms20194924spa
dc.relation.references64. Bertassoli, B. M., Assis Neto, A. C. D., Oliveira, F. D. D., Arroyo, M. A. M., Ferrão, J. S. P., Silva, J. B. D., Pignatari, G. C., & Braga, P. B. (2013). Mesenchymal stem cells: Emphasis in adipose tissue. Brazilian Archives of Biology and Technology, 56(4), 607-617. https://doi.org/10.1590/S1516-89132013000400011spa
dc.relation.references65. Contreras-Zentella, M. L., & Hernández-Muñoz, R. (2021). Possible gender influence in the mechanisms underlying the oxidative stress, inflammatory response, and the metabolic alterations in patients with obesity and/or type 2 diabetes. Antioxidants, 10(11), 1729. https://doi.org/10.3390/antiox10111729Adams JC. Fascin protrusions in cell interactions. Trends Cardiovasc Med. 2004 Aug;14(6):221-6. doi: 10.1016/j.tcm.2004.06.002spa
dc.relation.references66. Nikitopoulou, I., Oikonomou, N., Karouzakis, E., Sevastou, I., Nikolaidou-Katsaridou, N., Zhao, Z., Mersinias, V., Armaka, M., Xu, Y., Masu, M., Mills, G. B., Gay, S., Kollias, G., & Aidinis, V. (2012). Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. Journal of Experimental Medicine, 209(5), 925-933. https://doi.org/10.1084/jem.20112012spa
dc.relation.references67. Zafari, P., Rafiei, A., Faramarzi, F., Ghaffari, S., Amiri, A. H., & Taghadosi, M. (2021). Human fibroblast-like synoviocyte isolation matter: A comparison between cell isolation from synovial tissue and synovial fluid from patients with rheumatoid arthritis. Revista Da Associação Médica Brasileira, 67, 1654-1658. https://doi.org/10.1590/1806-9282.20210706spa
dc.relation.references68. Blauvelt, A. (2016a). Ixekizumab: A new anti-IL-17A monoclonal antibody therapy for moderate-to severe plaque psoriasis. Expert Opinion on Biological Therapy, 16(2), 255-263. https://doi.org/10.1517/14712598.2016.1132695spa
dc.relation.references69. Scian, R., Barrionuevo, P., Rodriguez, A. M., Arriola Benitez, P. C., García Samartino, C., Fossati, C. A., Giambartolomei, G. H., & Delpino, M. V. (2013). Brucella abortus invasion of synoviocytes inhibits apoptosis and induces bone resorption through rankl expression. Infection and Immunity, 81(6), 1940-1951. https://doi.org/10.1128/IAI.01366-12spa
dc.relation.references70. Filali, S., Darragi-Raies, N., Ben-Trad, L., Piednoir, A., Hong, S.-S., Pirot, F., Landoulsi, A., Girard-Egrot, A., Granjon, T., Maniti, O., Miossec, P., & Trunfio-Sfarghiu, A.-M. (2022). Morphological and mechanical characterization of extracellular vesicles and parent human synoviocytes under physiological and inflammatory conditions. International Journal of Molecular Sciences, 23(21), 13201. https://doi.org/10.3390/ijms232113201spa
dc.relation.references71. Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. https://doi.org/10.1038/sj.bjc.6600664spa
dc.relation.references72. Lu, Q., Haragopal, H., Slepchenko, K. G., Stork, C., & Li, Y. V. (2016). Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. International journal of physiology, pathophysiology and pharmacology, 8(1), 35–43.spa
dc.relation.references73. Colleton, B. A., Piazza, P., & Rinaldo, C. R. (2005). Viral responses – hiv-1. En Measuring Immunity (pp. 578-586). Elsevier. https://doi.org/10.1016/B978-012455900-4/50312-3spa
dc.relation.references74. Bartok, B., & Firestein, G. S. (2010). Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological reviews, 233(1), 233–255. https://doi.org/10.1111/j.0105-2896.2009.00859.xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsOsteoartritisspa
dc.subject.decsOsteoarthritiseng
dc.subject.decsArtroplastia de Reemplazospa
dc.subject.decsArthroplasty, Replacementeng
dc.subject.decsOsteoartritis de la Rodillaspa
dc.subject.decsOsteoarthritis, Kneeeng
dc.subject.proposalInflamaciónspa
dc.subject.proposalSinoviocitosspa
dc.subject.proposalCélulas Mesenquimalesspa
dc.subject.proposalBiomarcadorspa
dc.subject.proposalInterleuquina-17Aspa
dc.subject.proposalInterleuquina-20spa
dc.subject.proposalInflammationeng
dc.subject.proposalSynoviocyteseng
dc.subject.proposalMesenchymal Cellseng
dc.subject.proposalBiomarkereng
dc.subject.proposalInterleukin-17Aeng
dc.subject.proposalInterleukin-20eng
dc.titleCuantificación y distribución de IL 17A e IL 20 como marcadores pronóstico en pacientes con osteoartritis temprana de rodillaspa
dc.title.translatedQuantification and distribution of IL 17A and IL 20 as prognostic markers in patients with early knee osteoarthritiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057602278.2024.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: