Pd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2

dc.contributor.advisorBaquero Velasco, Edwin Arley
dc.contributor.advisorChaudret, Bruno
dc.contributor.authorSuárez Riaño, Oscar Eduardo
dc.contributor.orcidOscar Suárez-Riaño [0000000190537423]spa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2023-07-27T20:50:16Z
dc.date.available2023-07-27T20:50:16Z
dc.date.issued2022-10-27
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDeuterium-labeled compounds have been of great interest in recent years due to their diverse applications. For instance, they can be used in mechanistic studies, to alter pharmacokinetic profiles, and as internal standards in different techniques coupled to mass spectrometry. Among the different reported methods to obtain those molecules, we can highlight two: Hydrogen Isotope Exchange (HIE) reactions and dearomatization reactions using D2 as reducing agent. These processes can be catalyzed using transition metals both in homogeneous and heterogeneous fashions. In this sense, metal nanoparticles (MNPs) have appeared as a new alternative in catalysis, especially in H–H and C–H bonds activation, due to their great advantages compared to metals in their bulk conformation. Thus, N-Heterocyclic Carbene (NHC) ligands have played an important role as MNPs stabilizers due to their unique and versatile stereoelectronic properties, and their ability to form robust bonds with metals. In this line, there have been few reports about NHC-stabilized MNPs for the deuteration reactions, in which monometallic RuNPs, IrNPs, NiNPs, and bimetallic RuIrNPs and RuPtNPs were employed as nanocatalysts using different lipophilic and water-soluble substrates (amino acids). Their usual selectivities found in the deuteration of the substrates are mainly towards positions close to heteroatoms such as nitrogen. However, aromatic rings reduction still remains a major drawback in H/D exchange reactions, especially when bioactive molecules like amino acids are used. In this work we present the synthesis of monometallic PdNPs, NiNPs, and bimetallic PdNiNPs stabilized by either lipo- or water-soluble NHC ligands. The obtained MNPs were characterized by state-of-the-art techniques such as Transmission Electron Microscopy (TEM), HighResolution TEM coupled to Energy Dispersive X-Ray spectroscopy, Attenuated Total Reflectance Infrared spectroscopy, Solid-State Nuclear Magnetic Resonance, and X-Ray Photoelectron Spectroscopy. These MNPs were found to disperse in both organic and aqueous media because of the stabilization and coordination of adequate NHC ligands to the surface with sizes ranging from 1.8 to 2.9 nm. They were tested as nanocatalysts in dearomatization and HIE reactions over different lipophilic (pyridine, 2-methylpyridine, 2-methoxypyridine, 2- (trifluoromethyl)pyridine, 2-phenylpyridine, 3-phenylpyridine, and 4-phenylpyridine) and watersoluble (L-phenylalanine, L-tyrosine, and L-histidine) substrates. Monometallic PdNPs were active in dearomatization reactions over pyridine and its derivatives, as well as with 2- phenylpyridine and its isomers. Moreover, we found an unexpected inverse kinetic isotope effect in 2-phenylpyridine dearomatization reaction, with better results using D2 compared to H2 when Pd@NHC NPs were used as nanocatalysts. A higher difference was found with NHC-stabilized PdNPs compared to their analogues stabilized by polyvinylpyrrolidone. It suggests that NHC ligands could promote this effect based on the DFT calculations performed. In regard with watersoluble systems, bimetallic PdNiNPs were able to deuterate selectively the b position to the amino acid moiety when L-phenylalanine was used as a substrate. In this case, the aromatic reduction side process was fully suppressed thanks to a synergetic effect of both metals. On the other hand, a change in the deuteration selectivity was achieved when L-tyrosine was used as a substrate. At lower temperatures the b position to the amino acid moiety was deuterated, while at higher temperatures the deuteration took place at the ortho position with respect to the phenol group.eng
dc.description.abstractLos compuestos deuterados han despertado gran interés en los últimos años debido a sus diversas aplicaciones. Por ejemplo, pueden utilizarse en estudios mecanísticos, para alterar perfiles farmacocinéticos y como patrones internos en diferentes técnicas acopladas a espectrometría de masas. Entre los diferentes métodos reportados para la obtención de estas moléculas, podemos destacar dos: las reacciones de Intercambio Isotópico de Hidrógeno (HIE) y las reacciones de dearomatización utilizando D2 como agente reductor. Estos procesos pueden catalizarse utilizando metales de transición tanto de forma homogénea como heterogénea. En este sentido, las nanopartículas metálicas (MNPs) han aparecido como una nueva alternativa en catálisis, especialmente en la activación de enlaces H–H y C–H, debido a sus grandes ventajas en comparación con los metales en su conformación bulk. Así pues, los ligandos Carbeno NHeterocíclicos (NHC) han desempeñado un papel importante como estabilizadores de MNPs debido a sus propiedades estereoelectrónicas únicas y versátiles, y a su capacidad para formar enlaces robustos con metales. En esta línea, se han publicado pocos reportes sobre las MNPs estabilizadas con NHC para las reacciones de deuteración, en las que se emplearon como nanocatalizadores monometálicos nanopartículas de Ru, Ir y Ni, y bimetálicos de RuIr y RuPt utilizando diferentes sustratos lipofílicos e hidrosolubles (aminoácidos). La selectividad de estos catalizadores en la deuteración principalmente es hacia posiciones cercanas a heteroátomos como el nitrógeno. Sin embargo, la reducción de los anillos aromáticos sigue siendo un gran inconveniente en las reacciones de intercambio H/D, especialmente cuando se utilizan moléculas bioactivas como los aminoácidos. En este trabajo se presenta la síntesis de nanopartículas monométiclas de Pd, Ni y bimetálicas de PdNi estabilizadas por ligandos NHC liposolubles e hidrosolubles. Las nanopartículas obtenidas se caracterizaron mediante las técnicas más avanzadas, como la microscopía electrónica de transmisión (MET), MET de alta resolución acoplado a espectroscopia de rayos X de energía dispersiva, espectroscopia infrarroja de reflectancia total atenuada, resonancia magnética nuclear en estado sólido y espectroscopia fotoelectrónica de rayos X. Se observó que estas MNP se dispersaban en medios orgánicos y acuosos debido a la estabilización y coordinación de los ligandos NHC a la superficie, con tamaños entre 1,8 y 2,9 nm.. Se probaron en reacciones de dearomatización y HIE sobre diferentes sustratos lipofílicos (piridina, 2- metilpiridina, 2-metoxipiridina, 2-(trifluorometil)piridina, 2-fenilpiridina, 3-fenilpiridina y 4- fenilpiridina) e hidrosolubles (L-fenilalanina, L-tirosina y L-histidina). Las PdNPs fueron activas en reacciones de dearomatización sobre piridina y sus derivados, así como con 2-fenilpiridina y sus isómeros. Además, se encontró un inesperado efecto cinético isotópico inverso en la reacción de dearomatización de la 2-fenilpiridina, con mejores resultados utilizando D2 en comparación con H2 cuando se utilizaron Pd@NHC NPs como nanocatalizadores, con una mayor diferencia para Pd@NHC NPs comparado con las PdNPs estabilizadas por polivinilpirrolidona. Esto sugiere que los ligandos NHC podrían promover este efecto basándose en los cálculos DFT realizados. Con respecto a los sistemas solubles en agua, las PdNiNPs fueron capaces de deuterar selectivamente la posición b a la fracción aminoácida cuando se utilizó L-fenilalanina como sustrato, evitando la reducción del anillo aromático, gracias a un efecto sinérgico de ambos metales. Por otro lado, se observó un cambio en la selectividad de la deuteración cuando se utilizó L-tirosina como sustrato. A temperaturas más bajas se deuteró la posición b con respecto a la fracción aminoácida, mientras que a temperaturas más altas la deuteración tuvo lugar en la posición orto con respecto al grupo fenol. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaNanocatálisis y Química Organometálicaspa
dc.format.extent135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84336
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesGómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111 (8), 4857–4963. https://doi.org/10.1021/cr100436k.spa
dc.relation.referencesHowland, R. H. Deuterated Drugs. J. Psychosoc. Nurs. Ment. Health Serv. 2015, 53 (9). https://doi.org/10.3928/02793695-20150821-55.spa
dc.relation.referencesStokvis, E.; Rosing, H.; Beijnen, J. H. Stable Isotopically Labeled Internal Standards in Quantitative Bioanalysis Using Liquid Chromatography/Mass Spectrometry: Necessity or Not? Rapid Commun. Mass Spectrom. 2005, 19 (3), 401–407. https://doi.org/10.1002/rcm.1790.spa
dc.relation.referencesPalazzolo, A.; Asensio, J. M.; Bouzouita, D.; Pieters, G.; Tricard, S.; Chaudret, B. Metal Nanoparticles for Hydrogen Isotope Exchange; 2020; pp 281–302. https://doi.org/10.1007/978-3-030-45823-2_9.spa
dc.relation.referencesPirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. Applications of Deuterium in Medicinal Chemistry. J. Med. Chem. 2019, 62 (11), 5276–5297. https://doi.org/10.1021/acs.jmedchem.8b01808.spa
dc.relation.referencesSchmidt, C. First Deuterated Drug Approved. Nat. Biotechnol. 2017, 35 (6), 493–494. https://doi.org/10.1038/nbt0617-493.spa
dc.relation.referencesJacques, V.; Czarnik, A. W.; Judge, T. M.; Van der Ploeg, L. H. T.; DeWitt, S. H. Differentiation of Antiinflammatory and Antitumorigenic Properties of Stabilized Enantiomers of Thalidomide Analogs. Proc. Natl. Acad. Sci. 2015, 112 (12). https://doi.org/10.1073/pnas.1417832112.spa
dc.relation.referencesChen, J.; Mannargudi, B. M.; Xu, L.; Uetrecht, J. Demonstration of the Metabolic Pathway Responsible for Nevirapine-Induced Skin Rash. Chem. Res. Toxicol. 2008, 21 (9), 1862–1870. https://doi.org/10.1021/tx800177k.spa
dc.relation.referencesPhillips, D. H.; Potter, G. A.; Horton, M. N.; Hewker, A.; Crofton-Sleigh, C.; Jarman, M.; Venitt, S. Reduced Genotoxicity of [D5-Ethyl]-Tamoxifen Implicates α-Hydroxylation of the Ethyl Group as a Major Pathway of Tamoxifen Activation to a Liver Carcinogen. Carcinogenesis 1994, 15 (8), 1487–1492. https://doi.org/10.1093/carcin/15.8.1487.spa
dc.relation.referencesUttamsingh, V.; Gallegos, R.; Liu, J. F.; Harbeson, S. L.; Bridson, G. W.; Cheng, C.; Wells, D. S.; Graham, P. B.; Zelle, R.; Tung, R. Altering Metabolic Profiles of Drugs by Precision Deuteration: Reducing Mechanism-Based Inhibition of CYP2D6 by Paroxetine. J. Pharmacol. Exp. Ther. 2015, 354 (1), 43–54. https://doi.org/10.1124/jpet.115.223768.spa
dc.relation.referencesYung, C. M.; Skaddan, M. B.; Bergman, R. G. Stoichiometric and Catalytic H/D Incorporation by Cationic Iridium Complexes: A Common Monohydrido-Iridium Intermediate. J. Am. Chem. Soc. 2004, 126 (40), 13033–13043. https://doi.org/10.1021/ja046825g.spa
dc.relation.referencesHeys, R. Investigation of [IrH2(Me2CO)2(PPh3)2]BF4 as a Catalyst of Hydrogen Isotope Exchange of Substrates in Solution. J. Chem. Soc. Chem. Commun. 1992, No. 9, 680. https://doi.org/10.1039/c39920000680.spa
dc.relation.referencesAtzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M.; Rojahn, P.; Weck, R. Expanded Applicability of Iridium(I) NHC/Phosphine Catalysts in Hydrogen Isotope Exchange Processes with Pharmaceutically-Relevant Heterocycles. Tetrahedron 2015, 71 (13), 1924–1929. https://doi.org/10.1016/j.tet.2015.02.029.spa
dc.relation.referencesValero, M.; Weck, R.; Güssregen, S.; Atzrodt, J.; Derdau, V. Highly Selective Directed Iridium‐Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew. Chem. Int. Ed. 2018, 57 (27), 8159–8163. https://doi.org/10.1002/anie.201804010.spa
dc.relation.referencesPrechtl, M. H. G.; Hölscher, M.; Ben-David, Y.; Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angew. Chem. Int. Ed. 2007, 46 (13), 2269–2272. https://doi.org/10.1002/anie.200603677.spa
dc.relation.referencesTakahashi, M.; Oshima, K.; Matsubara, S. Ruthenium Catalyzed Deuterium Labelling of α-Carbon in Primary Alcohol and Primary/Secondary Amine in D2O. Chem. Lett. 2005, 34 (2), 192–193. https://doi.org/10.1246/cl.2005.192.spa
dc.relation.referencesNeubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. Ruthenium-Catalyzed Selective α,β-Deuteration of Bioactive Amines. J. Am. Chem. Soc. 2012, 134 (29), 12239–12244. https://doi.org/10.1021/ja3041338.spa
dc.relation.referencesPony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-Catalysed Tritiation of Pharmaceuticals. Nature 2016, 529 (7585), 195–199. https://doi.org/10.1038/nature16464.spa
dc.relation.referencesYang, H.; Zarate, C.; Palmer, W. N.; Rivera, N.; Hesk, D.; Chirik, P. J. Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in N -Heterocycles and Its Application to the Tritiation of Pharmaceuticals. ACS Catal. 2018, 8 (11), 10210–10218. https://doi.org/10.1021/acscatal.8b03717.spa
dc.relation.referencesPalmer, W. N.; Chirik, P. J. Cobalt-Catalyzed Stereoretentive Hydrogen Isotope Exchange of C(Sp3 )–H Bonds. ACS Catal. 2017, 7 (9), 5674–5678. https://doi.org/10.1021/acscatal.7b02051.spa
dc.relation.referencesSajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Efficient C−H/C−D Exchange Reaction on the Alkyl Side Chain of Aromatic Compounds Using Heterogeneous Pd/C in D2O. Org. Lett. 2004, 6 (9), 1485–1487. https://doi.org/10.1021/ol0496374.spa
dc.relation.referencesSajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Aromatic Ring Favorable and Efficient H–D Exchange Reaction Catalyzed by Pt/C. Tetrahedron Lett. 2005, 46 (41), 6995–6998. https://doi.org/10.1016/j.tetlet.2005.08.067.spa
dc.relation.referencesLepron, M.; Daniel-bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2020, 54. https://doi.org/10.1021/acs.accounts.0c00721.spa
dc.relation.referencesNdolomingo, M. J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55 (15), 6195–6241. https://doi.org/10.1007/s10853-020-04415-x.spa
dc.relation.referencesBirch, A. J. Reduction by Dissolving Metals. Part I. J. Chem. Soc. 1944, 430. https://doi.org/10.1039/jr9440000430.spa
dc.relation.referencesBuchner, E.; Curtius, T. Ueber Die Einwirkung von Diazoessigäther Auf Aromatische Kohlenwasserstoffe. Berichte der Dtsch. Chem. Gesellschaft 1885, 18 (2), 2377–2379. https://doi.org/10.1002/cber.188501802119.spa
dc.relation.referencesLan, P.; Ye, S.; Banwell, M. G. The Application of Dioxygenase‐Based Chemoenzymatic Processes to the Total Synthesis of Natural Products. Chem. Asian J. 2019, 14 (22), 4001–4012. https://doi.org/10.1002/asia.201900988.spa
dc.relation.referencesZheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds. Chem 2016, 1 (6), 830–857. https://doi.org/10.1016/j.chempr.2016.11.005.spa
dc.relation.referencesOkumura, M.; Sarlah, D. Arenophile-Mediated Dearomative Functionalization Strategies. Synlett 2018, 29 (07), 845–855. https://doi.org/10.1055/s-0036-1591940.spa
dc.relation.referencesLovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52 (21), 6752–6756. https://doi.org/10.1021/jm901241e.spa
dc.relation.referencesRoche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50 (18), 4068–4093. https://doi.org/10.1002/anie.201006017.spa
dc.relation.referencesHuck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6 (7), 1589–1603. https://doi.org/10.1016/j.chempr.2020.06.015.spa
dc.relation.referencesZheng, C.; You, S. L. Advances in Catalytic Asymmetric Dearomatization. ACS Cent. Sci. 2021, 7 (3), 432–444. https://doi.org/10.1021/acscentsci.0c01651.spa
dc.relation.referencesFaisca Phillips, A. M. M. M. Organocatalytic Enantioselective Dearomatization Reactions for the Synthesis of Nitrogen Heterocycles. In Synthetic Approaches to Nonaromatic Nitrogen Heterocycles; Wiley, 2020; pp 273–323. https://doi.org/10.1002/9781119708841.ch11.spa
dc.relation.referencesWertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47 (21), 7996–8017. https://doi.org/10.1039/c8cs00389k.spa
dc.relation.referencesNagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Partial Hydrogenation of Benzene to Cyclohexene. Appl. Surf. Sci. 1997, 121–122, 448–451. https://doi.org/10.1016/S0169-4332(97)00325-5.spa
dc.relation.referencesWei, Y.; Rao, B.; Cong, X.; Zeng, X. Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(Alkyl)Carbene Rhodium Complexes. J. Am. Chem. Soc. 2015, 137 (29), 9250–9253. https://doi.org/10.1021/jacs.5b05868.spa
dc.relation.referencesOtt, L. S.; Finke, R. G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251 (9–10), 1075–1100. https://doi.org/10.1016/j.ccr.2006.08.016.spa
dc.relation.referencesPolshettiwar, V. Nanomaterials in Catalysis . Edited by Philippe Serp and Karine Philippot. Angew. Chem. Int. Ed. 2013, 52 (43), 11199–11199. https://doi.org/10.1002/anie.201305828.spa
dc.relation.referencesKhan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12 (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.spa
dc.relation.referencesHeuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; Parak, W. J.; Kanaras, A. G. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119 (8), 4819–4880. https://doi.org/10.1021/acs.chemrev.8b00733.spa
dc.relation.referencesBaig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2 (6), 1821–1871. https://doi.org/10.1039/d0ma00807a.spa
dc.relation.referencesKhan, F. A. Applications of Nanomaterials in Human Health; 2020. https://doi.org/10.1007/978-981-15-4802-4.spa
dc.relation.referencesSharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. - Sci. 2019, 31 (2), 257–269. https://doi.org/.odf.spa
dc.relation.referencesZuluaga Villamil, M. A. Nanopartículas de Ir y Ru / Ir Estabilizadas Con Ligandos Carbeno N- Heterocíclico Para Activación de Enlaces C-H, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesPan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M.-J. Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics. J. Am. Chem. Soc. 2001, 123 (31), 7584–7593. https://doi.org/10.1021/ja003961m.spa
dc.relation.referencesMyers, D. Colloids and Colloidal Stability. In Surfaces, Interfaces, and Colloids; John Wiley & Sons, Inc.: New York, USA; pp 214–252. https://doi.org/10.1002/0471234990.ch10.spa
dc.relation.referencesDavid, M. Applications of Ionic Liquids in Science and Technology; Handy, S., Ed.; InTech, 2011. https://doi.org/10.5772/1769.spa
dc.relation.referencesHopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485–496. https://doi.org/10.1038/nature13384.spa
dc.relation.referencesWanzlick, H.-W.; Schönherr, H.-J. Direct Synthesis of a Mercury Salt-Carbene Complex. Angew. Chem. Int. Ed. 1968, 7 (2), 141–142. https://doi.org/10.1002/anie.196801412.spa
dc.relation.referencesÖfele, K. 1,3-Dimethyl-4-Imidazolinyliden-(2)-Pentacarbonylchrom Ein Neuer Übergangsmetall-Carben-Komplex. J. Organomet. Chem. 1968, 12 (3), P42–P43. https://doi.org/10.1016/S0022-328X(00)88691-X.spa
dc.relation.referencesArduengo, A. J.; Harlow, R. L.; Kline, M. A Stable Crystalline Carbene. J. Am. Chem. Soc. 1991, 113 (1), 361–363. https://doi.org/10.1021/ja00001a054.spa
dc.relation.referencesHerrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Metal Complexes of N-Heterocyclic Carbenes—A New Structural Principle for Catalysts in Homogeneous Catalysis. Angew. Chem. Int. Ed. 1995, 34 (21), 2371–2374. https://doi.org/10.1002/anie.199523711.spa
dc.relation.referencesGrubbs, R. H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45 (23), 3760–3765. https://doi.org/10.1002/anie.200600680.spa
dc.relation.referencesJacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M‒(NHC) (NHC = N-Heterocyclic Carbene) Bond. Coord. Chem. Rev. 2009, 253 (5–6), 687–703. https://doi.org/10.1016/j.ccr.2008.06.006.spa
dc.relation.referencesZhukhovitskiy, A. V.; MacLeod, M. J.; Johnson, J. A. Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chem. Rev. 2015, 115 (20), 11503–11532. https://doi.org/10.1021/acs.chemrev.5b00220.spa
dc.relation.referencesSmith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056. https://doi.org/10.1021/acs.chemrev.8b00514.spa
dc.relation.referencesShen, H.; Tian, G.; Xu, Z.; Wang, L.; Wu, Q.; Zhang, Y.; Teo, B. K.; Zheng, N. N-Heterocyclic Carbene Coordinated Metal Nanoparticles and Nanoclusters. Coord. Chem. Rev. 2022, 458, 214425. https://doi.org/10.1016/j.ccr.2022.214425.spa
dc.relation.referencesKoy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces. Nat. Catal. 2021, 4 (5), 352–363. https://doi.org/10.1038/s41929-021-00607-z.spa
dc.relation.referencesAn, Y. Y.; Yu, J. G.; Han, Y. F. Recent Advances in the Chemistry of N-Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chinese J. Chem. 2019, 37 (1), 76–87. https://doi.org/10.1002/cjoc.201800450.spa
dc.relation.referencesOtt, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Nanoclusters in Ionic Liquids: Evidence for N-Heterocyclic Carbene Formation from Imidazolium-Based Ionic Liquids Detected by 2H NMR. J. Am. Chem. Soc. 2005, 127 (16), 5758–5759. https://doi.org/10.1021/ja0423320.spa
dc.relation.referencesValero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. NHC‐Stabilized Iridium Nanoparticles as Catalysts in Hydrogen Isotope Exchange Reactions of Anilines. Angew. Chem. Int. Ed. 2020, 59 (9), 3517–3522. https://doi.org/10.1002/anie.201914369.spa
dc.relation.referencesLara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Philippot, K.; Chaudret, B. Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. Angew. Chem. Int. Ed. 2011, 50 (50), 12080–12084. https://doi.org/10.1002/anie.201106348.spa
dc.relation.referencesBaquero, E. A.; Tricard, S.; Flores, J. C.; de Jesús, E.; Chaudret, B. Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 2014, 53 (48), 13220–13224. https://doi.org/10.1002/anie.201407758.spa
dc.relation.referencesRuiz-Varilla, A. M.; Baquero, E. A.; Chaudret, B.; de Jesús, E.; Gonzalez-Arellano, C.; Flores, J. C. Water-Soluble NHC-Stabilized Platinum Nanoparticles as Recoverable Catalysts for Hydrogenation in Water. Catal. Sci. Technol. 2020, 10 (9), 2874–2881. https://doi.org/10.1039/D0CY00481B.spa
dc.relation.referencesPlanellas, M.; Guo, W.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T. Hydrosilylation of Internal Alkynes Catalyzed by Tris- Imidazolium Salt-Stabilized Palladium Nanoparticles. Adv. Synth. Catal. 2014, 356 (1), 179–188. https://doi.org/10.1002/adsc.201300641.spa
dc.relation.referencesPlanellas, M.; Pleixats, R.; Shafir, A. Palladium Nanoparticles in Suzuki Cross-Couplings: Tapping into the Potential of Tris-Imidazolium Salts for Nanoparticle Stabilization. Adv. Synth. Catal. 2012, 354 (4), 651–662. https://doi.org/10.1002/adsc.201100574.spa
dc.relation.referencesAsensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chem. Eur. J. 2017, 23 (54), 13435–13444. https://doi.org/10.1002/chem.201702204.spa
dc.relation.referencesRichter, C.; Schaepe, K.; Glorius, F.; Ravoo, B. J. Tailor-Made N-Heterocyclic Carbenes for Nanoparticle Stabilization. Chem. Commun. 2014, 50 (24), 3204. https://doi.org/10.1039/c4cc00654b.spa
dc.relation.referencesKhol, H.; Reimer, L. Transmission Electron Microscopy, 5th ed.; Springer Series in Optical Sciences; Springer New York: New York, NY, 2008; Vol. 36. https://doi.org/10.1007/978-0-387-40093-8.spa
dc.relation.referencesMourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10 (27), 12871–12934. https://doi.org/10.1039/c8nr02278j.spa
dc.relation.referencesStachowiak, G. W.; Batchelor, A. W.; Stachowiak, G. B. Surface Micrography and Analysis. In Tribology Series; 2004; Vol. 44, pp 165–220. https://doi.org/10.1016/S0167-8922(04)80024-5.spa
dc.relation.referencesWilliams, D. B.; Carter, C. B. Transmission Electron Microscopy; Springer US: Boston, MA, 2009. https://doi.org/10.1007/978-0-387-76501-3.spa
dc.relation.referencesTitus, D.; James Jebaseelan Samuel, E.; Roopan, S. M. Nanoparticle Characterization Techniques; Elsevier Inc., 2019. https://doi.org/10.1016/b978-0-08-102579-6.00012-5.spa
dc.relation.referencesRomeu, D.; Gomez, A.; Reyes-Gasg, J. Electron Diffraction and HRTEM Structure Analysis of Nanowires. In Nanowires - Fundamental Research; InTech, 2011. https://doi.org/10.5772/18915.spa
dc.relation.referencesRaval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S. R.; Chougule, M. B.; Tekade, R. K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development; Elsevier Inc., 2018. https://doi.org/10.1016/B978-0-12-817909-3.00010-8.spa
dc.relation.referencesGrdadolnik, J. ATR-FTIR Spectroscopy: Its Advantages and Limitations. Acta Chim. Slov. 2002, 49 (3), 631–642.spa
dc.relation.referencesMartinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C. NHC-Stabilised Rh Nanoparticles: Surface Study and Application in the Catalytic Hydrogenation of Aromatic Substrates. J. Catal. 2017, 354, 113–127. https://doi.org/10.1016/j.jcat.2017.08.010.spa
dc.relation.referencesReif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 2021, 1 (1). https://doi.org/10.1038/s43586-020-00002-1.spa
dc.relation.referencesAsensio, J. M.; Tricard, S.; Coppel, Y.; Andrés, R.; Chaudret, B.; de Jesús, E. Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angew. Chem. Int. Ed. 2017, 56 (3), 865–869. https://doi.org/10.1002/anie.201610251.spa
dc.relation.referencesCano, I.; Martínez-Prieto, L. M.; Fazzini, P. F.; Coppel, Y.; Chaudret, B.; Van Leeuwen, P. W. N. M. Characterization of Secondary Phosphine Oxide Ligands on the Surface of Iridium Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19 (32), 21655–21662. https://doi.org/10.1039/c7cp03439c.spa
dc.relation.referencesLu, L. T. Water-Dispersible Magnetic Nanoparticles for Biomedical Applications: Synthesis and Characterisation, University of Liverpool, 2011. https://doi.org/10.17638/03062809.spa
dc.relation.referencesRühling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B. J.; Glorius, F. Modular Bidentate Hybrid NHC-Thioether Ligands for the Stabilization of Palladium Nanoparticles in Various Solvents. Angew. Chem. Int. Ed. 2016, 55 (19), 5856–5860. https://doi.org/10.1002/anie.201508933.spa
dc.relation.referencesMartínez-Prieto, L. M.; Rakers, L.; López-Vinasco, A. M.; Cano, I.; Coppel, Y.; Philippot, K.; Glorius, F.; Chaudret, B.; van Leeuwen, P. W. N. M. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chem. Eur. J. 2017, 23 (52), 12779–12786. https://doi.org/10.1002/chem.201702288.spa
dc.relation.referencesMartínez-Prieto, L. M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51 (2), 376–384. https://doi.org/10.1021/acs.accounts.7b00378.spa
dc.relation.referencesRanganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd Nanoparticles. Angew. Chem. Int. Ed. 2010, 49 (42), 7786–7789. https://doi.org/10.1002/anie.201002782.spa
dc.relation.referencesPieters, G.; Taglang, C.; Bonnefille, E.; Gutmann, T.; Puente, C.; Berthet, J.-C.; Dugave, C.; Chaudret, B.; Rousseau, B. Regioselective and Stereospecific Deuteration of Bioactive Aza Compounds by the Use of Ruthenium Nanoparticles. Angew. Chem. Int. Ed. 2014, 53 (1), 230–234. https://doi.org/10.1002/anie.201307930.spa
dc.relation.referencesTaglang, C.; Martínez-Prieto, L. M.; Del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific C-H Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554.spa
dc.relation.referencesMartínez-Prieto, L. M.; Baquero, E. A.; Pieters, G.; Flores, J. C.; De Jesús, E.; Nayral, C.; Delpech, F.; Van Leeuwen, P. W. N. M.; Lippens, G.; Chaudret, B. Monitoring of Nanoparticle Reactivity in Solution: Interaction of l-Lysine and Ru Nanoparticles Probed by Chemical Shift Perturbation Parallels Regioselective H/D Exchange. Chem. Commun. 2017, 53 (43), 5850–5853. https://doi.org/10.1039/c7cc02445b.spa
dc.relation.referencesPalazzolo, A.; Feuillastre, S.; Pfeifer, V.; Garcia‐Argote, S.; Bouzouita, D.; Tricard, S.; Chollet, C.; Marcon, E.; Buisson, D.; Cholet, S.; Fenaille, F.; Lippens, G.; Chaudret, B.; Pieters, G. Efficient Access to Deuterated and Tritiated Nucleobase Pharmaceuticals and Oligonucleotides Using Hydrogen‐Isotope Exchange. Angew. Chem. Int. Ed. 2019, 58 (15), 4891–4895. https://doi.org/10.1002/anie.201813946.spa
dc.relation.referencesReshi, N. U. D.; Samuelson, A. G. Recent Advances in Soluble Ruthenium(0) Nanocatalysts and Their Reactivity. Appl. Catal. A Gen. 2020, 598, 117561. https://doi.org/10.1016/j.apcata.2020.117561.spa
dc.relation.referencesBouzouita, D.; Asensio, J. M.; Pfeifer, V.; Palazzolo, A.; Lecante, P.; Pieters, G.; Feuillastre, S.; Tricard, S.; Chaudret, B. Chemoselective H/D Exchange Catalyzed by Nickel Nanoparticles Stabilized by N-Heterocyclic Carbene Ligands. Nanoscale 2020, 12 (29), 15736–15742. https://doi.org/10.1039/d0nr04384b.spa
dc.relation.referencesSingh, A. K.; Xu, Q. Synergistic Catalysis over Bimetallic Alloy Nanoparticles. ChemCatChem 2013, 5 (3), 652–676. https://doi.org/10.1002/cctc.201200591.spa
dc.relation.referencesBouzouita, D.; Lippens, G.; Baquero, E. A.; Fazzini, P. F.; Pieters, G.; Coppel, Y.; Lecante, P.; Tricard, S.; Martínez-Prieto, L. M.; Chaudret, B. Tuning the Catalytic Activity and Selectivity of Water-Soluble Bimetallic RuPt Nanoparticles by Modifying Their Surface Metal Distribution. Nanoscale 2019, 11 (35), 16544–16552. https://doi.org/10.1039/c9nr04149d.spa
dc.relation.referencesMuetterties, E. L.; Rakowski, M. C.; Hirsekorn, F. J.; Larson, W. D.; Basus, V. J.; Anet, F. A. L. Hydrogenation of Arenes with Discrete Coordination Catalysts. III. Synthesis and Nuclear Magnetic Resonance Spectrum of All-Cis-Cyclohexane-D6. J. Am. Chem. Soc. 1975, 97 (5), 1266–1267. https://doi.org/10.1021/ja00838a064.spa
dc.relation.referencesEisen, M. S.; Marks, T. J. Supported Organoactinide Complexes as Heterogeneous Catalysts. A Kinetic and Mechanistic Study of Facile Arene Hydrogenation. J. Am. Chem. Soc. 1992, 114 (26), 10358–10368. https://doi.org/10.1021/ja00052a036.spa
dc.relation.referencesJones, R. A.; Seeberger, M. H. Synthesis of Polymer-Supported Transition Metal Catalysts via Phosphido Linkages: Heterogeneous Catalysts for the Hydrogenation of Aromatic Compounds under Mild Conditions. J. Chem. Soc. Chem. Commun. 1985, No. 6, 373. https://doi.org/10.1039/c39850000373.spa
dc.relation.referencesKopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122 (6), 6634–6718. https://doi.org/10.1021/acs.chemrev.1c00795.spa
dc.relation.referencesKuwano, R.; Morioka, R.; Kashiwabara, M.; Kameyama, N. Catalytic Asymmetric Hydrogenation of Naphthalenes. Angew. Chem. Int. Ed. 2012, 51 (17), 4136–4139. https://doi.org/10.1002/anie.201201153.spa
dc.relation.referencesWiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science. 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270.spa
dc.relation.referencesWang, D. S.; Tang, J.; Zhou, Y. G.; Chen, M. W.; Yu, C. Bin; Duan, Y.; Jiang, G. F. Dehydration Triggered Asymmetric Hydrogenation of 3-(α-Hydroxyalkyl)Indoles. Chem. Sci. 2011, 2 (4), 803–806. https://doi.org/10.1039/c0sc00614a.spa
dc.relation.referencesRanade, V. S.; Consiglio, G.; Prins, R. Functional-Group-Directed Diastereoselective Hydrogenation of Aromatic Compounds. J. Org. Chem. 2000, 65 (4), 1132–1138. https://doi.org/10.1021/jo991604s.spa
dc.relation.referencesHeitbaum, M.; Fröhlich, R.; Glorius, F. Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines. Adv. Synth. Catal. 2010, 352 (2–3), 357–362. https://doi.org/10.1002/adsc.200900763.spa
dc.relation.referencesGiles, R.; Ahn, G.; Jung, K. W. H-D Exchange in Deuterated Trifluoroacetic Acid via Ligand-Directed NHC-Palladium Catalysis: A Powerful Method for Deuteration of Aromatic Ketones, Amides, and Amino Acids. Tetrahedron Lett. 2015, 56 (45), 6231–6235. https://doi.org/10.1016/j.tetlet.2015.09.100.spa
dc.relation.referencesFarizyan, M.; Mondal, A.; Mal, S.; Deufel, F.; van Gemmeren, M. Palladium-Catalyzed Nondirected Late-Stage C–H Deuteration of Arenes. J. Am. Chem. Soc. 2021, 143 (40), 16370–16376. https://doi.org/10.1021/jacs.1c08233.spa
dc.relation.referencesSajiki, H.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Palladium-Catalyzed Base-Selective H-D Exchange Reaction of Nucleosides in Deuterium Oxide. Synlett 2005, No. 9, 1385–1388. https://doi.org/10.1055/s-2005-868489.spa
dc.relation.referencesSawama, Y.; Monguchi, Y.; Sajiki, H. Efficient H-D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon-HD System. Synlett 2012, 23 (7), 959–972. https://doi.org/10.1055/s-0031-1289696.spa
dc.relation.referencesGuy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D2O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796.spa
dc.relation.referencesPfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chem. Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043.spa
dc.relation.referencesLyubimov, S. E.; Zvinchuk, A. A.; Korlyukov, A. A.; Davankov, V. A.; Parenago, O. P. Palladium Nanoparticles in Hypercrosslinked Polystyrene: Synthesis and Application in the Hydrogenation of Arenes. Pet. Chem. 2021, 61 (1), 76–80. https://doi.org/10.1134/S0965544121010084.spa
dc.relation.referencesWiberg, K. B. The Deuterium Isotope Effect. Chem. Rev. 1955, 55 (4), 713–743. https://doi.org/10.1021/cr50004a004.spa
dc.relation.referencesWestheimer, F. H. The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. Chem. Rev. 1961, 61 (3), 265–273. https://doi.org/10.1021/cr60211a004.spa
dc.relation.referencesKlinman, J. P. A New Model for the Origin of Kinetic Hydrogen Isotope Effects. J. Phys. Org. Chem. 2010, 23 (7), 606–612. https://doi.org/10.1002/poc.1661.spa
dc.relation.referencesGallego, D.; Baquero, E. A. Recent Advances on Mechanistic Studies on C-H Activation Catalyzed by Base Metals. Open Chem. 2018, 16 (1), 1001–1058. https://doi.org/10.1515/chem-2018-0102.spa
dc.relation.referencesSimmons, E. M.; Hartwig, J. F. On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transition-Metal Complexes. Angew. Chem. Int. Ed. 2012, 51 (13), 3066–3072. https://doi.org/10.1002/anie.201107334.spa
dc.relation.referencesKumar, A.; Gao, C. Homogeneous (De)Hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. https://doi.org/10.1002/cctc.202001404.spa
dc.relation.referencesRej, S.; Das, A.; Chatani, N. Strategic Evolution in Transition Metal-Catalyzed Directed C–H Bond Activation and Future Directions. Coord. Chem. Rev. 2021, 431, 213683. https://doi.org/10.1016/j.ccr.2020.213683.spa
dc.relation.referencesJones, W. D. Isotope Effects in C-H Bond Activation Reactions by Transition Metals. Acc. Chem. Res. 2003, 36 (2), 140–146. https://doi.org/10.1021/ar020148i.spa
dc.relation.referencesBi, Q.; Song, E.; Chen, J.; Riaz, M. S.; Zhu, M.; Liu, J.; Han, Y.-F.; Huang, F. Nano Gold Coupled Black Titania Composites with Enhanced Surface Plasma Properties for Efficient Photocatalytic Alkyne Reduction. Appl. Catal. B Environ. 2022, 309, 121222. https://doi.org/10.1016/j.apcatb.2022.121222.spa
dc.relation.referencesZhang, A.; Xia, J.; Yao, Q.; Lu, Z. H. Pd–WOx Heterostructures Immobilized by MOFs-Derived Carbon Cage for Formic Acid Dehydrogenation. Appl. Catal. B Environ. 2022, 309, 121278. https://doi.org/10.1016/j.apcatb.2022.121278.spa
dc.relation.referencesKim, H.; Yang, S.; Hyun Lim, Y.; Lee, J.; Ha, J.-M.; Heui Kim, D. Enhancement in the Metal Efficiency of Ru/TiO2 Catalyst for Guaiacol Hydrogenation via Hydrogen Spillover in the Liquid Phase. J. Catal. 2022, 410, 93–102. https://doi.org/10.1016/j.jcat.2022.04.017.spa
dc.relation.referencesMollar-Cuni, A.; Ventura-Espinosa, D.; Martín, S.; Mayoral, Á.; Borja, P.; Mata, J. A. Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega 2018, 3 (11), 15217–15228. https://doi.org/10.1021/acsomega.8b02193.spa
dc.relation.referencesGayathri, V.; Pentela, N.; Samanta, D. Palladium Nanoparticles Capped by Thermoresponsive N‐heterocyclic Carbene: Two Different Approaches for a Comparative Study. Appl. Organomet. Chem. 2021, 35 (4). https://doi.org/10.1002/aoc.6166.spa
dc.relation.referencesAzad, M.; Rostamizadeh, S.; Estiri, H.; Nouri, F. Ultra‐small and Highly Dispersed Pd Nanoparticles inside the Pores of ZIF‐8: Sustainable Approach to Waste‐minimized Mizoroki–Heck Cross‐coupling Reaction Based on Reusable Heterogeneous Catalyst. Appl. Organomet. Chem. 2019, 33 (7). https://doi.org/10.1002/aoc.4952.spa
dc.relation.referencesHegde, R. V.; Ong, T.-G.; Ambre, R.; Jadhav, A. H.; Patil, S. A.; Dateer, R. B. Regioselective Direct C2 Arylation of Indole, Benzothiophene and Benzofuran: Utilization of Reusable Pd NPs and NHC-Pd@MNPs Catalyst for C–H Activation Reaction. Catal. Letters 2021, 151 (5), 1397–1405. https://doi.org/10.1007/s10562-020-03390-x.spa
dc.relation.referencesWiesenfeldt, M. P.; Nairoukh, Z.; Li, W.; Glorius, F. Hydrogenation of Fluoroarenes: Direct Access to All- Cis -(Multi)Fluorinated Cycloalkanes. Science (80-. ). 2017, 357 (6354), 908–912. https://doi.org/10.1126/science.aao0270.spa
dc.relation.referencesWollenburg, M.; Heusler, A.; Bergander, K.; Glorius, F. Trans -Selective and Switchable Arene Hydrogenation of Phenol Derivatives. ACS Catal. 2020, 10 (19), 11365–11370. https://doi.org/10.1021/acscatal.0c03423.spa
dc.relation.referencesPfeifer, V.; Zeltner, T.; Fackler, C.; Kraemer, A.; Thoma, J.; Zeller, A.; Kiesling, R. Palladium Nanoparticles for the Deuteration and Tritiation of Benzylic Positions on Complex Molecules. Angew. Chemi.Int. Ed. 2021, 60 (51), 26671–26676. https://doi.org/10.1002/anie.202109043.spa
dc.relation.referencesGonzalez-Galvez, D.; Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Chaudret, B.; Philippot, K.; Van Leeuwen, P. W. N. M. NHC-Stabilized Ruthenium Nanoparticles as New Catalysts for the Hydrogenation of Aromatics. Catal. Sci. Technol. 2013, 3 (1), 99–105. https://doi.org/10.1039/c2cy20561k.spa
dc.relation.referencesLara, P.; Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B. Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem 2014, 6 (1), 87–90. https://doi.org/10.1002/cctc.201300821.spa
dc.relation.referencesIshii, Y.; Wickramasinghe, N. P.; Chimon, S. A New Approach in 1D and 2D 13 C High-Resolution Solid-State NMR Spectroscopy of Paramagnetic Organometallic Complexes by Very Fast Magic-Angle Spinning. J. Am. Chem. Soc. 2003, 125 (12), 3438–3439. https://doi.org/10.1021/ja0291742.spa
dc.relation.referencesMartínez-Prieto, L. M.; van Leeuwen, P. W. N. M. Ligand Effects in Ruthenium Nanoparticle Catalysis; 2020; pp 407–448. https://doi.org/10.1007/978-3-030-45823-2_12.spa
dc.relation.referencesZuluaga-Villamil, A.; Mencia, G.; Asensio, J. M.; Fazzini, P.-F.; Baquero, E. A.; Chaudret, B. N-Heterocyclic Carbene-Based Iridium and Ruthenium/Iridium Nanoparticles for the Hydrogen Isotope Exchange Reaction through C–H Bond Activations. Organometallics 2022. https://doi.org/10.1021/acs.organomet.2c00288.spa
dc.relation.referencesDekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metal‐Organic Framework Coating Effects. ChemPhysChem 2019, 20 (10), 1158–1176. https://doi.org/10.1002/cphc.201900109.spa
dc.relation.referencesGrimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344.spa
dc.relation.referencesBantreil, X.; Nolan, S. P. Synthesis of N-Heterocyclic Carbene Ligands and Derived Ruthenium Olefin Metathesis Catalysts. Nat. Protoc. 2011, 6 (1), 69–77. https://doi.org/10.1038/nprot.2010.177.spa
dc.relation.referencesMoore, L. R.; Cooks, S. M.; Anderson, M. S.; Schanz, H.-J.; Griffin, S. T.; Rogers, R. D.; Kirk, M. C.; Shaughnessy, K. H. Synthesis and Characterization of Water-Soluble Silver and Palladium Imidazol-2-Ylidene Complexes with Noncoordinating Anionic Substituents. Organometallics 2006, 25 (21), 5151–5158. https://doi.org/10.1021/om060552b.spa
dc.relation.referencesAmiens, C.; Chaudret, B.; Ciuculescu-Pradines, D.; Collière, V.; Fajerwerg, K.; Fau, P.; Kahn, M.; Maisonnat, A.; Soulantica, K.; Philippot, K. Organometallic Approach for the Synthesis of Nanostructures. New J. Chem. 2013, 37 (11), 3374. https://doi.org/10.1039/c3nj00650f.spa
dc.relation.referencesAtzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew. Chem. Int. Ed. 2018, 57 (7), 1758–1784. https://doi.org/10.1002/anie.201704146.spa
dc.relation.referencesKatsnelson, A. Heavy Drugs Draw Heavy Interest from Pharma Backers. Nat. Med. 2013, 19 (6), 656–656. https://doi.org/10.1038/nm0613-656.spa
dc.relation.referencesAtzrodt, J.; Derdau, V. Pd- and Pt-Catalyzed H/D Exchange Methods and Their Application for Internal MS Standard Preparation from a Sanofi-Aventis Perspective. J. Label. Compd. Radiopharm. 2010, 53 (11–12), 674–685. https://doi.org/10.1002/jlcr.1818.spa
dc.relation.referencesLepron, M.; Daniel-Bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S.; Pieters, G. Nanocatalyzed Hydrogen Isotope Exchange. Acc. Chem. Res. 2021, 54 (6), 1465–1480. https://doi.org/10.1021/acs.accounts.0c00721.spa
dc.relation.referencesYang, H.; Hesk, D. Base Metal-Catalyzed Hydrogen Isotope Exchange. J. Label. Compd. Radiopharm. 2020, 63 (6), 296–307. https://doi.org/10.1002/jlcr.3826.spa
dc.relation.referencesValero, M.; Derdau, V. Highlights of Aliphatic C(Sp3)-H Hydrogen Isotope Exchange Reactions. J. Label. Compd. Radiopharm. 2020, 63 (6), 266–280. https://doi.org/10.1002/jlcr.3783.spa
dc.relation.referencesSullivan, J. A.; Flanagan, K. A.; Hain, H. Selective H–D Exchange Catalysed by Aqueous Phase and Immobilised Pd Nanoparticles. Catal. Today 2008, 139 (3), 154–160. https://doi.org/10.1016/j.cattod.2008.03.031.spa
dc.relation.referencesGuy, K. A.; Shapley, J. R. H−D Exchange between N-Heterocyclic Compounds and D 2 O with a Pd/PVP Colloid Catalyst. Organometallics 2009, 28 (14), 4020–4027. https://doi.org/10.1021/om9001796.spa
dc.relation.referencesZhao, C.; Gan, W.; Fan, X.; Cai, Z.; Dyson, P.; Kou, Y. Aqueous-Phase Biphasic Dehydroaromatization of Bio-Derived Limonene into p-Cymene by Soluble Pd Nanocluster Catalysts. J. Catal. 2008, 254 (2), 244–250. https://doi.org/10.1016/j.jcat.2008.01.003.spa
dc.relation.referencesKöktürk, M.; Altindag, F.; Nas, M. S.; Calimli, M. H. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol. Trace Elem. Res. 2022, 200 (5), 2455–2467. https://doi.org/10.1007/s12011-021-02821-z.spa
dc.relation.referencesNiakan, M.; Masteri-Farahani, M. Pd–Ni Bimetallic Catalyst Supported on Dendrimer-Functionalized Magnetic Graphene Oxide for Efficient Catalytic Suzuki-Miyaura Coupling Reaction. Tetrahedron 2022, 108, 132655. https://doi.org/10.1016/j.tet.2022.132655.spa
dc.relation.referencesAalinejad, M.; Pesyan Noroozi, N.; Alamgholiloo, H. Stabilization of Pd–Ni Alloy Nanoparticles on Kryptofix 23 Modified SBA-15 for Catalytic Enhancement. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 634, 127956. https://doi.org/10.1016/j.colsurfa.2021.127956.spa
dc.relation.referencesNiakan, M.; Masteri-Farahani, M. Ultrafine and Well-Dispersed Pd-Ni Bimetallic Catalyst Stabilized by Dendrimer-Grafted Magnetic Graphene Oxide for Selective Reduction of Toxic Nitroarenes under Mild Conditions. J. Hazard. Mater. 2022, 424, 127717. https://doi.org/10.1016/j.jhazmat.2021.127717.spa
dc.relation.referencesAbbasi, F.; Karimi-Sabet, J.; Abbasi, Z.; Ghotbi, C. Conversion of CO into CO2 by High Active and Stable PdNi Nanoparticles Supported on a Metal-Organic Framework. Front. Chem. Sci. Eng. 2021. https://doi.org/10.1007/s11705-021-2111-5.spa
dc.relation.referencesJansat, S.; Durand, J.; Favier, I.; Malbosc, F.; Pradel, C.; Teuma, E.; Gómez, M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009, 1 (2), 244–246. https://doi.org/10.1002/cctc.200900127.spa
dc.relation.referencesASM International. ASM Handbook Volume 3: Alloy Phase Diagrams; 1998.spa
dc.relation.referencesMartínez-Prieto, L. M.; Cano, I.; Márquez, A.; Baquero, E. A.; Tricard, S.; Cusinato, L.; del Rosal, I.; Poteau, R.; Coppel, Y.; Philippot, K.; Chaudret, B.; Cámpora, J.; van Leeuwen, P. W. N. M. Zwitterionic Amidinates as Effective Ligands for Platinum Nanoparticle Hydrogenation Catalysts. Chem. Sci. 2017, 8 (4), 2931–2941. https://doi.org/10.1039/C6SC05551F.spa
dc.relation.referencesModdeman, W. E.; Bowling, W. C.; Carter, D. C.; Grove, D. R. XPS Surface and Bulk Studies of Heat Treated Palladium in the Presence of Hydrogen at 150°C. Surf. Interface Anal. 1988, 11 (6–7), 317–326. https://doi.org/10.1002/sia.740110609.spa
dc.relation.referencesSenō, M.; Tsuchiya, S.; Hidai, M.; Uchida, Y. X-Ray Photoelectron Spectra of Aryl-Nickel Complexes. Bull. Chem. Soc. Jpn. 1976, 49 (5), 1184–1186. https://doi.org/10.1246/bcsj.49.1184.spa
dc.relation.referencesPowell, C. J. Recommended Auger Parameters for 42 Elemental Solids. J. Electron Spectros. Relat. Phenomena 2012, 185 (1–2), 1–3. https://doi.org/10.1016/j.elspec.2011.12.001.spa
dc.relation.referencesTaglang, C.; Martínez-Prieto, L. M.; del Rosal, I.; Maron, L.; Poteau, R.; Philippot, K.; Chaudret, B.; Perato, S.; Sam Lone, A.; Puente, C.; Dugave, C.; Rousseau, B.; Pieters, G. Enantiospecific CH Activation Using Ruthenium Nanocatalysts. Angew. Chem. Int. Ed. 2015, 54 (36), 10474–10477. https://doi.org/10.1002/anie.201504554spa
dc.relation.referencesMaegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Efficient and Selective Deuteration of Phenylalanine Derivatives Catalyzed by Pd/C. Synlett 2005, No. 5, 0845–0847. https://doi.org/10.1055/s-2005-863730.spa
dc.relation.referencesŠamonina-Kosicka, J.; Kańska, M. Synthesis of Selectively Labeled Histidine and Its Methylderivatives with Deuterium, Tritium, and Carbon-14. J. Label. Compd. Radiopharm. 2013, 56 (6), 317–320. https://doi.org/10.1002/jlcr.3027.spa
dc.relation.referencesHashimoto, M.; Puteri Tachrim, Z.; Kurokawa, N.; Tokoro, Y. Hydrogen-Deuterium Exchange of Histidine and Histamine with Deuterated Trifluoromethanesulfonic Acid. Heterocycles 2020, 101 (1), 357. https://doi.org/10.3987/COM-19-S(F)28.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalPaladiospa
dc.subject.proposalPalladiumeng
dc.subject.proposalNíquelspa
dc.subject.proposalNickeleng
dc.subject.proposalNanopartículasspa
dc.subject.proposalNanoparticleseng
dc.subject.proposalIntercambio Isotópico de Hidrógenospa
dc.subject.proposalHydrogen Isotope Exchangeeng
dc.subject.proposalDearomatizaciónspa
dc.subject.proposalDearomatizationeng
dc.subject.proposalEfecto Cinético Isotópico Inversospa
dc.subject.proposalInverse Kinetic Isotope Effecteng
dc.subject.proposalLigandos Carbeno N-Heterocíclicospa
dc.subject.proposalN-Heterocyclic Carbene Ligandseng
dc.titlePd-based nanoparticles stabilized by N-Heterocyclic carbene ligands: Application in the catalytic transformation of N-containing molecules with D2eng
dc.title.translatedNanopartículas basadas en paladio estabilizadas por ligandos carbeno NHeterocíclico: Aplicación catalítica en la transformación de moléculas nitrogenadas con D2spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleNanoX Graduate School of Research scholarshipspa
oaire.awardtitleProyecto código HERMES 56495spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032493037.2022.pdf
Tamaño:
31.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: