Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).

dc.contributor.advisorPulzara Mora, Alvaro
dc.contributor.authorDoria Andrade, Jose Gregorio
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2021-06-24T15:55:25Z
dc.date.available2021-06-24T15:55:25Z
dc.date.issued2021-06-22
dc.descriptionilustracionesspa
dc.description.abstractDurante más de dos décadas, el estudio de las impurezas magnéticas en semiconductores ha recibido una gran atención. El interés en estos compuestos es impulsado en parte por el deseo de utilizar el spin del electrón en la electrónica, un campo de rápida expansión en la que hoy conocemos como la espintrónica. El descubrimiento del ferromagnetismo en el grupo III-V dopados con metales de transición como Mn, Fe y Cr es de gran interés en la investigación de semiconductores magnéticos, abrió un campo de investigación de mucho interés para aplicaciones tecnológicas. La ventaja de III (Mn, Cr) V es que los efectos magnéticos, ópticos y electrónicos están todos interconectados. Además, todas estas propiedades son sensibles a los estímulos externos y pueden modificarse fácilmente mediante la aplicación de un campo eléctrico o magnético externo y también mediante radiación. Es por eso, que en el presente trabajo de tesis nos enfocamos en mostrar resultados experimentales de aleaciones semiconductoras III-V, específicamente películas delgadas de: GaCrAs, GaMnAs, y GaMnSb obtenidas por la técnica de evaporación catódica asistida por campo magnético o magnetrón sputtering. Esta técnica de preparación de películas delgadas permite controlar variables físicas involucradas en los procesos (tiempo, presión, temperatura y atmósfera), lo que hace que se convierta en una técnica ideal para obtener películas delgadas semiconductoras. Con el fin de aprovechar esta versatilidad de la técnica de preparación, recolectamos información de las propiedades físicas de cada una de las muestras obtenidas, utilizando: difracción de rayos X (DRX), microscopía Raman, microscopía electrónica de barrido (SEM), microscopía de fuerza atómica (AFM), espectroscopia de masas de iones secundarios (SIMS) y magnetometría de muestra vibrante (VSM). Lo anterior permitió corroborar la obtención del semiconductor de interés y además correlacionar las propiedades ópticas, estructurales y magnéticas en función de algunas de las variables experimentales, resultados que coinciden con los reportados en la literatura. (Tomado de la fuente)spa
dc.description.abstractFor more than two decades, the study of magnetic impurities in semiconductors has received great attention. Interest in these compounds is driven in part by the desire to use the spin of the electron in electronics, a rapidly expanding field from what it is now known as spintronics. The discovery of ferromagnetism in group III-V doped with transition metals such as Mn, Fe and Cr is of great interest in magnetic semiconductor research, it opened a field of research which appears to be appealing for technological applications. The advantage of III (Mn, Cr) V is that the magnetic, optical and electronic effects are all interconnected. Furthermore, all these properties are sensitive to external stimuli and can be easily modified by applying an external electric or magnetic field and also by radiation. That is why, in this thesis work we focus on showing experimental results of III-V semiconductor alloys, specifically layers of: GaCrAs, GaMnAs, and GaSbAs obtained by the cathodic evaporation technique assisted by magnetic field or magnetron sputtering. This technique for preparing thin layers allows controlling physical variables involved in the processes (time, pressure, temperature and atmosphere), which makes it an ideal technique to obtain semiconductor layers. In order to take advantage of this versatility of the preparation technique, we collected information on the physical properties of each of the samples obtained, using: X-ray diffraction (XRD), Raman microscopy, scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), Secondary Ion Mass Spectroscopy (SIMS), and Vibrating Sample Magnetometry (VSM). This allowed corroborating the obtaining of the semiconductor of interest and also correlating the optical, structural and magnetic properties based on some of the experimental variables, results that coincide with those reported in the literature. (Tomado de la fuente)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias -Físicaspa
dc.description.researchareaMateriales semiconductores Nanoestructuradosspa
dc.format.extent174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79705
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.references[1] D.C. Cronemeyer, Perpendicular Anisotropy in, 18 (2009) 85–89. https://doi.org/10.1063/1.3141747.spa
dc.relation.references[2] S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics, Surf. Sci. Rep. 61 (2006) 345–381. https://doi.org/10.1016/j.surfrep.2006.05.001.spa
dc.relation.references[3] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Electric-field control of ferromagnetism, Nature. 408 (2000) 944–946. https://doi.org/10.1038/35050040.spa
dc.relation.references[4] L. Angarita, Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro, Tesis. 1 (2017) 11–92.spa
dc.relation.references[5] R. Hummel, Electronic Properties of Materials 20 Edition, n.d.spa
dc.relation.references[6] J. Su, T. Liu, J. Liu, J. Yang, G. Shen, Y. Bai, Z. Dong, F. Wang, Y. Zhao, Electrical and optical property of annealed Te-doped GaSb, J. Semicond. 38 (2017). https://doi.org/10.1088/1674-4926/38/4/043001.spa
dc.relation.references[7] J.M.D.COEY, Magnetism and Magnetic Materials, Trinity College, Dublin, 1395.spa
dc.relation.references[8] M.E. Straumanis, C.D. Kim, Lattice parameters, thermal expansion coefficients, phase width, and perfection of the structure of GaSb and InSb, J. Appl. Phys. 36 (1965) 3822–3825. https://doi.org/10.1063/1.1713955.spa
dc.relation.references[9] S. Blunde, Stephen Blundell Magnetism in condensed matter 2011.pdf, (2011).spa
dc.relation.references[10] M. Oberflächen-nanostrukturierung, Mechanical Surface Nano-patterning of Indium Phosphide and Silicon for Subsequent Electrochemical Processing, (2006).spa
dc.relation.references[11] N. A. Spaldin-J. Mansbridge, Magnetic materials: fundamentals and applications, Second edi, University of California, Santa Barbara, 2010.spa
dc.relation.references[12] B. D. CULLITY-C. D. GRAHAM, INTRODUCTION TO MAGNETIC MATERIALS, n.d.spa
dc.relation.references[13] and W.J.W. D. R. Askeland, P. P. Fulay, Ciencia e ingeniería de materiales, Zeitschrift Fur Naturforsch. - Sect. B J. Chem. Sci. 18 (1963) 753–756. https://doi.org/10.1515/znb-1963-0911.spa
dc.relation.references[14] D. Fiorani, J.L. Dormann, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogues, A. Garcia, A.M. Testa, Collective magnetic state in nanoparticles systems, J. Magn. Magn. Mater. 196 (1999) 143–147. https://doi.org/10.1016/S0304-8853(98)00694-5.spa
dc.relation.references[15] C. A. Pulzara, Aleaciones semi-magnéticas de GaSbMn para aplicaciones en el desarrollo de sensores de campo magnético por efecto hall, Univ. Nac. Manizales. (2017).spa
dc.relation.references[16] S. Romero, Efecto de diversos recubrimientos sobre la propiedades magnéticas de partículas superparamagnéticas de Fe3O4, (2011) 7–19. https://www.repositoriodigital.ipn.mx/handle/123456789/11799.spa
dc.relation.references[17] Sergio M. Rezende, Física de Materiais e Dispositivos Electrónicos, Universida, Pernambuco, Recife, 1996. https://www.passeidireto.com/arquivo/24120600/materiais-e-dispositivos-eletronicos-2-a-ed-sergio-m-rezende-pt-1.spa
dc.relation.references[18] F. Bloch, Nuclear induction, Phys. Rev. 70 (1946) 460–474. https://doi.org/10.1103/PhysRev.70.460.spa
dc.relation.references[19] S. MacK, R.C. Myers, J.T. Heron, A.C. Gossard, D.D. Awschalom, Stoichiometric growth of high Curie temperature heavily alloyed GaMnAs, Appl. Phys. Lett. 92 (2008). https://doi.org/10.1063/1.2927481.spa
dc.relation.references[20] X. Liu, Y.Y. Zhou, J.K. Furdyna, Angular dependence of spin-wave resonances and surface spin pinning in ferromagnetic (Ga,Mn) As films, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–8. https://doi.org/10.1103/PhysRevB.75.195220.spa
dc.relation.references[21] U. Wurstbauer, M. Sperl, M. Soda, D. Neumaier, D. Schuh, G. Bayreuther, J. Zweck, W. Wegscheider, Ferromagnetic GaMnAs grown on (110) faced GaAs, Appl. Phys. Lett. 92 (2008) 19–22. https://doi.org/10.1063/1.2884683.spa
dc.relation.references[22] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic Downloaded from, Science (80-. ). 281 (1998) 951–957. www.sciencemag.orghttscience.sciencemag.org/.spa
dc.relation.references[23] C. Zener, Interaction between the d shells in the transition metals, Phys. Rev. 81 (1951) 440–444. https://doi.org/10.1103/PhysRev.81.440.spa
dc.relation.references[24] A. Quesada, M.A. García, J.F. Fernández, A. Hernando, Semiconductores magnéticos diluidos : Materiales para la espintrónica, (2007).spa
dc.relation.references[25] K. Khazen, Ferromagnetic Resonance Investigation of GaMnAs Nanometric Layers, (2008).spa
dc.relation.references[26] and M.T. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, Angle-resolved photoemission study of Ga1−xMnxAs. Phys. Rev. B, 64, 125304. pdf, (n.d.).spa
dc.relation.references[27] E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov. Infrared Probe of Itinerant Ferromagnetism in Ga1−xMnxAs. Phys. Rev. Lett., 89, 097203 (2002).pdf, (n.d.).spa
dc.relation.references[28] J. Blinowski, P. Kacman, Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs, Phys. Rev. B - Condens. Matter Mater. Phys. 67 (2003) 4. https://doi.org/10.1103/PhysRevB.67.121204.spa
dc.relation.references[29] S. Burany, Scanning Electron Microscopy and X-Ray Microanalysis . J. Goldstein, D. Newbury, D. Joy, C, Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael. Kluwer Academic, Plenum Publishers, New York; 2003, 688 pages (Hardback, $75.00) ISBN 0-306-47292-9 , Microsc. Microanal. 9 (2003) 484–484. https://doi.org/10.1017/s1431927603030617.spa
dc.relation.references[30] BJ Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in: 2016: pp. 17–43.spa
dc.relation.references[31] Zhiping Luo, A Practical Guide to Transmission Electron Microscopy, Volume II: Advanced Microscopy, Kindle, 2016. https://www.amazon.com/Practical-Guide-Transmission-Electron-Microscopy-ebook/dp/B01A1IR3VY.spa
dc.relation.references[32] L. Kohl, Helmut ; Reimer, Transmission Electron Microscopy : Physics of Image Formation, 2008. https://doi.org/10.1007/978-0-387-40093-8.spa
dc.relation.references[33] Mauricio Arroyave Franco (Universidad EAFIT), La microscopia, 44 (2008) 68–83. http://www.medic.ula.ve/histologia/anexos/microscopweb/MONOWEB/capitulo3_4.htm.spa
dc.relation.references[34] R.B. Correa, Estudio de capas (Ga,As)(In,N) obtenidas por magnetrón sputtering con posible aplicación en celdas solares, (2015).spa
dc.relation.references[35] C. Hamaguchi, Basic Semiconductor Physics, Second Edi, 2010. https://www.springer.com/gp/book/9783642033025.spa
dc.relation.references[36] J.W. J. Watts, An Introduction to Surface Analysis by XPS and AES, 2015. http://repositorio.unan.edu.ni/2986/1/5624.pdf.spa
dc.relation.references[37] S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev. Sci. Instrum. 30 (1959) 548–557. https://doi.org/10.1063/1.1716679.spa
dc.relation.references[38] A. Rosales Rivera, J.A. Restrepo, M.A. Sanin, O.E. Patiño, Laboratorio de Magnetismo y Materiales Avanzados Universidad Nacional de Colombia Sede Manizales, Rev. Colomb. Física. 38 (2006) 77–80.spa
dc.relation.references[39] R. Bernal-correa, DIFUSIVIDAD T ERMICA DE MONO-CRISTALES DE GaSb Y Si ( 100 ) THERMAL DIFFUSIVITY OF Si ( 100 ) AND GaSb Introducci ´ on En los u ´ ltimos a ˜ nos la t ´ ecnica fotoac ´ ustica ha tomado gran inter ´ es debido a su alto potencial en el estudio de los materi, (2015) 31–44.spa
dc.relation.references[40] A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978–982. https://doi.org/10.1103/PhysRev.56.978.spa
dc.relation.references[41] L.D.N. Semiconductoras, G.A. Madero, Caracterización de capas de GaAs y GaAsMn depositadas por magnetrón sputtering, Superf. y Vacío. 29 (2016) 98–104.spa
dc.relation.references[42] S.C. Jain, M. Willander, H. Maes, Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors, Semicond. Sci. Technol. 11 (1996) 641–671. https://doi.org/10.1088/0268-1242/11/5/004.spa
dc.relation.references[43] M. Sinyukov, R. Trommer, M. Cardona, Resonant Raman scattering in InP, Phys. Status Solidi. 86 (1978) 563–568. https://doi.org/10.1002/pssb.2220860216.spa
dc.relation.references[44] T. Mihailova, N. Velchev, V. Krastev, T. Marinova, XPS study of residual oxide layers on p-GaAs surfaces, Appl. Surf. Sci. 120 (1997) 213–219. https://doi.org/10.1016/S0169-4332(97)00249-3.spa
dc.relation.references[45] P. Streubel, R. Hesse, L. Makhova, J. Schindelka, R. Denecke, A Practicable Method for Thickness Estimation of Ultrathin Layers from XPS Data with UNIFIT 2011, (2011) 15.spa
dc.relation.references[46] M.C. Siqueira, R.N.A. Maia, R.M.T. Araujo, K.D. Machado, S.F. Stolf, J.C. De Lima, C.M. Poffo, Determination of thermal and photothermal properties of an amorphous GaSe9 alloy, J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4894184.spa
dc.relation.references[47] J.C. de Souza, A.F. da Silva, H. Vargas, Optical fundamental band-gap energy of semiconductors by photoacoustic spectroscopy, J. Phys. IV JP. 4 (1994). https://doi.org/10.1051/jp4:1994731.spa
dc.relation.references[48] J.S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53 (1982). https://doi.org/10.1063/1.331665.spa
dc.relation.references[49] J. Mira, F. Rivadulla, J. Rivas, A. Fondado, T. Guidi, R. Caciuffo, F. Carsughi, P.G. Radaelli, J.B. Goodenough, Structural Transformation Induced by Magnetic Field and “Colossal-Like” Magnetoresistance Response above 313 K in MnAs, Phys. Rev. Lett. 90 (2003) 4. https://doi.org/10.1103/PhysRevLett.90.097203.spa
dc.relation.references[50] T. Concerns, Pressure on, (1961) 241.spa
dc.relation.references[51] Y. Shuangli, Magneto-transport in ( Ga , Mn ) As-based alloys and hybrids, (2005).spa
dc.relation.references[52] J. Yang, N.F. Chen, Z. Liu, S. Yang, C. Chai, M. Liao, H. He, (Ga,Mn,As) compounds grown on semi-insulating GaAs with mass-analyzed low energy dual ion beam deposition, J. Cryst. Growth. 234 (2002) 359–363. https://doi.org/10.1016/S0022-0248(01)01722-5.spa
dc.relation.references[53] P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidterilchen mittels Rontgestrahlen, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse. (1918) 98–100.spa
dc.relation.references[54] N. Chen, H. Xiu, J. Yang, J. Wu, X. Zhong, L. Lin, Content analyses in GaMnAs by double-crystal X-ray diffraction, Chinese Sci. Bull. 47 (2002) 274–275. https://doi.org/10.1360/02tb9066.spa
dc.relation.references[55] M.E. Mendoza-Alvarez, C. Tabares-Muñoz, Óxidos Como Sustratos Para Películas Delgadas De Superconductores De Alta Temperatura Crítica, Rev. Mex. Fis. 46 (2000) 8–13.spa
dc.relation.references[56] Y.H. Zhang, L.L. Guo, W.Z. Shen, Study on the Raman scattering measurements of Mn ion implanted GaN, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 130 (2006) 269–272. https://doi.org/10.1016/j.mseb.2006.03.014.spa
dc.relation.references[57] H.W.L. Alves, L. Scolfaro, F. Eronides, S. Jr, Lattice dynamics of Ga 1 − x Mn x N and Ga 1 − x Mn x As by first-principle calculations, 1 (2012) 1–5.spa
dc.relation.references[58] J.B. Kim, Y.P. Lee, K.S. Ryu, S.C. Shin, H. Akinaga, K.W. Kim, Investigation of the micromagnetic structure of MnAs film on GaAs(0 0 1), J. Magn. Magn. Mater. 310 (2007) 1799–1800. https://doi.org/10.1016/j.jmmm.2006.10.711.spa
dc.relation.references[59] J.L. Xu, M. Van Schilfgaarde, G.D. Samolyuk, Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN, Phys. Rev. Lett. 94 (2005) 1–4. https://doi.org/10.1103/PhysRevLett.94.097201.spa
dc.relation.references[60] M. Mizuguchi, H. Akinaga, T. Manago, K. Ono, M. Oshima, M. Shirai, M. Yuri, H. J. Lin, H. H. Hsieh, and C. T. Chen. Epitaxial growth of zincblende CrAs GaAs multilayer. Journal of Applied Physics 91, 7917 (2002) doi 10..pdf, (n.d.).spa
dc.relation.references[61] K. Zhang, C. Tenailleau, P. Alphonse, J.Y. Chane-Ching, Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation, Appl. Phys. A Mater. Sci. Process. 100 (2010) 1049–1055. https://doi.org/10.1007/s00339-010-5905-8.spa
dc.relation.references[62] S.L. Duan, J.O. Artman, B. Wong, D.E. Laughlin, Study of the growth characteristics of sputtered Cr thin films, J. Appl. Phys. 67 (1990) 4913–4915. https://doi.org/10.1063/1.344729.spa
dc.relation.references[63] D. Beazley, B.K. Jones, Critical development stages for the reactive Cr-GaAs(110) interface, Python Cookb. 31 (2013) 706. http://oreilly.com/catalog/errata.csp?isbn=9781449340377.spa
dc.relation.references[64] H. Akinaga, T. Manago, M. Shirai, Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy, Jpn. J. Appl. Phys. 39 (2000) 37–40. https://doi.org/10.1143/jjap.39.l1118.spa
dc.relation.references[65] D. H. Mosca, P. C. de Camargo, J. L. Guimaraes, W. H. Schreiner, A. J. A. de Oliveira, P. E. N. Souza, M. Eddrief, V. H. Etgens. Magnetic and chemical aspects of Crbased films grown on GaAs (001). J. Phys. Condens..pdf, (n.d.).spa
dc.relation.references[66] M.D. Deal, D.A. Stevenson, Diffusion of chromium in gallium arsenide, J. Appl. Phys. 59 (1986) 2398–2407. https://doi.org/10.1063/1.336341.spa
dc.relation.references[67] S. Torres-Jaramillo, C. Pulzara-Mora, R. Bernal-Correa, M.V. de la Cerda, S. Gallardo-Hernández, M. López-López, A. Pulzara-Mora, Structural and optical study of indium and gallium arsenide nanostructures prepared by magnetron sputtering, Univ. Sci. 24 (2019) 523–542. https://doi.org/10.11144/Javeriana.SC24-3.saos.spa
dc.relation.references[68] G. Yang, F. Zhu, S. Dong, Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn, J. Cryst. Growth. 316 (2011) 145–148. https://doi.org/10.1016/j.jcrysgro.2010.12.022.spa
dc.relation.references[69] M.R. Islam, M.M. Hasan, N. Chen, M. Fukuzawa, M. Yamada, Raman scattering study of vibrational modes and hole concentration in GaxMn1-xSb, Semicond. Sci. Technol. 25 (2010). https://doi.org/10.1088/0268-1242/25/9/095010.spa
dc.relation.references[70] R. Fukasawa, S. Perkowitz, Raman-scattering spectra of coupled LO-phonon-hole-plasmon modes in p-type GaAs, Phys. Rev. B. 50 (1994) 14119–14124. https://doi.org/10.1103/PhysRevB.50.14119.spa
dc.relation.references[71] X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng, Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb), Sci. Rep. 6 (2016) 1–7. https://doi.org/10.1038/srep21821.spa
dc.relation.references[72] M. Romcevic, M. Gilic, L. Kilanski, W. Dobrowolski, I.V. Fedorchenko, S.F. Marenkin, N. Romcevic, Phonon properties of ZnSnSb2 + Mn semiconductors: Raman spectroscopy, J. Raman Spectrosc. 49 (2018) 1678–1685. https://doi.org/10.1002/jrs.5421.spa
dc.relation.references[73] I. Conference, C. E. Icece, E. Engineering, S. M. Science, and C. Academy, in: Vib. Modes Ga x Mn 1- x Sb Stud. by Raman Spectrosc., n.d.spa
dc.relation.references[74] P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 1444201–14442012. https://doi.org/10.1103/PhysRevB.64.144420.spa
dc.relation.references[75] Cathy Murphy, Sustainable Nano,” The center for sustainable nanotechnology, 2016, in: n.d.spa
dc.relation.references[76] J. Tejada, X. Zhang, and J. M. Hernández, Magnetic Hysteresis in Novel Magnetic Materials. Greece, 1996..pdf, (n.d.).spa
dc.relation.references[77] B.D. McCombe, M. Na, X. Chen, M. Cheon, S. Wang, H. Luo, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, S.J. Potashnik, P. Schiffer, Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys, Phys. E Low-Dimensional Syst. Nanostructures. 16 (2003) 90–98. https://doi.org/10.1016/S1386-9477(02)00594-5.spa
dc.relation.references[78] Y.A. Danilov, A. V. Kruglov, M. Behar, M.C. Dos Santos, L.G. Pereira, J.E. Schmidt, Formation of clusters and the magnetooptical Kerr effect in gallium arsenide implanted with manganese ions, Phys. Solid State. 47 (2005) 1626–1629. https://doi.org/10.1134/1.2045344.spa
dc.relation.references[79] H. Luo, G.B. Kim, M. Cheon, X. Chen, M. Na, S. Wang, B.D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, G. Boishin, L.J. Whitman, Ferromagnetic GaSb/Mn digital alloys, Phys. E Low-Dimensional Syst. Nanostructures. 20 (2004) 338–345. https://doi.org/10.1016/j.physe.2003.08.030.spa
dc.relation.references[80] A.I. Dmitriev, A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films, J. Appl. Phys. 119 (2016). https://doi.org/10.1063/1.4942005.spa
dc.relation.references[81] A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Ferromagnetism and microwave magnetoresistance of GaMnSb films, Phys. Solid State. 57 (2015) 322–330. https://doi.org/10.1134/S1063783415020353.spa
dc.relation.references[82] G.L. Parrish, C. Ortiz, M. Hart, M. Bellotto, Grazing incidence synchrotron x-ray diffraction method for analyzing thin films, J. Mater. Res. 2 (1987) 471–477. https://doi.org/10.1557/JMR.1987.0471.spa
dc.relation.references[83] U. Complutense, “Centro de Asistencia a la Investigación Difracción de Rayos X.,” in: n.d. http://webs.ucm.es/centros/webs/cai5084/index.php?tp=Difracci%F3n de Polvo&a=dir3&d=23115.php.spa
dc.relation.references[84] D. Chateigner, Thin film analysis by X-ray scattering. By Mario Birkholz, with contributions by P. F. Fewster and C. Genzel. Pp. xxii+356. Weinheim: Wiley-VCH Verlag GmbH Co., 2005. Price (hardcover) EUR 119, SFR 188. ISBN-10: 3-527-31052-5; ISBN-13: 978-3-527-31052-4. , J. Appl. Crystallogr. 39 (2006) 925–926. https://doi.org/10.1107/s0021889806034698.spa
dc.relation.references[85] F. Matsukura, E. Abe, H. Ohno, Magnetotransport properties of (Ga, Mn)Sb, J. Appl. Phys. 87 (2000) 6442–6444. https://doi.org/10.1063/1.372732.spa
dc.relation.references[86] T. Dietl and H. Ohno, Engineering magnetism, Mater. Today. 9 (2006) 18–26.spa
dc.relation.references[87] and U.D. D. K. Sadana, M. H. Norcott, R. G. Wilson, Rapid Thermal Processing: Science and Technology, n.d.spa
dc.relation.references[88] and D.N.S. D. Isheim, M. S. Gagliano, M. E. Fine, Atom Probe Microscopy, n.d.spa
dc.relation.references[89] G.A. Held, G. Grinstein, H. Doyle, S. Sun, C.B. Murray, Competing interactions in dispersions of superparamagnetic nanoparticles, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 124081–124084. https://doi.org/10.1103/physrevb.64.012408.spa
dc.relation.references[90] Y.M. T. Okita, Crystal magnetic anisotropy and magnetization of MnSb, (n.d.).spa
dc.relation.references[91] R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, Electronic and Magnetic Properties of MnSb Compounds, J. Supercond. Nov. Magn. 28 (2015) 1815–1819. https://doi.org/10.1007/s10948-014-2947-8.spa
dc.relation.references[92] M. Asanuma, The magnetic properties of B8 type structure compounds in transition elementsetin systems, J. Phys. Soc. Jpn. 17 (1962)].pdf, (n.d.).spa
dc.relation.references[93] A.E. Taylor, T. Berlijn, S.E. Hahn, A.F. May, T.J. Williams, L. Poudel, S. Calder, R.S. Fishman, M.B. Stone, A.A. Aczel, H.B. Cao, M.D. Lumsden, A.D. Christianson, Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015) 1–11. https://doi.org/10.1103/PhysRevB.91.224418.spa
dc.relation.references[94] G. Zaránd, B. Jankó, [Formula presented]: A Frustrated Ferromagnet, Phys. Rev. Lett. 89 (2002) 2–5. https://doi.org/10.1103/PhysRevLett.89.047201.spa
dc.relation.references[95] G.A. Fiete, G. Zaránd, B. Jankó, P. Redliński, C. Pascu Moca, Positional disorder, spin-orbit coupling, and frustration in Ga 1-xMn xAs, Phys. Rev. B - Condens. Matter Mater. Phys. 71 (2005) 1–16. https://doi.org/10.1103/PhysRevB.71.115202.spa
dc.relation.references[96] G.R.S. Tu Chen, W. Stutius, J.W. Allen, Proceedings of the 21st Annual Conference on Magnetism and Magnetic Materials, AIP, New York, 1976, in: Magn. Magn. Mater. e 1975, n.d.spa
dc.relation.references[97] C. Caizer, M. Stefanescu, Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method, J. Phys. D. Appl. Phys. 35 (2002) 3035–3040. https://doi.org/10.1088/0022-3727/35/23/301.spa
dc.relation.references[98] K. Maaz, A. Mumtaz, S.K. Hasanain, M.F. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles, J. Magn. Magn. Mater. 322 (2010) 2199–2202. https://doi.org/10.1016/j.jmmm.2010.02.010.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembSemiconductores
dc.subject.lembMateriales termoeléctricos
dc.subject.proposalIII-V Semiconductoresspa
dc.subject.proposalMagnetrón Sputteringspa
dc.subject.proposalAleaciones ternariasspa
dc.subject.proposalIII-V Semiconductorseng
dc.subject.proposalMagnetron Sputteringeng
dc.subject.proposalTernary Alloyseng
dc.titleEstudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).spa
dc.title.translatedExperimental study of ternary alloys semi-magnetic of (III-V) (Mn, Cr).eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
78748454.pdf
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: