Existencia y unicidad de soluciones para un problema de difusión no local reescalado
dc.contributor.advisor | Gómez Sierra, César Augusto | spa |
dc.contributor.author | Caicedo Urrego, Jesús Adolfo | spa |
dc.date.accessioned | 2020-09-11T14:23:50Z | spa |
dc.date.available | 2020-09-11T14:23:50Z | spa |
dc.date.issued | 2020-06-02 | spa |
dc.description.abstract | We study a nonlocal difusion problem with the aim to decide on existence and uniqueness of solutions, and if that solutions satisfy some comparison principle. | spa |
dc.description.abstract | Estudiamos un problema de difusión no local reescalado con el fin de determinarla existencia y unicidad de las soluciones, y si estas satisfacen algún principio de comparación. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 36 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78448 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | P. Fife. Some nonclassical trends in parabolic and paraboli-like evolutions . Trends in nonlinear analysis, Springer, Berlin., pages 153 191, 2003. | spa |
dc.relation.references | D. Logan, Introduction to Nolinear Partial Di erential Equations. John Wiley and Sons, 2.008 | spa |
dc.relation.references | F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero. Nonlocal Di usion Problems. American Mathematical Society. Mathematical Surveys and Monographs 2010. Vol. 165. | spa |
dc.relation.references | F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo. The Neumann problem for nonlocal nonlinear di usion equations. J. Evol. Equ., 8(1), (2008), 189 215. | spa |
dc.relation.references | F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo. A nonlocal p�����Lapla-cian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. Vol. 90(2), 201 227, (2008). | spa |
dc.relation.references | F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo. A nonlocal p�����Lapla-cian evolution equation with non homogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. Vol. 40(5), 1815 1851, (2009). | spa |
dc.relation.references | F. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo. The limit as p ! 1 in a nonlocal p�����Laplacian evolution equation. A nonlocal approximation of a model for sandpiles. Calc. Var. Partial Di erential Equations. Vol. 35(3), 279 316, (2009). | spa |
dc.relation.references | P. Bates and G. Zhao. Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl., 332, (2007), 428 440. | spa |
dc.relation.references | M. Bogoya, R. Ferreira, and J.D. Rossi. Neumann boundary conditions for a nonlocal nonlinear di usion operator. continuous and discrete models. Proc. Amer. Math. Soc., 135:3837 3846, 2007. | spa |
dc.relation.references | E. Chasseigne. The Dirichlet problem for some nonlocal di usion equations. Di erential Integral Equations, 20, (2007), 1389 1404. | spa |
dc.relation.references | C. Cortázar, M. Elgueta, S. Martínez and J. D. Rossi. Random walks and the porous medium equation. Rev. Union Matemática Argentina, 50, (2009), 149 155. | spa |
dc.relation.references | C. Cortázar, M. Elgueta and J. D. Rossi. Nonlocal di usion problems that approximate the heat equation with Dirichlet boundary conditions. Israel J. Math., 170, (2009), 53 60. | spa |
dc.relation.references | C. Cortázar, M. Elgueta, J.D. Rossi, and N. Wolanski. How to aproximate the heat equation with neumann boundary conditions by nonlocal di usion problems. Arch. Rat. Mech. Anal. Vol. 187(1), 137 156, (2008). | spa |
dc.relation.references | C. Cortázar, M. Elgueta, J.D. Rossi, and N. Wolanski. Boundary uxes for nonlocal di usion. J. Di erential Equations., 234:360 390, 2007. | spa |
dc.relation.references | J. Coville. Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Di erential Equations, 2007 (68), (2007), 1 23. | spa |
dc.relation.references | J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J. Math. Anal., 39, (2008),1693 1709. | spa |
dc.relation.references | J. García Melián and J. D. Rossi. On the principal eigenvalue of some nonlocal di usion problems. J. of Di erential Equations. Vol. 246(1), 21 38, (2009). | spa |
dc.relation.references | L. I. Ignat and J. D. Rossi. A nonlocal convection-di usion equation. J. Funct. Anal., 251(2), (2007), 399 437. | spa |
dc.relation.references | M. Perez and J.D. Rossi. Blow-up for a non-local di usion problem with neumann boundary conditions and a reaction term. Analysis TM&A. Vol. 70(4), 1629 1640, (2009). | spa |
dc.relation.references | P. Bates. On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, 13 52, Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006. | spa |
dc.relation.references | C. Carrillo and P. Fife. Spatial e ects in discrete generation population models. J. Math. Biol., 50(2), (2005), 161 188. | spa |
dc.relation.references | J. Coville and L. Dupaigne. On a nonlocal equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A, 137, (2007), 1 29. | spa |
dc.relation.references | N. Fournier and P. Laurencot. Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels. J. Funct. Anal., 233, (2006), 351 379. | spa |
dc.relation.references | C. Gómez y M. Bogoya L. On a nonlocal di usion model with Neumann boundary conditions,Nonlinear Analysis, 32, (2020), 17-20. | spa |
dc.relation.references | C. Gómez y J. Rossi. A nonlocal di usion problem that aproximates the heat equation with Neumann boundary conditions,Journal of King Saud University, 75, (2012), 3198- 3209. | spa |
dc.relation.references | S Kesavan. Functional Analysis,Hindustan Book Agency,2009. | spa |
dc.relation.references | Robert Bartle. The Elements of Integration and Lebesgue Measure,Wiley Classic,1995. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas | spa |
dc.subject.proposal | Nonlocal problem | eng |
dc.subject.proposal | Problema no local | spa |
dc.subject.proposal | Rescaled problem | eng |
dc.subject.proposal | Problema de difusión | spa |
dc.subject.proposal | Ddiffusion problem | eng |
dc.subject.proposal | Problema reescalado | spa |
dc.subject.proposal | Núcleo | spa |
dc.subject.proposal | Kernel | eng |
dc.subject.proposal | Ecuación del calor | spa |
dc.subject.proposal | Heat equation | eng |
dc.subject.proposal | Laplaciano | spa |
dc.subject.proposal | Laplacian | eng |
dc.title | Existencia y unicidad de soluciones para un problema de difusión no local reescalado | spa |
dc.title.alternative | Existence and uniqueness of solutions for a rescaled nonlocal difusion problem | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TRABAJO FINAL DE MAESTRÍA EXISTENCIA Y UNICIDAD DE SOLUCIONES PARA UN PROBLEMA DE DIFUSIÓN NO LOCAL REESCALADO JESUS ADOLFO CAICEDO URREGO.pdf
- Tamaño:
- 547.02 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: