Respuesta fisiológica de parientes silvestres y domesticados de frijol tepari (Phaseolus acutifolius Asa Gray) ante variaciones del régimen hídrico en condiciones de alta temperatura
dc.contributor.advisor | Urban, Milan | |
dc.contributor.advisor | Mejía de Tafur, María Sara | |
dc.contributor.author | Gereda, Javier Mauricio | |
dc.contributor.orcid | 0000-0003-1173-8812 | spa |
dc.date.accessioned | 2025-05-20T14:53:06Z | |
dc.date.available | 2025-05-20T14:53:06Z | |
dc.date.issued | 2025-04-30 | |
dc.description | Ilustraciones, fotografías, gráficas, tablas | spa |
dc.description.abstract | El frijol (Phaseolus acutifolius) es una leguminosa resistente a condiciones extremas, crucial para la seguridad alimentaria en regiones áridas. Esta investigación se centró en el estudio de la tolerancia al déficit hídrico de dos genotipos de frijol tepari: uno domesticado (G40001) y otro silvestre (G40056), analizando mecanismos fisiológicos como el uso del agua, la fotosíntesis y la producción de grano bajo diferentes regímenes hídricos y altas temperaturas. La investigación se realizó en condiciones de invernadero en el campus de Bioversity International - CIAT, ubicado en el municipio de Palmira, Valle del Cauca, Colombia (03° 32' 22° N y 76°18'13' W) a una altitud promedio de 965 m sobre el nivel del mar, simulando las condiciones de lugar de origen del fríjol tepari. El genotipo silvestre G40056 mostró mayor resistencia al estrés hídrico severo, con estrategias de crecimiento conservadoras y mayor eficiencia en el uso del agua (EUA). La mayor EUA se registró bajo 50% de capacidad de campo (CC), con 9.9 g H2O L-1 de sustrato. El genotipo domesticado G40001 destacó en condiciones de humedad favorables, pero mostró menor resistencia a la sequía. Bajo estrés por sequía, G40056 mantuvo una transpiración foliar de 2.1 g pl-1 1 por día, su mayor valor se observó en 75% CC con una mediana de 3.75 g pl-1 por día, seguido por T2 y T3, con medianas de 1.29 g pl-1. y 1.53 g pl-1 por día, respectivamente. Estos valores sugieren que G40056 (G2) presenta una transpiración moderada, lo que podría reflejar una mayor eficiencia en el uso del agua. El genotipo G40056 silvestre mantuvo una actividad fotosintética foliar estable incluso bajo estrés hídrico (sequía, 25%CC), como se presenta en los valores más altos de SIF (149.22 µmol m-2 s-1). El análisis del diferencial de temperatura de la hoja (LTD) mostró diferencias significativas entre los genotipos y niveles de humedad evaluados, G40056 (G2) destacó por mostrar la mayor disipación de calor, con los valores más bajos en T1 (75% CC) y T2 (50% CC), con medianas de 0.18°C y 0.39°C, respectivamente. (Texto tomado de la fuente) | spa |
dc.description.abstract | The tepary bean (Phaseolus acutifolius) is a legume resistant to extreme conditions, crucial for food security in arid regions. This research focused on the study of water deficit tolerance of two tepary bean genotypes: one domesticated (G40001) and one wild (G40056), analysing physiological mechanisms such as water use, photosynthesis and grain production under different water regimes and high temperature. The research was conducted in regulated greenhouse at the Bioversity International - CIAT campus, located in the municipality of Palmira, Valle del Cauca, Colombia (03° 32‘22° N and 76°18'13’ W) at an average altitude of 965 m above sea level simulating the conditions of place of origin the tepary bean. The wild genotype G40056 showed higher resistance to severe water stress, with conservative growth strategies and higher water use efficiency (WUE). The highest WUE was recorded under 50% field capacity (FC), with 9.9 g H2O L -1 substrate. The domesticated genotype G40001 excelled under favourable moisture conditions but showed less resistance to drought. Under drought stress, G40056 maintained a leaf transpiration of 2.1 g pl-1 per day, its highest value was observed at 75% CC with a median of 3.75 g pl-1 per day, followed by T2 and T3, with medians of 1.29 g pl-1 and 1.53 g pl-1 per day, respectively. These values suggest that G40056 (G2) has moderate transpiration, which may reflect higher water use efficiency. The wild-type G40056 genotype maintained stable leaf photosynthetic activity even under water stress (drought, 25%CC), as shown by the highest SIF values (149.22 µmol m-2 s -1). Leaf temperature difference (LTD), analysis showed significant differences among genotypes and moisture levels evaluated, G40056 (G2) stood out for showing the highest heat dissipation, with the lowest values at T1 (75% CC) and T2 (50% CC), with medians of 0.18°C and 0.39°C, respectively. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agrarias | spa |
dc.description.methods | Esta investigación se centró en el estudio de la tolerancia al déficit hídrico de dos genotipos de frijol tepari: uno domesticado (G40001) y otro silvestre (G40056), analizando mecanismos fisiológicos como el uso del agua, la fotosíntesis y la producción de grano bajo diferentes regímenes hídricos y altas temperaturas. La investigación se realizó en condiciones de invernadero en el campus de Bioversity International - CIAT, ubicado en el municipio de Palmira, Valle del Cauca, Colombia (03° 32' 22° N y 76°18'13' W) a una altitud promedio de 965 m sobre el nivel del mar, simulando las condiciones de lugar de origen del fríjol tepari. | spa |
dc.description.researcharea | Fisiología de cultivos | spa |
dc.format.extent | xxv, 117 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88176 | |
dc.language.iso | spa | spa |
dc.publisher | UNAL | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias | spa |
dc.relation.references | Acosta, J., Kohashi, V. (1989) Effect of water stress on growth and yield of indeterminate dry bean (Phaesolus vulgaris) cultivars. Field Crops Research, 20, 81-90. http://dx.doi.org/10.1016/0378-4290(89)90054-3 | spa |
dc.relation.references | Agurla, S., Gahir, S., Munemasa, S., Murata, Y., & Raghavendra, A. (2018). Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Advances in Experimental Medicine and Biology, 1081, 215–232. https://doi.org/10.1007/978- 981-13-1244-1_12 | spa |
dc.relation.references | Akram, N.A., M. Ashraf y F. Al-Qurainy. (2012). Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 142, 143-148. Doi: 10.1016/j.scienta.2012.05.007 | spa |
dc.relation.references | Araus, J., Amaro, T., Voltas, J., Nakkoul, H. y Nachit, MM. (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Research 55, 209–223. https://doi.org/10.1016/S0378- 4290(97)00079-8 | spa |
dc.relation.references | Ashraf, M., Akram, N., Al-Qurainy, F., Foolad, M. (2011). Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy, vol 111, 111, 249-296. https://doi.org/10.1016/B978-0-12-387689-8.00002-3 https://www.sciencedirect.com/science/article/abs/pii/B9780123876898000023?via%3Dihub | spa |
dc.relation.references | Asif, A., Ali, M., Qadir, M., Karthikeyan, R., Singh, Z., Khangura, R., Di Gioia, F., & Ahmed, Z. (2023). Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. Frontiers in Plant Science, 14, 1276117. https://doi.org/10.3389/FPLS.2023.1276117/BIBTEX | spa |
dc.relation.references | Astudillo, C., Blair, M. (2008). Contenido de hierro y zinc en la semilla y su respuesta al nivel de fertilización con fósforo en 40 variedades de frijol colombianas. Agronomía Colombiana, 26(3), 471–476. | spa |
dc.relation.references | Augé, R., Stodola, A., Tims, J., J. E., & Saxton, A. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230(1), 87–97. https://doi.org/10.1023/A:1004891210871/METRICS | spa |
dc.relation.references | Azcón, J., & Talón, M. (2013). Fundamentos de fisiología vegetal (2nd ed.). | spa |
dc.relation.references | Barrera, J., Mier y Teran, B., Aparicio, J., Diaz, J., Leon, R., Beebe, S., Urrea, C. A., Gepts, P. (2024). Identification of drought and heat tolerant tepary beans in a multi‐environment trial study. Crop Science. https://doi.org/10.1002/csc2.21354 | spa |
dc.relation.references | Barro, A., Diallo, Y., Coulibaly, Z., Nanama, J., & Sawadogo, M. (2024). Phenotypic analysis of the diversity of nine (9) tepary bean (Phaseolus acutifolius) lines by agronomic performance evaluation in Burkina Faso. 23(2), 2345–2353. https://doi.org/10.30574/WJARR.2024.23.2.0788 | spa |
dc.relation.references | Barrs, H., Weatherley, P. (1962). A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Australian Journal of Biological Sciences, 15(3), 413. http://dx.doi.org/10.1071/BI9620413 | spa |
dc.relation.references | Beebe, S., Rao, I., Cajiao, C., Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48(2), 582-592. | spa |
dc.relation.references | Beebe, S., Rao, I., Blair., Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, Vol. 4. https://doi.org/10.3389/fphys.2013.00035 | spa |
dc.relation.references | Beebe, S. (2020). Biofortification of common bean for higher iron concentration. Frontiers in Sustainable Food Systems. 4. 573449. https://doi.org/10.3389/fsufs.2020.573449 | spa |
dc.relation.references | Bitocchi, E., Nanni, L., Bellucci, E., Rossi, M., Giardini, A., Zeuli, P. S., Logozzo, G., Stougaard, J., McClean, P., Attene, G., Papa, R. (2012). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E788–E796. | spa |
dc.relation.references | Bornowski, N., Hart, J., Palacios, A., Ogg, B., Brick, M., Hamilton, J., Beaver, J., Buell, C. R., Porch, T. (2023). Genetic variation in a tepary bean (Phaseolus acutifolius A. Gray) diversity panel reveals loci associated with biotic stress resistance. The Plant Genome, 16(3). https://doi.org/10.1002/TPG2.20363 | spa |
dc.relation.references | Botero, H., Barnes, A. (2022). The effect of ENSO on common bean production in Colombia: a time series approach. Food Security, 14(6), 1417–1430. https://doi.org/10.1007/s12571-022-01290-z | spa |
dc.relation.references | Burbano, E., León, R., Cordero, C., López, F., Cortés, A., Tofiño, A. (2021). Multi- environment yield components in advanced common bean (Phaseolus vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines for heat and drought tolerance. Agronomy, 11(10), 1978. | spa |
dc.relation.references | Blair, M., Pantoja, W., Muñoz, L. (2012). First use of microsatellite markers in a large collection of cultivated and wild accessions of tepary bean (Phaseolus acutifolius A. Gray). TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 125(6), 1137–1147. https://doi.org/10.1007/S00122- 012-1900-0 | spa |
dc.relation.references | Blair, M. W., Prieto, S., Díaz, L., Buendía, H. F., & Cardona, C. (2010). Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.). BMC Plant Biology, 10(1), 1–15. https://doi.org/10.1186/1471-2229-10-79/FIGURES/4 | spa |
dc.relation.references | Bradford, K., Hsiao, T. (1982). Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology, 70(5), 1508–1513. https://doi.org/10.1104/PP.70.5.1508 | spa |
dc.relation.references | Björkman, O., & Demmig, B. (1987). Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504 | spa |
dc.relation.references | Castonguay, Y., Markhart, A. (1992). Leaf gas exchange in water‐stressed common bean and tepary bean. Crop science, 32(4), 980-986. https://doi.org/10.2135/cropsci1992.0011183X003200040030x | spa |
dc.relation.references | Cattivelli, L., Rizza, F., Badeck, F., Mazzucotelli, E., Mastrangelo, E., Francia, E., Marè, C., Tondelli, A., Stanca, A. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105,1–14 conditions. Field Crops Research 55, 209–223. https://doi.org/10.1016/j.fcr.2007.07.004 | spa |
dc.relation.references | Cavalieri, A., Merchant, A., Van, E. (2011). Why not beans? In Functional Plant Biology (Vol. 38, Issue 12). https://doi.org/10.1071/FPv38n12_FO | spa |
dc.relation.references | Conejo, D., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better- performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13, 1008666. | spa |
dc.relation.references | Costa, J. M., Ortuño, M. F., Chaves, M. (2007). Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. Journal of Integrative Plant Biology, 49(10), 1421–1434. https://doi.org/10.1111/J.1672- 9072.2007.00556.X | spa |
dc.relation.references | Chacón, M., Martínez, J., Duitama, J., Debouck, D. (2021). Gene Flow in Phaseolus Beans and Its Role as a Plausible Driver of Ecological Fitness and Expansion of Cultigens. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.618709 | spa |
dc.relation.references | Cseresnyés, I., Szitár, K., Rajkai, K., Füzy, A., Mikó, P., Kovács, R., Takács, T. (2018). Application of electrical capacitance method for prediction of plant root mass and activity in field-grown crops. Frontiers in Plant Science, 9, 93. https://doi.org/10.3389/fpls.2018.00093 | spa |
dc.relation.references | Dalton, F. (1995). In-situ root extent measurements by electrical capacitance methods. Plant and Soil, 173(1), 157–165. https://doi.org/10.1007/BF00155527/METRICS | spa |
dc.relation.references | Debouck, D., Dohle, S., Marquez, D., Pratt, R., Santaella, M., Santos, L., Urban, M. (2023). Phaseolus germplasm exploration in New Mexico, USA. https://cgspace.cgiar.org/server/api/core/bitstreams/469ce23a-4549-4eaa-9967- 1163dce2caa8/content | spa |
dc.relation.references | Debouck, D. (1999). Diversity in Phaseolus species in relation to the common bean. 25–52. https://doi.org/10.1007/978-94-015-9211-6_2 | spa |
dc.relation.references | Debouck, D. (2009). El aporte de los recursos genéticos en el mejoramiento genético del frijol o poroto (phaseolus, leguminosae - phaseoleae) en Latinoamérica y el caribe. https://hdl.handle.net/10568/89577 | spa |
dc.relation.references | Deltoro, V., Calatayud, A., Gimeno, C., Abadía, A., Barreno, E. (1998). Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 207(2), 224–228. https://doi.org/10.1007/S004250050476/METRICS | spa |
dc.relation.references | Deva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitákova, L. (2020). Enhanced leaf cooling is a pathway to heat tolerance in common bean. Frontiers in plant science, 11, 19. | spa |
dc.relation.references | Dietrich, R., Bengough, A., Jones, H., White, P. (2012). A new physical interpretation of plant root capacitance. Journal of Experimental Botany, 63(17), 6149–6159. https://doi.org/10.1093/JXB/ERS264 | spa |
dc.relation.references | Duniway, M., Herrick, J., & Monger, H. (2007). The High Water-Holding Capacity of Petrocalcic Horizons. Soil Science Society of America Journal, 71(3), 812–819. https://doi.org/10.2136/SSSAJ2006.0267 | spa |
dc.relation.references | FAO. (2016). El trabajo de la FAO sobre el cambio climático. Conferencia de Las Naciones Unidas Sobre El Cambio Climático 2016. FAO. (2017). Seminario internacional sobre sequía y agricultura. Pronosticar, planificar, preparar: cómo evitar que la sequía se convierta en hambruna. Una celebración del día mundial para combatir la desertificación y la sequía. | spa |
dc.relation.references | FAO. (2017). Seminario internacional sobre sequía y agricultura. Pronosticar, planificar, preparar: cómo evitar que la sequía se convierta en hambruna. Una celebración del día mundial para combatir la desertificación y la sequía. | spa |
dc.relation.references | Farber, M., Attia, Z., & Weiss, D. (2016). Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany, 67(22), 6351–6362. https://doi.org/10.1093/JXB/ERW398 | spa |
dc.relation.references | Farquhar, G., Sharkey, T. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. http://dx.doi.org/10.1146/annurev.pp.33.060182.001533 | spa |
dc.relation.references | Federici, C. T., Ehdaie, B., Waines, J. (1990). Domesticated and wild Tepary bean: field performance with and without drought-stress. Agronomy Journal, 82(5), 896- 900. https://doi.org/10.2134/agronj1990.00021962008200050010x | spa |
dc.relation.references | Fernández, M., Monteagudo, A., Casas, A., Boutin, C., Pin, P., Morales, F., Igartua, E,. (2020). Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors. 20(5):1486. https://doi.org/10.3390/s20051486 | spa |
dc.relation.references | Freytag, G., Debouck, D. (2002). Taxonomy, distribution, and ecology of the genus phaseolus (Leguminosae-papilionoideae) in North America, Mexico and Central America. Botanical Research Institute of Texas (BRIT), Forth Worth, TX, USA. 298 p. (Sida, botanical miscellany no. 23). URI https://hdl.handle.net/10568/54291 doi: 10.3/JQUERY-UI.JS | spa |
dc.relation.references | Fischer, R., Rees, D., Sayre, K., Lu, Z., Condon, A. Saavedra, A, (1998) Wheat yield progress associated with higher stomatal conductance and photosynthe c rate, and cooler canopies. Crop Science 38, 1467–1475. https://doi.org/10.2135/cropsci1998.0011183X003800060011x | spa |
dc.relation.references | Figueroa, F., Jerez, C., Korbee, N. (2013). Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Latin American Journal of Aquatic Research, 41(5), 801– 819. https://doi.org/10.3856/VOL41-ISSUE5-FULLTEXT-1 | spa |
dc.relation.references | Fogaça, A., De Castro, A., Barbosa, E. (2023). Physiological and morphological responses of two beans common genotype to water stress at different phenological stages. Bioscience Journal, 39, e39053–e39053. https://doi.org/10.14393/BJ-V39N0A2023-59855 | spa |
dc.relation.references | Gepts, P., Debouck, D. (1991). Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven, A., Voysest, O. (eds.). Common beans: research for crop improvement. Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom. p. 7-53. https://hdl.handle.net/10568/88263 | spa |
dc.relation.references | Gepts, P., Aragão, F., Barros, E. de, Blair, M. W., Brondani, R., Broughton, W., Galasso, I., Hernández, G., Kami, J., Lariguet, P., McClean, P., Melotto, M., Miklas, P., Pauls, P., Pedrosa, A., Porch, T., Sánchez, F., Sparvoli, F., & Yu, K. (2008). Genomics of Phaseolus Beans, a Major Source of Dietary Protein and Micronutrients in the Tropics. Genomics of Tropical Crop Plants, 113–143. https://doi.org/10.1007/978-0-387-71219-2_5 | spa |
dc.relation.references | Gibson R., Raboy, V., King J. (2018). Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutrition Reviews. 76(11):793-804. https://doi.org/10.1093/nutrit/nuy028 | spa |
dc.relation.references | Gu, L., Han, J., Wood, J. D., Chang, C. Y. Y., & Sun, Y. (2019). Sun‐induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist, 223(3), 1179-1191. | spa |
dc.relation.references | Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J., Frankenberg, C., Huete, A., Zarco P., Lee, J., Moran, M., Ponce, G., Beer, C., Camps, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J., & Griffis, T. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14), E1327–E1333. https://doi.org/10.1073/pnas.1320008111 | spa |
dc.relation.references | Graham, P., Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Res. 53, 131–146. | spa |
dc.relation.references | Gross, Y., Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212. https://doi.org/10.1016/0378-4290(94)90112-0 | spa |
dc.relation.references | HarvestPlus. (2019). Recomendaciones para la producción de grano de Fríjol fortificado en Colombia. www.harvestplus.org | spa |
dc.relation.references | Hatfield, J. (2018). Combined impacts of carbon, temperature, and drought to sustain food production. Food Security and Climate Change, 95-117. | spa |
dc.relation.references | Herrera, M., Peña, C., Aguirre, J., Trejo, C., López, A. (2007). Estudio comparativo de intercambio gaseoso y parámetros fotosintéticos en dos tipos de hojas de frijol (Phaseolus vulgaris L.) silvestre y domesticado. Revista Científica UDO Agricola, 7(1), 49-57. https://dialnet.unirioja.es/servlet/articulo?codigo=2550651 | spa |
dc.relation.references | Jiménez, J., & Acosta, J. (2012). Caracterización de genotipos criollos de frijol Tepari (Phaseolus acutifolius A. Gray) y común (Phaseoulus vulgaris L.) bajo temporal. Revista Mexicana de Ciencias Agrícolas, 3 (8), 1565–1577. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 09342012000800007&lng=es&tlng=es. | spa |
dc.relation.references | Jiménez, S., Álvarado, O., & Balaguera, H. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149. https://doi.org/10.17584/rcch.2015v9i1.3753 | spa |
dc.relation.references | Jones, H. (1998). Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany, 49(90001), 387–398. https://doi.org/10.1093/JEXBOT/49.SUPPL_1.387 | spa |
dc.relation.references | Kazai, P., Noulas, C., Khah, E., Vlachostergios, D. (2019). Rendimiento y parámetros de calidad de las semillas de cultivares de frijol común cultivados en condiciones de campo con estrés hídrico y térmico [J]. AIMS Agriculture and Food, 4(2): 285-302. https://doi.org/10.3934/agrfood.2019.2.285 | spa |
dc.relation.references | Kramer, P., Boyer, J. (1995). Water relations of plants and soils. Academic press. | spa |
dc.relation.references | Kuhlgert, S., Austic, G., Zegarac, R., Osei, I., Hoh, D., Chilvers, M. I., Roth, M. G., Bi, K., TerAvest, D., Weebadde, P., & Kramer, D. (2016). MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society open science, 3(10), 160592. https://doi.org/10.1098/rsos.160592 | spa |
dc.relation.references | Lambers, H., Raven, J., Shaver, G., & Smith, S. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95–103. https://doi.org/10.1016/J.TREE.2007.10.008 | spa |
dc.relation.references | Larcher, W. (2003). Physiological Plant Ecology. Physiological Plant Ecology. https://doi.org/10.1007/978-3-662-05214-3 | spa |
dc.relation.references | Lawlor, D., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.X | spa |
dc.relation.references | Leal, R., Peña-, C. B., García, R., García, A., Martínez, E., Padilla, D. (2019). Phenotypical, physiological and biochemical traits of the vegetative growth of wild tepary bean (Phaseolus acutifolius) under restricted water conditions. South African Journal of Plant and Soil, 36(4), 261-270. | spa |
dc.relation.references | Lépiz, R., Chavarín, I., López, J., & Rodríguez, E. (2018). Acumulación de materia seca durante las etapas de desarrollo de variedades de frijol. Rev. Fitotec. Mex, 41(3) | spa |
dc.relation.references | Liu, T., Barbour, M. M., Yu, D., Rao, S., ZSong, X. (2022). Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. New Phytologist, 233(1), 360-372. | spa |
dc.relation.references | López, C. (2007). Eficiencia en el uso del agua, intercambio gaseoso entre transpiración y fotosíntesis. Conferencia: IV Encuentro participación de la mujer en la ciencia. En León, Guanajuato, México – Vol. 1. https://www.researchgate.net/publication/296707341_Eficiencia_en_el_uso_del_a gua_intercambio_gaseoso_entre_transpiracion_y_fotosintesis. | spa |
dc.relation.references | Luo, L., Xia, H., & Lu, B. R, (2019). Editorial: Crop Breeding for Drought Resistance. Front. Plant Sci. 10: 314. https://doi.org/10.3389/fpls.2019.00314 | spa |
dc.relation.references | Lynch, D. H., & Smith, D. L. (1993). Early seedling and seasonal N 2-fixing symbiotic activity of two soybean [Glycine max (L.) Merr.] cultivars inoculated with Bradyrhizobium strains of diverse origin. Plant and soil, 157, 289-303. | spa |
dc.relation.references | Markhart, A. (1985). Comparative water relations of Phaseolus vulgaris L. and Phaseolus acutifolius Gray, Plant Physiology , Volume 77, Number 1, , pages 113-117, https://doi.org/10.1104/pp.77.1.113 | spa |
dc.relation.references | Martínez, A., Hernández, J., Salazar, E. (2023). Innovative research strategies for enhancing the resilience of tepari bean (Phaseolus acutifolius) under climate change scenarios. Agricultural Systems, 207, Article 102906. https://doi.org/10.1016/j.agsy.2022.102906 | spa |
dc.relation.references | Maureira, I., Parra, L., Udall, J. (2018). Evaluación de la variabilidad del ácido fítico, utilizando metodologías de cromatografía, en una muestra diversa de Lupinus luteus L.(Fabaceae). Agro Sur, 46(3), 9-16. | spa |
dc.relation.references | Mejía de Tafur, M., Burbado, R., García, M., & Baena, D. (2014). Respuesta fotosintetica de Eucalyptus grandis W. Hill a la disponibilidad de agua en el suelo y a la intensidad de luz. Acta Agronómica, 311–317. | spa |
dc.relation.references | Milchunas, D. (2012). Medición de raíces: un enfoque actualizado. | spa |
dc.relation.references | Minagricultura. (2020). Cadena del Fríjol. Dirección de Cadenas Agrícolas y Forestales. | spa |
dc.relation.references | Mita, N. (2012). Estudio Morfofisiológico y Bioquímico de cinco variedades cubanas de Phaseolus vulgaris, L., bajo condiciones de estrés hídrico (Doctoral dissertation, Universidad de Matanzas. Facultad de Ciencias Agropecuarias). https://rein.umcc.cu/handle/123456789/640 | spa |
dc.relation.references | Miklas P., Rosas J., Beaver J., Telek, L., Freytag G. (1994). Field performance of select tepary bean germplasm in the tropics. Crop Sci. 34: 1639–1644. | spa |
dc.relation.references | Miklas, P., Grafton, K., Kelly., Schwartz, H., Steadman, J. (1998) Registration of Four White Mold Resistant Dry Bean Germplasm Lines: 19365-3,19365-5,19365-31, and 92BG-7. Crop Science, Vol. 38. https://doi.org/10.1046/j.1365-3040.2001.00716.x | spa |
dc.relation.references | Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9 | spa |
dc.relation.references | Muñoz, L., Duque, M., Debouck, D., & Blair, M. W. (2006). Taxonomy of Tepary Bean and Wild Relatives as Determined by Amplified Fragment Length Polymorphism (AFLP) Markers. Crop Science, 46(4), 1744–1754. https://doi.org/10.2135/CROPSCI2005-12-0475 | spa |
dc.relation.references | Mhlaba, Z. B., Mashilo, J., Shimelis, H., Assefa, A. B., & Modi, A. T. (2018). Progress in genetic analysis and breeding of tepary bean (Phaseolus acutifolius A. Gray): A review. Scientia Horticulturae, 237, 112–119. https://doi.org/10.1016/J.SCIENTA.2018.04.012 | spa |
dc.relation.references | Mwale, S., Shimelis, H., Nkhata, W., Sefasi, A., Fandika, I., Mashilo, J. (2022). Genotype-by-Environment interaction in tepary bean (Phaseolus acutifolius A. Gray) for seed yield. Agronomy, 13(1), 12. | spa |
dc.relation.references | Nabhan, G. P. & Felger, R. S. (1978). Teparies in Southwestern North America. A biogeographical and ethnohistorical study of Phaseolus acutifolius. Econ. Bot. 32(1):22-19 https://doi.org/10.1007/BF02906725 | spa |
dc.relation.references | Neto, A., P., Amorim, D. Pereira y A. Conceição. (2011). Fluorescência da clorofila como uma ferramenta possível para seleção de tolerânciaà salinidade em girasol. Rev. Cienc. Agron. 42(4), 893-897. | spa |
dc.relation.references | Nir, I., Moshelion, M., & Weiss, D. (2014). The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell & Environment, 37(1), 113– 123. https://doi.org/10.1111/PCE.12135 | spa |
dc.relation.references | Nobel, P. (2009). Physicochemical and Environmental Plant Physiology, Fourth Edition. Physicochemical and Environmental Plant Physiology, Fourth Edition, 1 – 582. https://doi.org/10.1016/B978-0-12-374143-1.X0001-4 | spa |
dc.relation.references | Nong, R. A., Gerrano, A. S., Gwata, E. T., & Gerrano, A. (2023). A preliminary evaluation of phenotypic traits of tepary bean (Phaseolus acutifolius A. Gray). Journal of Underutilised Crops Research, 2(1), 6. https://doi.org/10.4102/JUCR.V2I1.5 | spa |
dc.relation.references | Nkomo, G., Sedibe, M., Mofokeng, M. (2021). Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. International Journal of Agronomy, 2021(1), 5536417. | spa |
dc.relation.references | Padilla, D., Campos, L., Peña, C. B., García, A., Jiménez, J. C., & Pizeno, J. L. (2024). Proteomic profile of tepary bean seed storage proteins in germination with low water potential. Proteome Science, 22(1), 1–12. https://doi.org/10.1186/S12953- 023-00225-6/FIGURES/6 | spa |
dc.relation.references | Parsons, L., & Howe, T. (1984). Effects of water stress on the water relations of Phaseolus vulgaris and the drought resistant Phaseolus acutifolius. Physiologia Plantarum, 60(2), 197–202. https://doi.org/10.1111/J.1399-3054.1984.TB04564.X | spa |
dc.relation.references | Pignata, G., Casale, M., & Nicola, S. (2017). Water and Nutrient Supply in Horticultural Crops Grown in Soilless Culture: Resource Efficiency in Dynamic and Intensive Systems. 183–219. https://doi.org/10.1007/978-3-319-53626-2_7 | spa |
dc.relation.references | Polania, J. A., Poschenrieder, C., Beebe, S., | spa |
dc.relation.references | Polania, J. A., Poschenrieder, C., Beebe, S., Porch, T., Jahn, M. (2001). Effects of high temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24, 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x | spa |
dc.relation.references | Polania, J. A., Poschenrieder, C., Beebe, S., Porch, T., Jahn, M. (2001). Effects of high temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24, 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x | spa |
dc.relation.references | Porch, T., Beaver, J., Debouck, D., Jackson, S., Kelly, J., & Dempewolf, H. (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy, 3(2), 433-461. https://doi.org/10.3390/agronomy3020433 | spa |
dc.relation.references | Porch, T. G., Rosas, J. C., Cichy, K., Lutz, G. G., Rodriguez, I., Colbert, R. W., Demosthene, G., Hernández, J. C., Winham, D. M., & Beaver, J. S. (2024). Release of tepary bean cultivar ‘USDA Fortuna’ with improved disease and insect resistance, seed size, and culinary quality. Journal of Plant Registrations, 18(1), 42–51. https://doi.org/10.1002/PLR2.20322 | spa |
dc.relation.references | Poormohammad Kiani, S., P. Maury, A. Sarrafi y P. Grieu. (2008). QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 175, 565-573. Doi: 10.1016/j.plantsci.2008.06.002 | spa |
dc.relation.references | Pujol A., Sanchis, P., Grases, F., Masmiquel, L. (2023). Phytate Intake, Health and Disease: “Let Thy Food Be Thy Medicine and Medicine Be Thy Food”. Antioxidants. 12(1):146.https://doi.org/10.3390/antiox12010146 | spa |
dc.relation.references | Pfündel, E. (1998). Estimating the contribution of photosystem, I to total leaf chlorophyll fluorescence. Photosynthesis research, 56, 185-195. | spa |
dc.relation.references | Pratt, R. B., & Jacobsen, A. L. (2017). Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40(6), 897–913. https://doi.org/10.1111/PCE.12862 | spa |
dc.relation.references | Preece, C., Livarda, A., Christin, P. A., Wallace, M., Martin, G., Charles, M., Osborne, C. (2017). How did the domestication of Fertile Crescent grain crops increase their yields?. Functional ecology, 31(2), 387-397. | spa |
dc.relation.references | Querejeta, J. I., Ren, W., & Prieto, I. (2021). Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytologist, 230(4), 1378–1393. https://doi.org/10.1111/NPH.17258 | spa |
dc.relation.references | Rainey, K., & Griffiths, P. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130,18–23. https://doi.org/10.21273/JASHS.130.1.18 | spa |
dc.relation.references | Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., García, R., & Rivera, M. (2013). Can tepary bean be a model for improvement of drought resistance in common bean? African Crop Science Journal, Vol. 21, No. 4, pp. 265 – 281 | spa |
dc.relation.references | Rao, S., Wu, Y. (2017). Root-derived bicarbonate assimilation in response to variable water deficit in Camptotheca acuminate seedlings. Photosynthesis Research, 134(1), 59-70. | spa |
dc.relation.references | Reynolds, M., Delgado, M., Gutierrez, M. A Larqué, A. (2000) Photosynthesis of wheat in a warm, irrigated environment: I: Genetic diversity and crop productivity. Fields Crop Research 66, 37–50. https://doi.org/10.1016/S0378-4290(99)00077-5 | spa |
dc.relation.references | Richards, R. (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51, 447-458 https://doi.org/10.1093/jexbot/51.suppl_1.447 | spa |
dc.relation.references | Rodriguez, P., Sanchez, C. (2021). Producción ecológica de frijol (Phaseolus vulgaris L.) en las condiciones edafoclimáticas del III Frente. Ciencia En Su PC, 1, 60–70. https://www.redalyc.org/articulo.oa?id=181369731005 | spa |
dc.relation.references | Salazar, C., Pino, M. T., & Villagra, P. (2016). La emision de fluorescencia de la clorofila a: una herramienta para la deteccion del efecto del estres hidrícoen el aparato fotosintetico de la papa [en línea]. Santiago: Boletin INIA - Instituto de Investigaciones Agropecuarias. | spa |
dc.relation.references | Sanders, P. L., & Markhart, A. H. (1992). Interspecific Grafts Demonstrate Root System Control of Leaf Water Status in Water-Stressed Phaseolus. Journal of Experimental Botany, 43(257), 1563–1567. http://www.jstor.org/stable/23694311 | spa |
dc.relation.references | Scotter, D., Clothier, B., & Corker, R. (1979). Soil water in a fragiaqualf. Soil Research, 17(3), 443–453. https://doi.org/10.1071/SR9790443 | spa |
dc.relation.references | Singh, S. P. (2001). Broadening the Genetic Base of Common Bean Cultivars. Crop Science, 41(6), 1659–1675. https://doi.org/10.2135/CROPSCI2001.1659 | spa |
dc.relation.references | Singh, B., Singh, J., Kaur, A., Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International. 101:1-16. https://doi.org/10.1016/j.foodres.2017.09.026 | spa |
dc.relation.references | Siddique, M., Hamid, A., & Islam, M. (2000). Drought Stress Effects on Water Relations of Wheat. Botanical Bulletin of Academia Sinica, Vol. 41(1), 35-39. https://www.scirp.org/reference/referencespapers?referenceid=1047330 | spa |
dc.relation.references | Su, Q., Rohila, J. S., Ranganathan, S., Karthikeyan, R. (2023). Rice yield and quality in response to daytime and nighttime temperature increase–a meta-analysis perspective. Science of The Total Environment, 898, 165256 | spa |
dc.relation.references | Suárez, J. C., Contreras, A. T., Anzola, J. A., Vanegas, J. I., & Rao, I. M. (2021). Physiological Characteristics of Cultivated Tepary Bean (Phaseolus acutifolius A. Gray) and Its Wild Relatives Grown at High Temperature and Acid Soil Stress Conditions in the Amazon Region of Colombia. Plants (Basel, Switzerland), 11(1), 116. https://doi.org/10.3390/plants11010116 | spa |
dc.relation.references | Suárez, J., Casanoves, F., Di Rienzo, J. (2022). Estimación no destructiva del peso foliar y el área foliar en frijol común. Agronomía, 12, 711. https:// doi.org/10.3390/agronomy12030711 | spa |
dc.relation.references | Sun, Y., Frankenberg, C., Wood, J., Schimel, D., Jung, M., Guanter, L., Drewry, D., Verma, M., Porcar, A., Griffis, T., Gu, L., Magney, T., Köhler, P., Evans, B., & Yuen, K. (2017). OCO-2 advances photosynthesis observation from space via solar- induced chlorophyll fluorescence. Science, 358(6360). DOI:10.1126/science.aam5747 | spa |
dc.relation.references | Small, E. (2014). 45. Tepary Bean - an ideal arid zone crop. Biodiversity, 15(2–3), 220– 228. https://doi.org/10.1080/14888386.2014.903203 | spa |
dc.relation.references | Smart, R., & Bingham, G. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/PP.53.2.258 | spa |
dc.relation.references | Schinkel, C., & Gepts, P. (1988). Phaseolin Diversity in the Tepary Bean, Phaseolus acutifolius A. Gray. Plant Breeding, 101(4), 292–301. https://doi.org/10.1111/J.1439-0523.1988.TB00301.X | spa |
dc.relation.references | Schreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence: a signature of photosynthesis, 279-319. | spa |
dc.relation.references | Scully B. Waines J. 1988. Ontogeny and yield response of common and tepary beans to temperature. Agron. J. 80: 921–925. | spa |
dc.relation.references | Strock, C., Burridge, J., Niemiec, M., Brown, K., Lynch, J. (2020). Los fenotipos de metaxilema y arquitectura de la raíz se integran para regular el uso del agua bajo estrés por sequía. Plant, Cell & Environment, 44(1), 49–67. Portico. https://doi.org/10.1111/pce.13875 | spa |
dc.relation.references | Taiz, L., & Zeiger, E. (2002). Fisiología Vegetal: Vol. I. | spa |
dc.relation.references | Thomas, C. V., Manshhardt, R. M., Waines, J. G. (1983). Teparies as asource of useful traits for improving common bean. Desert Plants, 5,43–48. | spa |
dc.relation.references | Traub, J., Kelly, J. D., & Loescher, W. (2017). Early metabolic and photosynthetic responses to drought stress in common and tepary bean. Crop Science, 57(3), 1670-1686. https://doi.org/10.2135/cropsci2016.09.0746 | spa |
dc.relation.references | Tyree, M., Ewers, F. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345–360. https://doi.org/10.1111/J.1469- 8137.1991.TB00035.X | spa |
dc.relation.references | Udomprasert, N., Li, P. H., Davis, D. W., & Markhart, A. H. (1995). Effects of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop science, 35(2), 490-495 https://doi.org/10.2135/cropsci1995.0011183X003500020035x | spa |
dc.relation.references | Unidad Nacional Para La Gestión del Riesgos de Desastres. (2022). Riesgo por sequía (Caracterización general). | spa |
dc.relation.references | United Nation. (n.d.). Water and Climate Change. Https://Www.Unwater.Org/Water- Facts/Water-and-Climate-Change. | spa |
dc.relation.references | Von, S. (2000). Biochemical models of leaf photosynthesis. Csiro publishing | spa |
dc.relation.references | Voysest, O. (2000). Mejoramiento genético del frijol (Phaseolus vulgaris L.): Legado de variedades de América Latina (1ra edición). | spa |
dc.relation.references | White, J., & Singh, S. (1991). Sources and inheritance of earliness in tropically adapted indeterminate common bean. Euphytica, 55,15–19. https://doi.org/10.1007/BF00022554 | spa |
dc.relation.references | Wu, A., Song, Y., Van, E., Hammer, G. (2016). Connecting biochemical photosynthesis models with crop models to support crop improvement. Frontiers in plant science, 7, 1518. | spa |
dc.relation.references | Yao, G., Li, F., Nie, Z., Bi, M., Jiang, H., Liu, X., Wei, Y., & Fang, X. (2021). Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Plant, Cell & Environment, 44(2), 399–411. https://doi.org/10.1111/PCE.13934 | spa |
dc.relation.references | Zhang, H., Mittal, N., Leamy, L. J., Barazani, O., & Song, B. H. (2017). Back into the wild Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10(1), 5-24. https://pubmed.ncbi.nlm.nih.gov/28035232/ | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.agrovoc | Estrés de sequia | |
dc.subject.agrovoc | Drought stress | |
dc.subject.agrovoc | Déficit hídrico | |
dc.subject.agrovoc | water shortages | |
dc.subject.agrovoc | Tolerancia a la inundación | |
dc.subject.agrovoc | Flooding tolerance | |
dc.subject.agrovoc | Tolerancia a la sequia | |
dc.subject.agrovoc | Drought tolerance | |
dc.subject.agrovoc | Adaptación fisiológica | |
dc.subject.agrovoc | Physiological adaptation | |
dc.subject.agrovoc | Leguminosa de grano | |
dc.subject.agrovoc | Fotosíntesis | |
dc.subject.agrovoc | Photosynthesis | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.proposal | Accesión silvestre | spa |
dc.subject.proposal | Frijol tepari | spa |
dc.subject.proposal | Eficiencia fotosintética | spa |
dc.subject.proposal | Eficiencia en el uso del agua | spa |
dc.subject.proposal | Estrés hídrico. | spa |
dc.subject.proposal | Wild accession | eng |
dc.subject.proposal | Tepary bean | eng |
dc.subject.proposal | Photosynthetic efficiency | eng |
dc.subject.proposal | Water use efficiency | eng |
dc.subject.proposal | Water stress | eng |
dc.title | Respuesta fisiológica de parientes silvestres y domesticados de frijol tepari (Phaseolus acutifolius Asa Gray) ante variaciones del régimen hídrico en condiciones de alta temperatura | spa |
dc.title.translated | Physiological response of wild and domesticated relatives of tepary bean (Phaseolus acutifolius Asa Gray) to variations in water regime under high temperature conditions | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80068796.2025.pdf
- Tamaño:
- 2.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ciencias Agrarias