Existencia y unicidad de soluciones para un problema de difusión no local reescalado

dc.contributor.advisorGómez Sierra, César Augustospa
dc.contributor.authorCaicedo Urrego, Jesús Adolfospa
dc.date.accessioned2020-09-11T14:23:50Zspa
dc.date.available2020-09-11T14:23:50Zspa
dc.date.issued2020-06-02spa
dc.description.abstractWe study a nonlocal difusion problem with the aim to decide on existence and uniqueness of solutions, and if that solutions satisfy some comparison principle.spa
dc.description.abstractEstudiamos un problema de difusión no local reescalado con el fin de determinarla existencia y unicidad de las soluciones, y si estas satisfacen algún principio de comparación.spa
dc.description.degreelevelMaestríaspa
dc.format.extent36spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78448
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesP. Fife. Some nonclassical trends in parabolic and paraboli-like evolutions . Trends in nonlinear analysis, Springer, Berlin., pages 153 191, 2003.spa
dc.relation.referencesD. Logan, Introduction to Nolinear Partial Di erential Equations. John Wiley and Sons, 2.008spa
dc.relation.referencesF. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero. Nonlocal Di usion Problems. American Mathematical Society. Mathematical Surveys and Monographs 2010. Vol. 165.spa
dc.relation.referencesF. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo. The Neumann problem for nonlocal nonlinear di usion equations. J. Evol. Equ., 8(1), (2008), 189 215.spa
dc.relation.referencesF. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo. A nonlocal p�����Lapla-cian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. Vol. 90(2), 201 227, (2008).spa
dc.relation.referencesF. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo. A nonlocal p�����Lapla-cian evolution equation with non homogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. Vol. 40(5), 1815 1851, (2009).spa
dc.relation.referencesF. Andreu, J. M. Mazon, J. D. Rossi and J. Toledo. The limit as p ! 1 in a nonlocal p�����Laplacian evolution equation. A nonlocal approximation of a model for sandpiles. Calc. Var. Partial Di erential Equations. Vol. 35(3), 279 316, (2009).spa
dc.relation.referencesP. Bates and G. Zhao. Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl., 332, (2007), 428 440.spa
dc.relation.referencesM. Bogoya, R. Ferreira, and J.D. Rossi. Neumann boundary conditions for a nonlocal nonlinear di usion operator. continuous and discrete models. Proc. Amer. Math. Soc., 135:3837 3846, 2007.spa
dc.relation.referencesE. Chasseigne. The Dirichlet problem for some nonlocal di usion equations. Di erential Integral Equations, 20, (2007), 1389 1404.spa
dc.relation.referencesC. Cortázar, M. Elgueta, S. Martínez and J. D. Rossi. Random walks and the porous medium equation. Rev. Union Matemática Argentina, 50, (2009), 149 155.spa
dc.relation.referencesC. Cortázar, M. Elgueta and J. D. Rossi. Nonlocal di usion problems that approximate the heat equation with Dirichlet boundary conditions. Israel J. Math., 170, (2009), 53 60.spa
dc.relation.referencesC. Cortázar, M. Elgueta, J.D. Rossi, and N. Wolanski. How to aproximate the heat equation with neumann boundary conditions by nonlocal di usion problems. Arch. Rat. Mech. Anal. Vol. 187(1), 137 156, (2008).spa
dc.relation.referencesC. Cortázar, M. Elgueta, J.D. Rossi, and N. Wolanski. Boundary uxes for nonlocal di usion. J. Di erential Equations., 234:360 390, 2007.spa
dc.relation.referencesJ. Coville. Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Di erential Equations, 2007 (68), (2007), 1 23.spa
dc.relation.referencesJ. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J. Math. Anal., 39, (2008),1693 1709.spa
dc.relation.referencesJ. García Melián and J. D. Rossi. On the principal eigenvalue of some nonlocal di usion problems. J. of Di erential Equations. Vol. 246(1), 21 38, (2009).spa
dc.relation.referencesL. I. Ignat and J. D. Rossi. A nonlocal convection-di usion equation. J. Funct. Anal., 251(2), (2007), 399 437.spa
dc.relation.referencesM. Perez and J.D. Rossi. Blow-up for a non-local di usion problem with neumann boundary conditions and a reaction term. Analysis TM&A. Vol. 70(4), 1629 1640, (2009).spa
dc.relation.referencesP. Bates. On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, 13 52, Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006.spa
dc.relation.referencesC. Carrillo and P. Fife. Spatial e ects in discrete generation population models. J. Math. Biol., 50(2), (2005), 161 188.spa
dc.relation.referencesJ. Coville and L. Dupaigne. On a nonlocal equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A, 137, (2007), 1 29.spa
dc.relation.referencesN. Fournier and P. Laurencot. Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels. J. Funct. Anal., 233, (2006), 351 379.spa
dc.relation.referencesC. Gómez y M. Bogoya L. On a nonlocal di usion model with Neumann boundary conditions,Nonlinear Analysis, 32, (2020), 17-20.spa
dc.relation.referencesC. Gómez y J. Rossi. A nonlocal di usion problem that aproximates the heat equation with Neumann boundary conditions,Journal of King Saud University, 75, (2012), 3198- 3209.spa
dc.relation.referencesS Kesavan. Functional Analysis,Hindustan Book Agency,2009.spa
dc.relation.referencesRobert Bartle. The Elements of Integration and Lebesgue Measure,Wiley Classic,1995.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalNonlocal problemeng
dc.subject.proposalProblema no localspa
dc.subject.proposalRescaled problemeng
dc.subject.proposalProblema de difusiónspa
dc.subject.proposalDdiffusion problemeng
dc.subject.proposalProblema reescaladospa
dc.subject.proposalNúcleospa
dc.subject.proposalKerneleng
dc.subject.proposalEcuación del calorspa
dc.subject.proposalHeat equationeng
dc.subject.proposalLaplacianospa
dc.subject.proposalLaplacianeng
dc.titleExistencia y unicidad de soluciones para un problema de difusión no local reescaladospa
dc.title.alternativeExistence and uniqueness of solutions for a rescaled nonlocal difusion problemspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TRABAJO FINAL DE MAESTRÍA EXISTENCIA Y UNICIDAD DE SOLUCIONES PARA UN PROBLEMA DE DIFUSIÓN NO LOCAL REESCALADO JESUS ADOLFO CAICEDO URREGO.pdf
Tamaño:
547.02 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: