Respuesta fisiológica de parientes silvestres y domesticados de frijol tepari (Phaseolus acutifolius Asa Gray) ante variaciones del régimen hídrico en condiciones de alta temperatura

dc.contributor.advisorUrban, Milan
dc.contributor.advisorMejía de Tafur, María Sara
dc.contributor.authorGereda, Javier Mauricio
dc.contributor.orcid0000-0003-1173-8812spa
dc.date.accessioned2025-05-20T14:53:06Z
dc.date.available2025-05-20T14:53:06Z
dc.date.issued2025-04-30
dc.descriptionIlustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEl frijol (Phaseolus acutifolius) es una leguminosa resistente a condiciones extremas, crucial para la seguridad alimentaria en regiones áridas. Esta investigación se centró en el estudio de la tolerancia al déficit hídrico de dos genotipos de frijol tepari: uno domesticado (G40001) y otro silvestre (G40056), analizando mecanismos fisiológicos como el uso del agua, la fotosíntesis y la producción de grano bajo diferentes regímenes hídricos y altas temperaturas. La investigación se realizó en condiciones de invernadero en el campus de Bioversity International - CIAT, ubicado en el municipio de Palmira, Valle del Cauca, Colombia (03° 32' 22° N y 76°18'13' W) a una altitud promedio de 965 m sobre el nivel del mar, simulando las condiciones de lugar de origen del fríjol tepari. El genotipo silvestre G40056 mostró mayor resistencia al estrés hídrico severo, con estrategias de crecimiento conservadoras y mayor eficiencia en el uso del agua (EUA). La mayor EUA se registró bajo 50% de capacidad de campo (CC), con 9.9 g H2O L-1 de sustrato. El genotipo domesticado G40001 destacó en condiciones de humedad favorables, pero mostró menor resistencia a la sequía. Bajo estrés por sequía, G40056 mantuvo una transpiración foliar de 2.1 g pl-1 1 por día, su mayor valor se observó en 75% CC con una mediana de 3.75 g pl-1 por día, seguido por T2 y T3, con medianas de 1.29 g pl-1. y 1.53 g pl-1 por día, respectivamente. Estos valores sugieren que G40056 (G2) presenta una transpiración moderada, lo que podría reflejar una mayor eficiencia en el uso del agua. El genotipo G40056 silvestre mantuvo una actividad fotosintética foliar estable incluso bajo estrés hídrico (sequía, 25%CC), como se presenta en los valores más altos de SIF (149.22 µmol m-2 s-1). El análisis del diferencial de temperatura de la hoja (LTD) mostró diferencias significativas entre los genotipos y niveles de humedad evaluados, G40056 (G2) destacó por mostrar la mayor disipación de calor, con los valores más bajos en T1 (75% CC) y T2 (50% CC), con medianas de 0.18°C y 0.39°C, respectivamente. (Texto tomado de la fuente)spa
dc.description.abstractThe tepary bean (Phaseolus acutifolius) is a legume resistant to extreme conditions, crucial for food security in arid regions. This research focused on the study of water deficit tolerance of two tepary bean genotypes: one domesticated (G40001) and one wild (G40056), analysing physiological mechanisms such as water use, photosynthesis and grain production under different water regimes and high temperature. The research was conducted in regulated greenhouse at the Bioversity International - CIAT campus, located in the municipality of Palmira, Valle del Cauca, Colombia (03° 32‘22° N and 76°18'13’ W) at an average altitude of 965 m above sea level simulating the conditions of place of origin the tepary bean. The wild genotype G40056 showed higher resistance to severe water stress, with conservative growth strategies and higher water use efficiency (WUE). The highest WUE was recorded under 50% field capacity (FC), with 9.9 g H2O L -1 substrate. The domesticated genotype G40001 excelled under favourable moisture conditions but showed less resistance to drought. Under drought stress, G40056 maintained a leaf transpiration of 2.1 g pl-1 per day, its highest value was observed at 75% CC with a median of 3.75 g pl-1 per day, followed by T2 and T3, with medians of 1.29 g pl-1 and 1.53 g pl-1 per day, respectively. These values suggest that G40056 (G2) has moderate transpiration, which may reflect higher water use efficiency. The wild-type G40056 genotype maintained stable leaf photosynthetic activity even under water stress (drought, 25%CC), as shown by the highest SIF values (149.22 µmol m-2 s -1). Leaf temperature difference (LTD), analysis showed significant differences among genotypes and moisture levels evaluated, G40056 (G2) stood out for showing the highest heat dissipation, with the lowest values at T1 (75% CC) and T2 (50% CC), with medians of 0.18°C and 0.39°C, respectively.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsEsta investigación se centró en el estudio de la tolerancia al déficit hídrico de dos genotipos de frijol tepari: uno domesticado (G40001) y otro silvestre (G40056), analizando mecanismos fisiológicos como el uso del agua, la fotosíntesis y la producción de grano bajo diferentes regímenes hídricos y altas temperaturas. La investigación se realizó en condiciones de invernadero en el campus de Bioversity International - CIAT, ubicado en el municipio de Palmira, Valle del Cauca, Colombia (03° 32' 22° N y 76°18'13' W) a una altitud promedio de 965 m sobre el nivel del mar, simulando las condiciones de lugar de origen del fríjol tepari.spa
dc.description.researchareaFisiología de cultivosspa
dc.format.extentxxv, 117 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88176
dc.language.isospaspa
dc.publisherUNALspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAcosta, J., Kohashi, V. (1989) Effect of water stress on growth and yield of indeterminate dry bean (Phaesolus vulgaris) cultivars. Field Crops Research, 20, 81-90. http://dx.doi.org/10.1016/0378-4290(89)90054-3spa
dc.relation.referencesAgurla, S., Gahir, S., Munemasa, S., Murata, Y., & Raghavendra, A. (2018). Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Advances in Experimental Medicine and Biology, 1081, 215–232. https://doi.org/10.1007/978- 981-13-1244-1_12spa
dc.relation.referencesAkram, N.A., M. Ashraf y F. Al-Qurainy. (2012). Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 142, 143-148. Doi: 10.1016/j.scienta.2012.05.007spa
dc.relation.referencesAraus, J., Amaro, T., Voltas, J., Nakkoul, H. y Nachit, MM. (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Research 55, 209–223. https://doi.org/10.1016/S0378- 4290(97)00079-8spa
dc.relation.referencesAshraf, M., Akram, N., Al-Qurainy, F., Foolad, M. (2011). Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy, vol 111, 111, 249-296. https://doi.org/10.1016/B978-0-12-387689-8.00002-3 https://www.sciencedirect.com/science/article/abs/pii/B9780123876898000023?via%3Dihubspa
dc.relation.referencesAsif, A., Ali, M., Qadir, M., Karthikeyan, R., Singh, Z., Khangura, R., Di Gioia, F., & Ahmed, Z. (2023). Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. Frontiers in Plant Science, 14, 1276117. https://doi.org/10.3389/FPLS.2023.1276117/BIBTEXspa
dc.relation.referencesAstudillo, C., Blair, M. (2008). Contenido de hierro y zinc en la semilla y su respuesta al nivel de fertilización con fósforo en 40 variedades de frijol colombianas. Agronomía Colombiana, 26(3), 471–476.spa
dc.relation.referencesAugé, R., Stodola, A., Tims, J., J. E., & Saxton, A. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230(1), 87–97. https://doi.org/10.1023/A:1004891210871/METRICSspa
dc.relation.referencesAzcón, J., & Talón, M. (2013). Fundamentos de fisiología vegetal (2nd ed.).spa
dc.relation.referencesBarrera, J., Mier y Teran, B., Aparicio, J., Diaz, J., Leon, R., Beebe, S., Urrea, C. A., Gepts, P. (2024). Identification of drought and heat tolerant tepary beans in a multi‐environment trial study. Crop Science. https://doi.org/10.1002/csc2.21354spa
dc.relation.referencesBarro, A., Diallo, Y., Coulibaly, Z., Nanama, J., & Sawadogo, M. (2024). Phenotypic analysis of the diversity of nine (9) tepary bean (Phaseolus acutifolius) lines by agronomic performance evaluation in Burkina Faso. 23(2), 2345–2353. https://doi.org/10.30574/WJARR.2024.23.2.0788spa
dc.relation.referencesBarrs, H., Weatherley, P. (1962). A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Australian Journal of Biological Sciences, 15(3), 413. http://dx.doi.org/10.1071/BI9620413spa
dc.relation.referencesBeebe, S., Rao, I., Cajiao, C., Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48(2), 582-592.spa
dc.relation.referencesBeebe, S., Rao, I., Blair., Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, Vol. 4. https://doi.org/10.3389/fphys.2013.00035spa
dc.relation.referencesBeebe, S. (2020). Biofortification of common bean for higher iron concentration. Frontiers in Sustainable Food Systems. 4. 573449. https://doi.org/10.3389/fsufs.2020.573449spa
dc.relation.referencesBitocchi, E., Nanni, L., Bellucci, E., Rossi, M., Giardini, A., Zeuli, P. S., Logozzo, G., Stougaard, J., McClean, P., Attene, G., Papa, R. (2012). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E788–E796.spa
dc.relation.referencesBornowski, N., Hart, J., Palacios, A., Ogg, B., Brick, M., Hamilton, J., Beaver, J., Buell, C. R., Porch, T. (2023). Genetic variation in a tepary bean (Phaseolus acutifolius A. Gray) diversity panel reveals loci associated with biotic stress resistance. The Plant Genome, 16(3). https://doi.org/10.1002/TPG2.20363spa
dc.relation.referencesBotero, H., Barnes, A. (2022). The effect of ENSO on common bean production in Colombia: a time series approach. Food Security, 14(6), 1417–1430. https://doi.org/10.1007/s12571-022-01290-zspa
dc.relation.referencesBurbano, E., León, R., Cordero, C., López, F., Cortés, A., Tofiño, A. (2021). Multi- environment yield components in advanced common bean (Phaseolus vulgaris L.) × tepary bean (P. acutifolius A. Gray) interspecific lines for heat and drought tolerance. Agronomy, 11(10), 1978.spa
dc.relation.referencesBlair, M., Pantoja, W., Muñoz, L. (2012). First use of microsatellite markers in a large collection of cultivated and wild accessions of tepary bean (Phaseolus acutifolius A. Gray). TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 125(6), 1137–1147. https://doi.org/10.1007/S00122- 012-1900-0spa
dc.relation.referencesBlair, M. W., Prieto, S., Díaz, L., Buendía, H. F., & Cardona, C. (2010). Linkage disequilibrium at the APA insecticidal seed protein locus of common bean (Phaseolus vulgaris L.). BMC Plant Biology, 10(1), 1–15. https://doi.org/10.1186/1471-2229-10-79/FIGURES/4spa
dc.relation.referencesBradford, K., Hsiao, T. (1982). Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology, 70(5), 1508–1513. https://doi.org/10.1104/PP.70.5.1508spa
dc.relation.referencesBjörkman, O., & Demmig, B. (1987). Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504spa
dc.relation.referencesCastonguay, Y., Markhart, A. (1992). Leaf gas exchange in water‐stressed common bean and tepary bean. Crop science, 32(4), 980-986. https://doi.org/10.2135/cropsci1992.0011183X003200040030xspa
dc.relation.referencesCattivelli, L., Rizza, F., Badeck, F., Mazzucotelli, E., Mastrangelo, E., Francia, E., Marè, C., Tondelli, A., Stanca, A. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105,1–14 conditions. Field Crops Research 55, 209–223. https://doi.org/10.1016/j.fcr.2007.07.004spa
dc.relation.referencesCavalieri, A., Merchant, A., Van, E. (2011). Why not beans? In Functional Plant Biology (Vol. 38, Issue 12). https://doi.org/10.1071/FPv38n12_FOspa
dc.relation.referencesConejo, D., Urban, M. O., Santaella, M., Gereda, J. M., Contreras, A. D., & Wenzl, P. (2022). Using phenomics to identify and integrate traits of interest for better- performing common beans: A validation study on an interspecific hybrid and its Acutifolii parents. Frontiers in Plant Science, 13, 1008666.spa
dc.relation.referencesCosta, J. M., Ortuño, M. F., Chaves, M. (2007). Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. Journal of Integrative Plant Biology, 49(10), 1421–1434. https://doi.org/10.1111/J.1672- 9072.2007.00556.Xspa
dc.relation.referencesChacón, M., Martínez, J., Duitama, J., Debouck, D. (2021). Gene Flow in Phaseolus Beans and Its Role as a Plausible Driver of Ecological Fitness and Expansion of Cultigens. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.618709spa
dc.relation.referencesCseresnyés, I., Szitár, K., Rajkai, K., Füzy, A., Mikó, P., Kovács, R., Takács, T. (2018). Application of electrical capacitance method for prediction of plant root mass and activity in field-grown crops. Frontiers in Plant Science, 9, 93. https://doi.org/10.3389/fpls.2018.00093spa
dc.relation.referencesDalton, F. (1995). In-situ root extent measurements by electrical capacitance methods. Plant and Soil, 173(1), 157–165. https://doi.org/10.1007/BF00155527/METRICSspa
dc.relation.referencesDebouck, D., Dohle, S., Marquez, D., Pratt, R., Santaella, M., Santos, L., Urban, M. (2023). Phaseolus germplasm exploration in New Mexico, USA. https://cgspace.cgiar.org/server/api/core/bitstreams/469ce23a-4549-4eaa-9967- 1163dce2caa8/contentspa
dc.relation.referencesDebouck, D. (1999). Diversity in Phaseolus species in relation to the common bean. 25–52. https://doi.org/10.1007/978-94-015-9211-6_2spa
dc.relation.referencesDebouck, D. (2009). El aporte de los recursos genéticos en el mejoramiento genético del frijol o poroto (phaseolus, leguminosae - phaseoleae) en Latinoamérica y el caribe. https://hdl.handle.net/10568/89577spa
dc.relation.referencesDeltoro, V., Calatayud, A., Gimeno, C., Abadía, A., Barreno, E. (1998). Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 207(2), 224–228. https://doi.org/10.1007/S004250050476/METRICSspa
dc.relation.referencesDeva, C. R., Urban, M. O., Challinor, A. J., Falloon, P., & Svitákova, L. (2020). Enhanced leaf cooling is a pathway to heat tolerance in common bean. Frontiers in plant science, 11, 19.spa
dc.relation.referencesDietrich, R., Bengough, A., Jones, H., White, P. (2012). A new physical interpretation of plant root capacitance. Journal of Experimental Botany, 63(17), 6149–6159. https://doi.org/10.1093/JXB/ERS264spa
dc.relation.referencesDuniway, M., Herrick, J., & Monger, H. (2007). The High Water-Holding Capacity of Petrocalcic Horizons. Soil Science Society of America Journal, 71(3), 812–819. https://doi.org/10.2136/SSSAJ2006.0267spa
dc.relation.referencesFAO. (2016). El trabajo de la FAO sobre el cambio climático. Conferencia de Las Naciones Unidas Sobre El Cambio Climático 2016. FAO. (2017). Seminario internacional sobre sequía y agricultura. Pronosticar, planificar, preparar: cómo evitar que la sequía se convierta en hambruna. Una celebración del día mundial para combatir la desertificación y la sequía.spa
dc.relation.referencesFAO. (2017). Seminario internacional sobre sequía y agricultura. Pronosticar, planificar, preparar: cómo evitar que la sequía se convierta en hambruna. Una celebración del día mundial para combatir la desertificación y la sequía.spa
dc.relation.referencesFarber, M., Attia, Z., & Weiss, D. (2016). Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany, 67(22), 6351–6362. https://doi.org/10.1093/JXB/ERW398spa
dc.relation.referencesFarquhar, G., Sharkey, T. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345. http://dx.doi.org/10.1146/annurev.pp.33.060182.001533spa
dc.relation.referencesFederici, C. T., Ehdaie, B., Waines, J. (1990). Domesticated and wild Tepary bean: field performance with and without drought-stress. Agronomy Journal, 82(5), 896- 900. https://doi.org/10.2134/agronj1990.00021962008200050010xspa
dc.relation.referencesFernández, M., Monteagudo, A., Casas, A., Boutin, C., Pin, P., Morales, F., Igartua, E,. (2020). Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors. 20(5):1486. https://doi.org/10.3390/s20051486spa
dc.relation.referencesFreytag, G., Debouck, D. (2002). Taxonomy, distribution, and ecology of the genus phaseolus (Leguminosae-papilionoideae) in North America, Mexico and Central America. Botanical Research Institute of Texas (BRIT), Forth Worth, TX, USA. 298 p. (Sida, botanical miscellany no. 23). URI https://hdl.handle.net/10568/54291 doi: 10.3/JQUERY-UI.JSspa
dc.relation.referencesFischer, R., Rees, D., Sayre, K., Lu, Z., Condon, A. Saavedra, A, (1998) Wheat yield progress associated with higher stomatal conductance and photosynthe c rate, and cooler canopies. Crop Science 38, 1467–1475. https://doi.org/10.2135/cropsci1998.0011183X003800060011xspa
dc.relation.referencesFigueroa, F., Jerez, C., Korbee, N. (2013). Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Latin American Journal of Aquatic Research, 41(5), 801– 819. https://doi.org/10.3856/VOL41-ISSUE5-FULLTEXT-1spa
dc.relation.referencesFogaça, A., De Castro, A., Barbosa, E. (2023). Physiological and morphological responses of two beans common genotype to water stress at different phenological stages. Bioscience Journal, 39, e39053–e39053. https://doi.org/10.14393/BJ-V39N0A2023-59855spa
dc.relation.referencesGepts, P., Debouck, D. (1991). Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven, A., Voysest, O. (eds.). Common beans: research for crop improvement. Commonwealth Agricultural Bureaux International, Wallingford, United Kingdom. p. 7-53. https://hdl.handle.net/10568/88263spa
dc.relation.referencesGepts, P., Aragão, F., Barros, E. de, Blair, M. W., Brondani, R., Broughton, W., Galasso, I., Hernández, G., Kami, J., Lariguet, P., McClean, P., Melotto, M., Miklas, P., Pauls, P., Pedrosa, A., Porch, T., Sánchez, F., Sparvoli, F., & Yu, K. (2008). Genomics of Phaseolus Beans, a Major Source of Dietary Protein and Micronutrients in the Tropics. Genomics of Tropical Crop Plants, 113–143. https://doi.org/10.1007/978-0-387-71219-2_5spa
dc.relation.referencesGibson R., Raboy, V., King J. (2018). Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutrition Reviews. 76(11):793-804. https://doi.org/10.1093/nutrit/nuy028spa
dc.relation.referencesGu, L., Han, J., Wood, J. D., Chang, C. Y. Y., & Sun, Y. (2019). Sun‐induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist, 223(3), 1179-1191.spa
dc.relation.referencesGuanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J., Frankenberg, C., Huete, A., Zarco P., Lee, J., Moran, M., Ponce, G., Beer, C., Camps, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J., & Griffis, T. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14), E1327–E1333. https://doi.org/10.1073/pnas.1320008111spa
dc.relation.referencesGraham, P., Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Res. 53, 131–146.spa
dc.relation.referencesGross, Y., Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36, 201–212. https://doi.org/10.1016/0378-4290(94)90112-0spa
dc.relation.referencesHarvestPlus. (2019). Recomendaciones para la producción de grano de Fríjol fortificado en Colombia. www.harvestplus.orgspa
dc.relation.referencesHatfield, J. (2018). Combined impacts of carbon, temperature, and drought to sustain food production. Food Security and Climate Change, 95-117.spa
dc.relation.referencesHerrera, M., Peña, C., Aguirre, J., Trejo, C., López, A. (2007). Estudio comparativo de intercambio gaseoso y parámetros fotosintéticos en dos tipos de hojas de frijol (Phaseolus vulgaris L.) silvestre y domesticado. Revista Científica UDO Agricola, 7(1), 49-57. https://dialnet.unirioja.es/servlet/articulo?codigo=2550651spa
dc.relation.referencesJiménez, J., & Acosta, J. (2012). Caracterización de genotipos criollos de frijol Tepari (Phaseolus acutifolius A. Gray) y común (Phaseoulus vulgaris L.) bajo temporal. Revista Mexicana de Ciencias Agrícolas, 3 (8), 1565–1577. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 09342012000800007&lng=es&tlng=es.spa
dc.relation.referencesJiménez, S., Álvarado, O., & Balaguera, H. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149. https://doi.org/10.17584/rcch.2015v9i1.3753spa
dc.relation.referencesJones, H. (1998). Stomatal control of photosynthesis and transpiration. Journal of Experimental Botany, 49(90001), 387–398. https://doi.org/10.1093/JEXBOT/49.SUPPL_1.387spa
dc.relation.referencesKazai, P., Noulas, C., Khah, E., Vlachostergios, D. (2019). Rendimiento y parámetros de calidad de las semillas de cultivares de frijol común cultivados en condiciones de campo con estrés hídrico y térmico [J]. AIMS Agriculture and Food, 4(2): 285-302. https://doi.org/10.3934/agrfood.2019.2.285spa
dc.relation.referencesKramer, P., Boyer, J. (1995). Water relations of plants and soils. Academic press.spa
dc.relation.referencesKuhlgert, S., Austic, G., Zegarac, R., Osei, I., Hoh, D., Chilvers, M. I., Roth, M. G., Bi, K., TerAvest, D., Weebadde, P., & Kramer, D. (2016). MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society open science, 3(10), 160592. https://doi.org/10.1098/rsos.160592spa
dc.relation.referencesLambers, H., Raven, J., Shaver, G., & Smith, S. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95–103. https://doi.org/10.1016/J.TREE.2007.10.008spa
dc.relation.referencesLarcher, W. (2003). Physiological Plant Ecology. Physiological Plant Ecology. https://doi.org/10.1007/978-3-662-05214-3spa
dc.relation.referencesLawlor, D., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.Xspa
dc.relation.referencesLeal, R., Peña-, C. B., García, R., García, A., Martínez, E., Padilla, D. (2019). Phenotypical, physiological and biochemical traits of the vegetative growth of wild tepary bean (Phaseolus acutifolius) under restricted water conditions. South African Journal of Plant and Soil, 36(4), 261-270.spa
dc.relation.referencesLépiz, R., Chavarín, I., López, J., & Rodríguez, E. (2018). Acumulación de materia seca durante las etapas de desarrollo de variedades de frijol. Rev. Fitotec. Mex, 41(3)spa
dc.relation.referencesLiu, T., Barbour, M. M., Yu, D., Rao, S., ZSong, X. (2022). Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. New Phytologist, 233(1), 360-372.spa
dc.relation.referencesLópez, C. (2007). Eficiencia en el uso del agua, intercambio gaseoso entre transpiración y fotosíntesis. Conferencia: IV Encuentro participación de la mujer en la ciencia. En León, Guanajuato, México – Vol. 1. https://www.researchgate.net/publication/296707341_Eficiencia_en_el_uso_del_a gua_intercambio_gaseoso_entre_transpiracion_y_fotosintesis.spa
dc.relation.referencesLuo, L., Xia, H., & Lu, B. R, (2019). Editorial: Crop Breeding for Drought Resistance. Front. Plant Sci. 10: 314. https://doi.org/10.3389/fpls.2019.00314spa
dc.relation.referencesLynch, D. H., & Smith, D. L. (1993). Early seedling and seasonal N 2-fixing symbiotic activity of two soybean [Glycine max (L.) Merr.] cultivars inoculated with Bradyrhizobium strains of diverse origin. Plant and soil, 157, 289-303.spa
dc.relation.referencesMarkhart, A. (1985). Comparative water relations of Phaseolus vulgaris L. and Phaseolus acutifolius Gray, Plant Physiology , Volume 77, Number 1, , pages 113-117, https://doi.org/10.1104/pp.77.1.113spa
dc.relation.referencesMartínez, A., Hernández, J., Salazar, E. (2023). Innovative research strategies for enhancing the resilience of tepari bean (Phaseolus acutifolius) under climate change scenarios. Agricultural Systems, 207, Article 102906. https://doi.org/10.1016/j.agsy.2022.102906spa
dc.relation.referencesMaureira, I., Parra, L., Udall, J. (2018). Evaluación de la variabilidad del ácido fítico, utilizando metodologías de cromatografía, en una muestra diversa de Lupinus luteus L.(Fabaceae). Agro Sur, 46(3), 9-16.spa
dc.relation.referencesMejía de Tafur, M., Burbado, R., García, M., & Baena, D. (2014). Respuesta fotosintetica de Eucalyptus grandis W. Hill a la disponibilidad de agua en el suelo y a la intensidad de luz. Acta Agronómica, 311–317.spa
dc.relation.referencesMilchunas, D. (2012). Medición de raíces: un enfoque actualizado.spa
dc.relation.referencesMinagricultura. (2020). Cadena del Fríjol. Dirección de Cadenas Agrícolas y Forestales.spa
dc.relation.referencesMita, N. (2012). Estudio Morfofisiológico y Bioquímico de cinco variedades cubanas de Phaseolus vulgaris, L., bajo condiciones de estrés hídrico (Doctoral dissertation, Universidad de Matanzas. Facultad de Ciencias Agropecuarias). https://rein.umcc.cu/handle/123456789/640spa
dc.relation.referencesMiklas P., Rosas J., Beaver J., Telek, L., Freytag G. (1994). Field performance of select tepary bean germplasm in the tropics. Crop Sci. 34: 1639–1644.spa
dc.relation.referencesMiklas, P., Grafton, K., Kelly., Schwartz, H., Steadman, J. (1998) Registration of Four White Mold Resistant Dry Bean Germplasm Lines: 19365-3,19365-5,19365-31, and 92BG-7. Crop Science, Vol. 38. https://doi.org/10.1046/j.1365-3040.2001.00716.xspa
dc.relation.referencesMittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9spa
dc.relation.referencesMuñoz, L., Duque, M., Debouck, D., & Blair, M. W. (2006). Taxonomy of Tepary Bean and Wild Relatives as Determined by Amplified Fragment Length Polymorphism (AFLP) Markers. Crop Science, 46(4), 1744–1754. https://doi.org/10.2135/CROPSCI2005-12-0475spa
dc.relation.referencesMhlaba, Z. B., Mashilo, J., Shimelis, H., Assefa, A. B., & Modi, A. T. (2018). Progress in genetic analysis and breeding of tepary bean (Phaseolus acutifolius A. Gray): A review. Scientia Horticulturae, 237, 112–119. https://doi.org/10.1016/J.SCIENTA.2018.04.012spa
dc.relation.referencesMwale, S., Shimelis, H., Nkhata, W., Sefasi, A., Fandika, I., Mashilo, J. (2022). Genotype-by-Environment interaction in tepary bean (Phaseolus acutifolius A. Gray) for seed yield. Agronomy, 13(1), 12.spa
dc.relation.referencesNabhan, G. P. & Felger, R. S. (1978). Teparies in Southwestern North America. A biogeographical and ethnohistorical study of Phaseolus acutifolius. Econ. Bot. 32(1):22-19 https://doi.org/10.1007/BF02906725spa
dc.relation.referencesNeto, A., P., Amorim, D. Pereira y A. Conceição. (2011). Fluorescência da clorofila como uma ferramenta possível para seleção de tolerânciaà salinidade em girasol. Rev. Cienc. Agron. 42(4), 893-897.spa
dc.relation.referencesNir, I., Moshelion, M., & Weiss, D. (2014). The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell & Environment, 37(1), 113– 123. https://doi.org/10.1111/PCE.12135spa
dc.relation.referencesNobel, P. (2009). Physicochemical and Environmental Plant Physiology, Fourth Edition. Physicochemical and Environmental Plant Physiology, Fourth Edition, 1 – 582. https://doi.org/10.1016/B978-0-12-374143-1.X0001-4spa
dc.relation.referencesNong, R. A., Gerrano, A. S., Gwata, E. T., & Gerrano, A. (2023). A preliminary evaluation of phenotypic traits of tepary bean (Phaseolus acutifolius A. Gray). Journal of Underutilised Crops Research, 2(1), 6. https://doi.org/10.4102/JUCR.V2I1.5spa
dc.relation.referencesNkomo, G., Sedibe, M., Mofokeng, M. (2021). Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. International Journal of Agronomy, 2021(1), 5536417.spa
dc.relation.referencesPadilla, D., Campos, L., Peña, C. B., García, A., Jiménez, J. C., & Pizeno, J. L. (2024). Proteomic profile of tepary bean seed storage proteins in germination with low water potential. Proteome Science, 22(1), 1–12. https://doi.org/10.1186/S12953- 023-00225-6/FIGURES/6spa
dc.relation.referencesParsons, L., & Howe, T. (1984). Effects of water stress on the water relations of Phaseolus vulgaris and the drought resistant Phaseolus acutifolius. Physiologia Plantarum, 60(2), 197–202. https://doi.org/10.1111/J.1399-3054.1984.TB04564.Xspa
dc.relation.referencesPignata, G., Casale, M., & Nicola, S. (2017). Water and Nutrient Supply in Horticultural Crops Grown in Soilless Culture: Resource Efficiency in Dynamic and Intensive Systems. 183–219. https://doi.org/10.1007/978-3-319-53626-2_7spa
dc.relation.referencesPolania, J. A., Poschenrieder, C., Beebe, S.,spa
dc.relation.referencesPolania, J. A., Poschenrieder, C., Beebe, S., Porch, T., Jahn, M. (2001). Effects of high temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24, 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.xspa
dc.relation.referencesPolania, J. A., Poschenrieder, C., Beebe, S., Porch, T., Jahn, M. (2001). Effects of high temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24, 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.xspa
dc.relation.referencesPorch, T., Beaver, J., Debouck, D., Jackson, S., Kelly, J., & Dempewolf, H. (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy, 3(2), 433-461. https://doi.org/10.3390/agronomy3020433spa
dc.relation.referencesPorch, T. G., Rosas, J. C., Cichy, K., Lutz, G. G., Rodriguez, I., Colbert, R. W., Demosthene, G., Hernández, J. C., Winham, D. M., & Beaver, J. S. (2024). Release of tepary bean cultivar ‘USDA Fortuna’ with improved disease and insect resistance, seed size, and culinary quality. Journal of Plant Registrations, 18(1), 42–51. https://doi.org/10.1002/PLR2.20322spa
dc.relation.referencesPoormohammad Kiani, S., P. Maury, A. Sarrafi y P. Grieu. (2008). QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 175, 565-573. Doi: 10.1016/j.plantsci.2008.06.002spa
dc.relation.referencesPujol A., Sanchis, P., Grases, F., Masmiquel, L. (2023). Phytate Intake, Health and Disease: “Let Thy Food Be Thy Medicine and Medicine Be Thy Food”. Antioxidants. 12(1):146.https://doi.org/10.3390/antiox12010146spa
dc.relation.referencesPfündel, E. (1998). Estimating the contribution of photosystem, I to total leaf chlorophyll fluorescence. Photosynthesis research, 56, 185-195.spa
dc.relation.referencesPratt, R. B., & Jacobsen, A. L. (2017). Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40(6), 897–913. https://doi.org/10.1111/PCE.12862spa
dc.relation.referencesPreece, C., Livarda, A., Christin, P. A., Wallace, M., Martin, G., Charles, M., Osborne, C. (2017). How did the domestication of Fertile Crescent grain crops increase their yields?. Functional ecology, 31(2), 387-397.spa
dc.relation.referencesQuerejeta, J. I., Ren, W., & Prieto, I. (2021). Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. New Phytologist, 230(4), 1378–1393. https://doi.org/10.1111/NPH.17258spa
dc.relation.referencesRainey, K., & Griffiths, P. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130,18–23. https://doi.org/10.21273/JASHS.130.1.18spa
dc.relation.referencesRao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., García, R., & Rivera, M. (2013). Can tepary bean be a model for improvement of drought resistance in common bean? African Crop Science Journal, Vol. 21, No. 4, pp. 265 – 281spa
dc.relation.referencesRao, S., Wu, Y. (2017). Root-derived bicarbonate assimilation in response to variable water deficit in Camptotheca acuminate seedlings. Photosynthesis Research, 134(1), 59-70.spa
dc.relation.referencesReynolds, M., Delgado, M., Gutierrez, M. A Larqué, A. (2000) Photosynthesis of wheat in a warm, irrigated environment: I: Genetic diversity and crop productivity. Fields Crop Research 66, 37–50. https://doi.org/10.1016/S0378-4290(99)00077-5spa
dc.relation.referencesRichards, R. (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51, 447-458 https://doi.org/10.1093/jexbot/51.suppl_1.447spa
dc.relation.referencesRodriguez, P., Sanchez, C. (2021). Producción ecológica de frijol (Phaseolus vulgaris L.) en las condiciones edafoclimáticas del III Frente. Ciencia En Su PC, 1, 60–70. https://www.redalyc.org/articulo.oa?id=181369731005spa
dc.relation.referencesSalazar, C., Pino, M. T., & Villagra, P. (2016). La emision de fluorescencia de la clorofila a: una herramienta para la deteccion del efecto del estres hidrícoen el aparato fotosintetico de la papa [en línea]. Santiago: Boletin INIA - Instituto de Investigaciones Agropecuarias.spa
dc.relation.referencesSanders, P. L., & Markhart, A. H. (1992). Interspecific Grafts Demonstrate Root System Control of Leaf Water Status in Water-Stressed Phaseolus. Journal of Experimental Botany, 43(257), 1563–1567. http://www.jstor.org/stable/23694311spa
dc.relation.referencesScotter, D., Clothier, B., & Corker, R. (1979). Soil water in a fragiaqualf. Soil Research, 17(3), 443–453. https://doi.org/10.1071/SR9790443spa
dc.relation.referencesSingh, S. P. (2001). Broadening the Genetic Base of Common Bean Cultivars. Crop Science, 41(6), 1659–1675. https://doi.org/10.2135/CROPSCI2001.1659spa
dc.relation.referencesSingh, B., Singh, J., Kaur, A., Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International. 101:1-16. https://doi.org/10.1016/j.foodres.2017.09.026spa
dc.relation.referencesSiddique, M., Hamid, A., & Islam, M. (2000). Drought Stress Effects on Water Relations of Wheat. Botanical Bulletin of Academia Sinica, Vol. 41(1), 35-39. https://www.scirp.org/reference/referencespapers?referenceid=1047330spa
dc.relation.referencesSu, Q., Rohila, J. S., Ranganathan, S., Karthikeyan, R. (2023). Rice yield and quality in response to daytime and nighttime temperature increase–a meta-analysis perspective. Science of The Total Environment, 898, 165256spa
dc.relation.referencesSuárez, J. C., Contreras, A. T., Anzola, J. A., Vanegas, J. I., & Rao, I. M. (2021). Physiological Characteristics of Cultivated Tepary Bean (Phaseolus acutifolius A. Gray) and Its Wild Relatives Grown at High Temperature and Acid Soil Stress Conditions in the Amazon Region of Colombia. Plants (Basel, Switzerland), 11(1), 116. https://doi.org/10.3390/plants11010116spa
dc.relation.referencesSuárez, J., Casanoves, F., Di Rienzo, J. (2022). Estimación no destructiva del peso foliar y el área foliar en frijol común. Agronomía, 12, 711. https:// doi.org/10.3390/agronomy12030711spa
dc.relation.referencesSun, Y., Frankenberg, C., Wood, J., Schimel, D., Jung, M., Guanter, L., Drewry, D., Verma, M., Porcar, A., Griffis, T., Gu, L., Magney, T., Köhler, P., Evans, B., & Yuen, K. (2017). OCO-2 advances photosynthesis observation from space via solar- induced chlorophyll fluorescence. Science, 358(6360). DOI:10.1126/science.aam5747spa
dc.relation.referencesSmall, E. (2014). 45. Tepary Bean - an ideal arid zone crop. Biodiversity, 15(2–3), 220– 228. https://doi.org/10.1080/14888386.2014.903203spa
dc.relation.referencesSmart, R., & Bingham, G. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/PP.53.2.258spa
dc.relation.referencesSchinkel, C., & Gepts, P. (1988). Phaseolin Diversity in the Tepary Bean, Phaseolus acutifolius A. Gray. Plant Breeding, 101(4), 292–301. https://doi.org/10.1111/J.1439-0523.1988.TB00301.Xspa
dc.relation.referencesSchreiber, U. (2004). Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence: a signature of photosynthesis, 279-319.spa
dc.relation.referencesScully B. Waines J. 1988. Ontogeny and yield response of common and tepary beans to temperature. Agron. J. 80: 921–925.spa
dc.relation.referencesStrock, C., Burridge, J., Niemiec, M., Brown, K., Lynch, J. (2020). Los fenotipos de metaxilema y arquitectura de la raíz se integran para regular el uso del agua bajo estrés por sequía. Plant, Cell & Environment, 44(1), 49–67. Portico. https://doi.org/10.1111/pce.13875spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2002). Fisiología Vegetal: Vol. I.spa
dc.relation.referencesThomas, C. V., Manshhardt, R. M., Waines, J. G. (1983). Teparies as asource of useful traits for improving common bean. Desert Plants, 5,43–48.spa
dc.relation.referencesTraub, J., Kelly, J. D., & Loescher, W. (2017). Early metabolic and photosynthetic responses to drought stress in common and tepary bean. Crop Science, 57(3), 1670-1686. https://doi.org/10.2135/cropsci2016.09.0746spa
dc.relation.referencesTyree, M., Ewers, F. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345–360. https://doi.org/10.1111/J.1469- 8137.1991.TB00035.Xspa
dc.relation.referencesUdomprasert, N., Li, P. H., Davis, D. W., & Markhart, A. H. (1995). Effects of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop science, 35(2), 490-495 https://doi.org/10.2135/cropsci1995.0011183X003500020035xspa
dc.relation.referencesUnidad Nacional Para La Gestión del Riesgos de Desastres. (2022). Riesgo por sequía (Caracterización general).spa
dc.relation.referencesUnited Nation. (n.d.). Water and Climate Change. Https://Www.Unwater.Org/Water- Facts/Water-and-Climate-Change.spa
dc.relation.referencesVon, S. (2000). Biochemical models of leaf photosynthesis. Csiro publishingspa
dc.relation.referencesVoysest, O. (2000). Mejoramiento genético del frijol (Phaseolus vulgaris L.): Legado de variedades de América Latina (1ra edición).spa
dc.relation.referencesWhite, J., & Singh, S. (1991). Sources and inheritance of earliness in tropically adapted indeterminate common bean. Euphytica, 55,15–19. https://doi.org/10.1007/BF00022554spa
dc.relation.referencesWu, A., Song, Y., Van, E., Hammer, G. (2016). Connecting biochemical photosynthesis models with crop models to support crop improvement. Frontiers in plant science, 7, 1518.spa
dc.relation.referencesYao, G., Li, F., Nie, Z., Bi, M., Jiang, H., Liu, X., Wei, Y., & Fang, X. (2021). Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Plant, Cell & Environment, 44(2), 399–411. https://doi.org/10.1111/PCE.13934spa
dc.relation.referencesZhang, H., Mittal, N., Leamy, L. J., Barazani, O., & Song, B. H. (2017). Back into the wild Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10(1), 5-24. https://pubmed.ncbi.nlm.nih.gov/28035232/spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocEstrés de sequia
dc.subject.agrovocDrought stress
dc.subject.agrovocDéficit hídrico
dc.subject.agrovocwater shortages
dc.subject.agrovocTolerancia a la inundación
dc.subject.agrovocFlooding tolerance
dc.subject.agrovocTolerancia a la sequia
dc.subject.agrovocDrought tolerance
dc.subject.agrovocAdaptación fisiológica
dc.subject.agrovocPhysiological adaptation
dc.subject.agrovocLeguminosa de grano
dc.subject.agrovocFotosíntesis
dc.subject.agrovocPhotosynthesis
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalAccesión silvestrespa
dc.subject.proposalFrijol teparispa
dc.subject.proposalEficiencia fotosintéticaspa
dc.subject.proposalEficiencia en el uso del aguaspa
dc.subject.proposalEstrés hídrico.spa
dc.subject.proposalWild accessioneng
dc.subject.proposalTepary beaneng
dc.subject.proposalPhotosynthetic efficiencyeng
dc.subject.proposalWater use efficiencyeng
dc.subject.proposalWater stresseng
dc.titleRespuesta fisiológica de parientes silvestres y domesticados de frijol tepari (Phaseolus acutifolius Asa Gray) ante variaciones del régimen hídrico en condiciones de alta temperaturaspa
dc.title.translatedPhysiological response of wild and domesticated relatives of tepary bean (Phaseolus acutifolius Asa Gray) to variations in water regime under high temperature conditionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80068796.2025.pdf
Tamaño:
2.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Licencia_Javier_Gereda.pdf
Tamaño:
1.39 MB
Formato:
Adobe Portable Document Format
Descripción: