Extensión metodológica de un modelo econométrico de tipo AR en tiempo continuo con coeficientes aleatorios

dc.contributor.advisorHoyos Gómez, Nancy Milena
dc.contributor.authorCárdenas Sánchez, Daniela
dc.date.accessioned2026-02-09T15:31:58Z
dc.date.available2026-02-09T15:31:58Z
dc.date.issued2026-02-05
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractEl propósito de este trabajo final de maestría es estudiar una extensión metodológica al modelo econométrico de tipo autorregresivo (AR) en tiempo continuo con coeficientes aleatorios planteado por Tao, Phillips y Yu (2019). Para ello, se presenta la propuesta de Hoyos, Gómez y Cárdenas-Sánchez (2025) de un modelo autorregresivo de segundo orden en tiempo continuo con coeficientes aleatorios, su representación discreta exacta y un primer método de estimación. Además, se realiza un análisis teórico para caracterizar el proceso estocástico modelado y se estudia el desempeño del método de estimación en muestras finitas mediante un experimento Monte Carlo para dos escenarios de interés en el campo de las finanzas, a saber, un escenario subamortiguado y otro sobreamortiguado. Los resultados muestran que el método de estimación exhibe un mejor desempeño para series de tiempo con tamaños de muestra grandes. (Texto tomado de la fuente)spa
dc.description.abstractThe aim of this master’s thesis is to study a methodological extension of the continuous-time autoregressive (AR) econometric model with random coefficients proposed by Tao, Phillips, and Yu (2019). To this end, we present the model proposed by Hoyos, Gómez, and Cárdenas-Sánchez (2025), consisting of a second-order continuous-time autoregressive model with random coefficients, its exact discrete-time representation, and an initial estimation method. In addition, a theoretical analysis is conducted to characterize the underlying stochastic process, and the finite-sample performance of the estimation method is evaluated through a Monte Carlo experiment under two scenarios of interest in finance, namely, an underdamped and an overdamped regime. The results indicate that the estimation method performs better for time series with large sample sizes.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Estadística
dc.format.extent59 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89417
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.relation.referencesAllal, J., & Benmoumen, M. (2013). Estimaci´on de par´ametros para modelos autorregre sivos de primer orden con coeficientes aleatorios (RCA) basada en el filtro de Kalman. Communications in Statistics—Simulation and Computation, 42(8), 1750–1762.
dc.relation.referencesAue, A. (2008). Near-integrated random coefficient autoregressive time series. Econome tric Theory, 24(5), 1343–1372.
dc.relation.referencesBanerjee, A. N., Chevillon, G., & Kratz, M. (2017). Probabilistic forecasting of bubbles and crashes (Working paper).
dc.relation.referencesBergstrom, A. R. (1983). Gaussian estimation of structural parameters in higher order continuous time dynamic models. Econometrica, 51(1), 117–152.
dc.relation.referencesBergstrom, A. R. (1984). Continuous time stochastic models and issues of aggregation over time. En Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2, pp. 1145–1212). Elsevier.
dc.relation.referencesBergstrom, A. R. (1988). The history of continuous-time econometric models. Econometric Theory, 4(3), 365–383.
dc.relation.referencesBergstrom, A. R., & Nowman, K. B. (2007). A continuous time econometric model of the United Kingdom with stochastic trends. Cambridge University Press.
dc.relation.referencesBrandes, D. P. (2017). Procesos autorregresivos de medias m´oviles en tiempo continuo con coeficientes L´evy aleatorios. ALEA, 14, 219–244.
dc.relation.referencesBrockwell, P. J. (2014). Recent results in the theory and applications of CARMA proces ses. Annals of the Institute of Statistical Mathematics, 66, 647–685.
dc.relation.referencesBykhovskaya, A., & Phillips, P. C. B. (2018). Limit theory on the boundary for locally functional unit root regression. Journal of Time Series Analysis, 39(4), 523–562.
dc.relation.referencesBykhovskaya, A., & Phillips, P. C. B. (2020). Point optimal testing with roots that are functionally local to unity. Journal of Econometrics, 219(2), 231–259.
dc.relation.referencesChambers, M. J. (1999). Discrete time representation of stationary and nonstationary continuous time systems. Journal of Economic Dynamics and Control, 23(4), 619–639.
dc.relation.referencesChambers, M. J., McCrorie, J. R., & Thornton, M. A. (2018). Continuous time modelling based on an exact discrete time representation. En Essays in honour of Peter C. B. Phillips (pp. 317–357). Springer.
dc.relation.referencesChambers, M. J., & Taylor, A. M. (2018). Time-varying parameters in continuous and discrete time. Oxford University Press.
dc.relation.referencesChen, M., Chow, S. M., & Hunter, M. D. (2018). Stochastic differential equation models with time-varying parameters. En K. van Montfort, J. H. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 205–238). Springer.
dc.relation.referencesFabozzi, F. J. (Ed.). (2012). Encyclopedia of financial models (Vol. 2). Wiley.
dc.relation.referencesFrenod, E., & Chakkour, T. (2016). Un modelo financiero en tiempo continuo. Mathema tical Finance Letters.
dc.relation.referencesGandolfo, G. (1993). Continuous-time econometrics has come of age. En G. Gandolfo (Ed.), Continuous-time econometrics: Theory and applications (pp. 1–11). Springer.
dc.relation.referencesGiraitis, L., Kapetanios, G., & Yates, T. (2014). Inference on multivariate heteroscedastic stochastic time-varying coefficient models (Working paper).
dc.relation.referencesHarvey, A. C., & Stock, J. H. (1988). Continuous time autoregressive models with common stochastic trends. Journal of Economic Dynamics and Control, 12(2–3), 365–384.
dc.relation.referencesHoyos, M. (2020). Mixed first- and second-order cointegrated continuous time models with mixed stock and flow data. Journal of Time Series Analysis, 41(2), 249–267.
dc.relation.referencesHoyos, M. (2024). A first-order continuous time VAR with random coefficients. Journal of Time Series Analysis, 45(1), 57–77.
dc.relation.referencesHoyos, M. (2025). Estimation bias in the Ornstein–Uhlenbeck process with flow data. Econometric Reviews, 44(9), 1411–1435.
dc.relation.referencesHoyos, M., G´omez, K., & C´ardenas-S´anchez, D. (2025). Random coefficient AR(2) in continuous time (Manuscript in preparation). Universidad Nacional de Colombia.
dc.relation.referencesJiang, L., Wang, X., & Yu, J. (2017). In-fill asymptotic theory for structural break point in autoregression: A unified theory (Working paper).
dc.relation.referencesKarandikar, R. L. (1989). Embedding a stochastic difference equation into a continuous time process. Stochastic Processes and Their Applications, 32, 225–235.
dc.relation.referencesKlüppelberg, C., Lindner, A., & Maller, R. (2004). A continuous-time GARCH process driven by a L´evy process: Stationarity and second-order behaviour. Journal of Applied Probability, 41(3), 601–622.
dc.relation.referencesLieberman, O., & Phillips, P. C. B. (2017). A multivariate stochastic unit root model with an application to derivative pricing. Journal of Econometrics, 196(1), 99–110.
dc.relation.referencesMerton, R. C. (1975). Theory of finance from the perspective of continuous time. Journal of Financial and Quantitative Analysis, 10(4), 659–674.
dc.relation.referencesNicholls, D. F., & Quinn, B. G. (1980). The estimation of autoregressive models with random coefficients I. Journal of Time Series Analysis, 1, 37–46.
dc.relation.referencesNicholls, D. F., & Quinn, B. G. (1982). Random coefficient autoregressive models: An introduction. Springer.
dc.relation.referencesØksendal, B. (2003). Stochastic differential equations: An introduction with applications (6th ed.). Springer.
dc.relation.referencesPhillips, P. C. B., & Yu, J. (2009). Maximum likelihood and Gaussian estimation of continuous time models in finance. En T. G. Andersen et al. (Eds.), Handbook of financial time series (pp. 497–530). Springer.
dc.relation.referencesRegis, M., Serra, P., & van den Heuvel, E. R. (2022). Random autoregressive models: A structured overview. Econometric Reviews, 41(2), 207–230.
dc.relation.referencesSchlemm, E., & Stelzer, R. (2012). Multivariate CARMA processes, continuous-time state space models and complete regularity of the innovations of the sampled processes.
dc.relation.referencesSundaresan, S. M. (2000). Continuous-time methods in finance: A review and an assess ment. The Journal of Finance, 55(4), 1569–1622.
dc.relation.referencesTao, Y., Phillips, P. C. B., & Yu, J. (2019). Random coefficient continuous systems: Testing for extreme sample path behavior. Journal of Econometrics, 209(2), 208–237.
dc.relation.referencesTsay, R. S. (2009). Continuous time models and their applications. World Scientific.
dc.relation.referencesWymer, C. R. (1993). Continuous-time models in macroeconomics: Specification and es timation. En G. Gandolfo (Ed.), Continuous-time econometrics: Theory and applications (pp. 35–79). Springer.
dc.relation.referencesYu, J. (2014). Econometric analysis of continuous time models: A survey of Peter Phillips’s work and some new results. Econometric Theory, 30(4), 737–774.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc330 - Economía
dc.subject.lembEconometríaspa
dc.subject.lembEconometricseng
dc.subject.lembProcesos estocásticosspa
dc.subject.lembStochastic processeseng
dc.subject.lembAnálisis de series de tiempospa
dc.subject.lembTime-series analysiseng
dc.subject.lembMétodo de Montecarlospa
dc.subject.lembMonte carlo methodeng
dc.subject.proposalCoeficientes aleatoriosspa
dc.subject.proposalModelo autorregresivospa
dc.subject.proposalRepresentación discretaspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalTiempo continuospa
dc.subject.proposalRandom coefficientseng
dc.subject.proposalAutoregressive modeleng
dc.subject.proposalDiscrete-time representationeng
dc.subject.proposalTime serieseng
dc.subject.proposalContinuous timeeng
dc.titleExtensión metodológica de un modelo econométrico de tipo AR en tiempo continuo con coeficientes aleatoriosspa
dc.title.translatedMethodological extension of a continuous-time autoregressive econometric model with random coefficientseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo_Final_de_Maestría.pdf
Tamaño:
872.28 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: