Identificación de la asociación entre variables con base en redes direccionadas: estudio de las variables obtenidas durante el brote de Zika en Colombia

dc.contributor.advisorLópez Kleine, Lilianaspa
dc.contributor.authorPalomino Ramírez, Francisco Javierspa
dc.contributor.researchgroupMETODOS EN BIOESTADISTICAspa
dc.date.accessioned2020-11-19T15:30:10Zspa
dc.date.available2020-11-19T15:30:10Zspa
dc.date.issued2020-06-02spa
dc.description.abstractLas redes se presentan como una alternativa metodológica que permite capturar la esencia de los elementos inmersos en sistemas complejos, resaltando las interacciones o conexiones entre ellos. Específicamente se dispone de las redes direccionadas, que tienen la propiedad de hacer énfasis sobre conexiones dirigidas entre los elementos, de forma que es posible identificar cuáles elementos son antecedentes y cuales son consecuentes en una interacción. Las redes direccionadas se han utilizado en diversos contextos y una de las aplicaciones más útiles para entender fenómenos complejos es establecer relaciones entre variables. Existen diversas formas de construcción de redes direccionadas, de las cuales se exploró la construcción por medio de medidas de similitud, aplicando al final un método bootstrap para evaluar la validez de los resultados. Como aplicación, se tomaron los datos de contagio por el virus del Zika en gestantes, evaluando las interacciones entre las variables dentro de las que se incluyeron las complicaciones cerebrales como microcefalia, en Colombia para los años 2015 y 2016.spa
dc.description.abstractNetworks are a methodological alternative that allows capturing the essence of the elements in complex systems, highlighting the interactions or connections among them. Specifically networks, have the property of emphasizing directed connections between the elements, so that it is possible to identify which elements are antecedents and which are consequent in an interaction. Networks have been used in various contexts and one of the the most useful application to understand complex phenomena is to establish relationships between variables. There are various ways of building directed networks. Here, networks are constructed by means of similarity measures and thresholding, applying at the end a bootstrap to assess the validity of the results. As an application, the Zika virus transmission data in pregnant women, evaluating the interactions between variables that included brain complications such as microcephaly, in Colombia for the years 2015 and 2016, is presented.spa
dc.description.additionalLínea de investigación: Bioestadísticaspa
dc.description.degreelevelMaestríaspa
dc.format.extent119spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78635
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAbdelrahman Abushouk, Ahmed Negida, and Hussien Ahmed, An updated review of zika virus, Journal of Clinical Virology 84 (2016), 53–58.spa
dc.relation.referencesAlan Agresti, Categorical data analysis, vol. 482, John Wiley & Sons, 2003.spa
dc.relation.referencesHaldun Akoglu, User’s guide to correlation coefficients, Turkish Journal of Emergency Medicine 18 (2018), 91–93.spa
dc.relation.referencesRéka Albert and Albert-László Barabási, Statistical mechanics of complex networks, Reviews of modern physics 74 (2002), no. 1, 47.spa
dc.relation.referencesSyed Ali and Samuel Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society: Series B (Methodological) 28 (1966), no. 1, 131–142.spa
dc.relation.referencesJørgen Bang-Jensen and Gregory Gutin, Digraphs: theory, algorithms and applications, Springer Science & Business Media, 2008.spa
dc.relation.referencesStefan Bornholdt and Heinz Schuster, Handbook of graphs and networks: from the genome to the internet, John Wiley & Sons, 2006.spa
dc.relation.referencesUlrik Brandes, A faster algorithm for betweenness centrality, Journal of mathematical sociology 25 (2001), no. 2, 163–177.spa
dc.relation.referencesRobert Brent, Environmental causes of human congenital malformations: the pediatrician’s role in dealing with these complex clinical problems caused by a multiplicity of environmental and genetic factors, Pediatrics 113 (2004), no. Supplement 3, 957–968.spa
dc.relation.referencesMichael Brinkmeier and Thomas Schank, Network statistics, Network analysis, Springer, 2005, pp. 293–317.spa
dc.relation.referencesWray Buntine, A guide to the literature on learning probabilistic networks from data, IEEE Transactions on knowledge and data engineering 8 (1996), no. 2, 195–210.spa
dc.relation.referencesCarter Butts, network: Classes for relational data, The Statnet Project (http://statnet.org), 2015, R package version 1.13.0.1.spa
dc.relation.referencesCarter Butts, sna: Tools for social network analysis, 2016, R package version 2.4.spa
dc.relation.referencesPeter Carrington, John Scott, and Stanley Wasserman, Models and methods in social network analysis, vol. 28, Cambridge university press, 2005.spa
dc.relation.referencesMyriam Cifuentes, Clara Suarez, Ricardo Cifuentes, Nathan Doogan, Noel Malod-Dognin, Sam Windels, Jose Valderrama, Darryl Hood, and Natasa Przulj, (unpublished manuscript) network analysis of brazil’s 2016 zika-related incidence of microcephaly reveals misestimation of the outbreak and multiple contributing factors, None (2017), 1–5.spa
dc.relation.referencesGabor Csardi and Tamas Nepusz, The igraph software package for complex network research, InterJournal Complex Systems (2006), 1695.spa
dc.relation.referencesLeon Danon, Ashley Ford, Thomas House, Chris Jewell, Matt Keeling, Gareth Roberts, Joshua Ross, and Matthew Vernon, Networks and the epidemiology of infectious disease, Interdisciplinary perspectives on infectious diseases 2011 (2011).spa
dc.relation.referencesJhonny Demey, Laura Pla, José Vicente-Villardón, Julio Di Rienzo, and Fernando Casanoves, Medidas de distancia y de similitud, Validaci´on y An´alisis de la Diversidad Funcional y su Relación con los Servicios Ecosistémicos. CATIE, Costa Rica (2011), 47–59.spa
dc.relation.referencesMaria D’Esposito, Domenico De Stefano, and Giancarlo Ragozini, On the use of multiple correspondence analysis to visually explore affiliation networks, Social Networks 38 (2014), 28–40.spa
dc.relation.referencesDavid Edwards, Introduction to graphical modelling, Springer Science & Business Media, 2012.spa
dc.relation.referencesLinton Freeman, Centrality in social networks conceptual clarification, Social networks 1 (1978), no. 3, 215–239.spa
dc.relation.referencesNir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er, Using bayesian networks to analyze expression data, Journal of computational biology 7 (2000), no. 3-4, 601–620.spa
dc.relation.referencesCristian Gonzalez, Construcción de redes de regulación génica usando datos de secuenciación de arn, Msc thesis, Univ. Nacional de Colombia, 2018.spa
dc.relation.referencesLouis Gray and Sherwood Williams, Goodman and kruskal’s tau b: m ultiple and partial analogs, Sociological Methods & Research 10 (1981), no. 1, 50–62.spa
dc.relation.referencesPeter Grindrod and Milla Kibble, Review of uses of network and graph theory concepts within proteomics, Expert review of proteomics 1 (2004), no. 2, 229–238.spa
dc.relation.referencesDavid K Hammond, Yaniv Gur, and Chris Johnson, Graph diffusion distance: A difference measure for weighted graphs based on the graph laplacian exponential kernel, 2013 IEEE Global Conference on Signal and Information Processing, IEEE, 2013, pp. 419–422.spa
dc.relation.referencesJean Hausser and Korbinian Strimmer, entropy: Estimation of entropy, mutual information and related quantities, 2014, R package version 1.2.1.spa
dc.relation.referencesDavid Heymann, Abraham Hodgson, David Freedman, Jennifer Staples, Fernando Althabe, Kalpana Baruah, Ghazala Mahmud, Nyoman Kandun, Pedro Vasconcelos, Silvia Bino, et al., Zika virus and microcephaly: why is this situation a pheic?, The Lancet 387 (2016), no. 10020, 719–721.spa
dc.relation.referencesDavid Hinkley, Bootstrap methods, Journal of the Royal Statistical Society: Series B (Methodological) 50 (1988), no. 3, 321–337.spa
dc.relation.referencesSophie Ioos, Henri Mallet, Isabelle Goffart, Violaine Gauthier, Thierry Cardoso, and Magid Herida, Current zika virus epidemiology and recent epidemics, Medecine et maladies infectieuses 44 (2014), no. 7, 302–307.spa
dc.relation.referencesRonald Jansen and Mark Gerstein, Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction, Current opinion in microbiology 7 (2004), no. 5, 535–545.spa
dc.relation.referencesAlboukadel Kassambara and Fabian Mundt, factoextra: Extract and visualize the results of multivariate data analyses, 2017, R package version 1.0.5.spa
dc.relation.referencesEric Kolaczyk and Gábor Csárdi, Statistical analysis of network data with r, vol. 65, Springer, 2014.spa
dc.relation.referencesSolomon Kullback and Richard Leibler, On information and sufficiency, The annals of mathematical statistics 22 (1951), no. 1, 79–86.spa
dc.relation.referencesNicolas Langer, Andreas Pedroni, and Lutz Jäncke, The problem of thresholding in small-world network analysis, PLoS ONE 8 (2013), no. 1, e53199.spa
dc.relation.referencesSébastien Lê, Julie Josse, and François Husson, FactoMineR: A package for multivariate analysis, Journal of Statistical Software 25 (2008), no. 1, 1–18spa
dc.relation.referencesLuis Leal, Desarrollo de una metodología estadística aplicada a la construcción y comparación de redes de coexpresión génica, Msc thesis, Univ. Nacional de Colombia, 2013.spa
dc.relation.referencesLudovic Lebart, Alain Morineau, and Marie Piron, Statistique exploratoire multidimensionnelle, vol. 3, Dunod Paris, 1995.spa
dc.relation.referencesFN Macnamara, Zika virus: a report on three cases of human infection during an epidemic of jaundice in nigeria, Transactions of the Royal Society of Tropical Medicine and Hygiene 48 (1954), no. 2, 139–145.spa
dc.relation.referencesDavid Meyer, Achim Zeileis, and Kurt Hornik, vcd: Visualizing categorical data, 2017, R package version 1.4-4.spa
dc.relation.referencesJernej Mlakar, Misa Korva, Nataša Tul, Mara Popović, Mateja Poljšak-Prijatelj, Jerica Mraz, Marko Kolenc, Katarina Resman, Tina Vesnaver, Vesna Fabjan, et al., Zika virus associated with microcephaly, New England Journal of Medicine 374 (2016), no. 10, 951–958.spa
dc.relation.referencesWilliam Navidi, Estadística para ingenieros y científicos, vol. 1, McGraw Hill, 2006.spa
dc.relation.referencesMark Newman, Scientific collaboration networks. i. network construction and fundamental results, Physical review E 64 (2001), no. 1, 016131.spa
dc.relation.referencesTore Opsahl, Filip Agneessens, and John Skvoretz, Node centrality in weighted networks: Generalizing degree and shortest paths, Social networks 32 (2010), no. 3, 245–251.spa
dc.relation.referencesRon Pearson, Goodmankruskal: Association analysis for categorical variables, 2016, R package version 0.0.2.spa
dc.relation.referencesLyle Petersen, Denise Jamieson, Ann Powers, and Margaret Honein, Zika virus, New England Journal of Medicine 374 (2016), no. 16, 1552–1563.spa
dc.relation.referencesAnna Plourde and Evan Bloch, A literature review of zika virus, Emerging infectious diseases 22 (2016), no. 7, 1185.spa
dc.relation.referencesR Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.spa
dc.relation.referencesSonja Rasmussen, Denise Jamieson, Margaret Honein, and Lyle Petersen, Zika virus and birth defects reviewing the evidence for causality, New England Journal of Medicine 374 (2016), no. 20, 1981–1987.spa
dc.relation.referencesJana Ritter, Roosecelis Martines, and Sherif Zaki, Zika virus: pathology from the pandemic, Archives of pathology & laboratory medicine 141 (2016), no. 1, 49–59.spa
dc.relation.referencesBarret Schloerke, Jason Crowley, Di Cook, Francois Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Joseph Larmarange, Ggally: Extension to ’ggplot2’, 2018, R package version 1.4.0.spa
dc.relation.referencesRobert Somers, A similarity between goodman and kruskal’s tau and kendall’s tau, with a partial interpretation of the latter, Journal of the American Statistical Association 57 (1962), no. 300, 804–812.spa
dc.relation.referencesRobert Stine, An introduction to bootstrap methods: Examples and ideas, Sociological Methods & Research 18 (1989), no. 2-3, 243–291.spa
dc.relation.referencesPang-Ning Tan, Vipin Kumar, and Jaideep Srivastava, Selecting the right objective measure for association analysis, Information Systems 29 (2004), no. 4, 293–313.spa
dc.relation.referencesJason Tetro, Zika and microcephaly: causation, correlation, or coincidence, Microbes Infect 18 (2016), no. 3, 167–8.spa
dc.relation.referencesMarco Tomassini, Introduction to graphs and networks, Information Systems Department, HEC, University of Lausanne, Switzerland (2010).spa
dc.relation.referencesWalter Wallis, A beginner’s guide to graph theory, Springer Science & Business Media, 2010.spa
dc.relation.referencesDouglas West et al., Introduction to graph theory, vol. 2, Prentice hall Upper Saddle River, 2001.spa
dc.relation.referencesHadley Wickham, ggplot2: Elegant graphics for data analysis, Springer-Verlag New York, 2016.spa
dc.relation.referencesRobin Wilson, Introduction to graph theory, vol. 107, Longman London, 1972.spa
dc.relation.referencesKisung You, Networkdistance: Distance measures for networks, 2019, R package version 0.3.2.spa
dc.relation.referencesQian Zhang, Kaiyuan Sun, Matteo Chinazzi, Ana Pastore Piontti, Natalie Dean, Diana Rojas, Stefano Merler, Dina Mistry, Piero Poletti, Luca Rossi, et al., Spread of zika virus in the americas, Proceedings of the National Academy of Sciences 114 (2017), no. 22, E4334–E4343.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalRedspa
dc.subject.proposalNetworkeng
dc.subject.proposalRed dirigidaspa
dc.subject.proposalDirected networkeng
dc.subject.proposalCategorical dataeng
dc.subject.proposalDatos categóricosspa
dc.subject.proposalVirus del Zikaspa
dc.subject.proposalZika viruseng
dc.titleIdentificación de la asociación entre variables con base en redes direccionadas: estudio de las variables obtenidas durante el brote de Zika en Colombiaspa
dc.title.alternativeIdentification of variable association based on directed networks: Study of variables related with Zika virus outbreak in Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TRABAJO FINAL DE MAESTRÍA FRANCISCO JAVIER PALOMINO.pdf
Tamaño:
5.35 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: