Evolución molecular de Betacoronavirus zoonóticos asociados con el Síndrome de Distrés Respiratorio Agudo (SDRA)

dc.contributor.advisorBermúdez Santana, Clara Isabel
dc.contributor.advisorGallego Gómez, Juan Carlos
dc.contributor.authorRojas Cruz, Alexis Felipe
dc.contributor.researchgroupRNómica Teórica y Computacionalspa
dc.date.accessioned2022-06-23T16:18:25Z
dc.date.available2022-06-23T16:18:25Z
dc.date.issued2022-06-20
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLos Betacoronavirus han causado a su paso epidemias mortales, como el brote de SARS-CoV de 2002 y la continua prevalencia del MERS-CoV que se detectó por primera vez en 2012. A finales de 2019, se inició la pandemia de COVID-19, lo que impulsó a los científicos de todo el mundo a aplicar sus respectivos conocimientos para abordar cómo el SARS-CoV-2 infecta a los humanos. La principal estrategia ha sido la implementación de sistemas convencionales de vigilancia sanitaria para identificar, intervenir y controlar las infecciones virales causadas por estos virus emergentes. Aunque el seguimiento de la evolución genética del virus ha sido de gran importancia, se desconoce hasta qué punto es posible la transmisión zoonótica entre especies animales susceptibles y no susceptibles, así como la eventual funcionalidad de la arquitectura estructural del genoma de RNA de los Betacoronavirus en la fisiopatología, principalmente para SARS-CoV, MERS-CoV y SARS-CoV-2. Para llenar este vacío de conocimiento y facilitar el desarrollo de tratamientos eficaces, se realizó un estudio amplio de los genomas de los Betacoronavirus mediante el análisis de 1,252,952 secuencias virales reportadas en bases de datos que han circulado desde el 2002 pasando de reservorios naturales a huésped intermedio y humanos. Este trabajo considera dos enfoques diferentes de representar la información genómica, como se presentan y discuten en el capítulo 2: Análisis de secuencia. Esta parte del trabajo presenta un análisis evolutivo de transmisión horizontal en las secuencias virales para caracterizar y describir completamente la variación intra-hospedera de los Betacoronavirus. Los resultados revelan que cambios de aminoácidos en la subunidad S1 de la proteína S de SARS-CoV (G > T; A577S), MERS-CoV (C > T; S746R y C > T; N762A) y SARS-CoV-2 (A > G; D614G) con señales de selección positiva son factores fundamentales que subyacen al posible salto de barrera de los murciélagos al huésped intermedio. El capítulo 3: Análisis estructural, es una sección que explora los Betacoronavirus a nivel estructural como propuesta para descubrir si el plegamiento de estructuras secundarias de RNA conservadas podrían actuar como loci putativos para procesar RNAs pequeños virales, con una posible función asociada a la patogénesis en proceso de selección. Más del 87.58% de estas estructuras de RNA indican que 12 regiones portan RNAs pequeños en los Betacoronavirus, sugiriendo la posibilidad de modular la reprogramación transcripcional del nuevo huésped después de la infección. Los hallazgos de este estudio proporcionan una serie de significativos patrones moleculares que contribuyen a expandir las fronteras de la terapéutica humanos en el contexto de la actual crisis sanitaria mundial (Texto tomado de la fuente).spa
dc.description.abstractBetacoronavirus have caused earlier deadly epidemics, including the 2002 SARS-CoV outbreak and the ongoing prevalence of MERS-CoV, which was first detected in 2012. In late 2019, the emergence of the COVID-19 pandemic encouraged scientists around the globe to apply their respective insights to address how SARS-CoV-2 infects humans. The main strategy has been the implementation of standard health surveillance systems to identify, manage and control viral infections caused by these emerging viruses. Even though monitoring the genetic evolution of the virus has been of high significance, to what extent zoonotic transmission across susceptible and non-susceptible animal species is possible, as well as eventual functionality the structural architecture of the RNA genome of Betacoronavirus in the pathophysiology, mainly for SARS-CoV, MERS-CoV and SARS-CoV-2 is unclear. To fill this knowledge gap and facilitate the development of effective treatments, a comprehensive study of Betacoronavirus genomes was performed by means of the analysis of 1,252,952 viral sequences reported in databases which have circulated since 2002 from natural reservoirs to intermediate hosts and humans. This study includes two different approaches to represent genomic information, as introduced and discussed in Chapter 2: Sequence analyses. This part of the work represents an evolutionary analysis of horizontal transmission in viral sequences to thoroughly characterize and describe the intra-host variation and transmission routes of Betacoronavirus. The results reveal that amino acid changes within S protein S1 subunit of SARS-CoV (G > T; A577S), MERS-CoV (C > T; S746R and C > T; N762A) and SARS-CoV-2 (A > G; D614G) with signals of positive selection are pivotal factors underlying the possible jumping from bats barrier to intermediate host. Chapter 3: Structural analyses, is a section that explores Betacoronavirus at the structural level as a proposal to discover whether the folding of conserved RNA secondary structures may act as putative loci for processing virus-derived small RNAs, with a potential function associated with pathogenesis in the process of selection. Over 87.58% of these RNA structures indicate that 12 regions carry small RNAs in Betacoronavirus, suggesting the possibility of modulation of transcriptional re-programming of the new host upon infection. The findings of this study provide a collection of significant molecular signatures that contribute to pushing the frontiers of human therapeutics in the context of the current global health crisis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaEvolución viral y bioinformática de RNAspa
dc.description.sponsorshipServicio Alemán de Intercambio Académico (DAAD)spa
dc.format.extentxviii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81628
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbascal, F., Zardoya, R., & Telford, M. J. (2010). TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38(Web Server issue), W7-13. https://doi.org/10.1093/nar/gkq291spa
dc.relation.referencesAbdullahi, I. N., Emeribe, A. U., Ajayi, O. A., Oderinde, B. S., Amadu, D. O., & Osuji, A. I. (2020). Implications of SARS-CoV-2 genetic diversity and mutations on pathogenicity of the COVID-19 and biomedical interventions. Journal of Taibah University Medical Sciences, 15(4), 258-264. https://doi.org/10.1016/j.jtumed.2020.06.005spa
dc.relation.referencesAbdullahi, I. N., Emeribe, A. U., Mustapha, J. O., Fasogbon, S. A., Ofor, I. B., Opeyemi, I. S., Obi-George, C., Sunday, A. O., & Nwofe, J. (2020). Exploring the genetics, ecology of SARS-COV-2 and climatic factors as possible control strategies against COVID-19. Le Infezioni in Medicina, 28(2), 166-173.spa
dc.relation.referencesAgarwal, V., Bell, G. W., Nam, J.-W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4, e05005. https://doi.org/10.7554/eLife.05005spa
dc.relation.referencesAlouane, T., Laamarti, M., Essabbar, A., Hakmi, M., Bouricha, E. M., Chemao-Elfihri, M. W., Kartti, S., Boumajdi, N., Bendani, H., Laamarti, R., Ghrifi, F., Allam, L., Aanniz, T., Ouadghiri, M., El Hafidi, N., El Jaoudi, R., Benrahma, H., Attar, J. E., Mentag, R., … Ibrahimi, A. (2020). Genomic Diversity and Hotspot Mutations in 30,983 SARS-CoV-2 Genomes: Moving Toward a Universal Vaccine for the “Confined Virus”? Pathogens, 9(10), 829. https://doi.org/10.3390/pathogens9100829spa
dc.relation.referencesAndersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450-452. https://doi.org/10.1038/s41591-020-0820-9spa
dc.relation.referencesAndrews, R. J., O’Leary, C. A., Tompkins, V. S., Peterson, J. M., Haniff, H. S., Williams, C., Disney, M. D., & Moss, W. N. (2021). A map of the SARS-CoV-2 RNA structurome. NAR Genomics and Bioinformatics, 3(2), lqab043. https://doi.org/10.1093/nargab/lqab043spa
dc.relation.referencesAshour, H. M., Elkhatib, W. F., Rahman, M. M., & Elshabrawy, H. A. (2020). Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens, 9(3), 186. https://doi.org/10.3390/pathogens9030186spa
dc.relation.referencesÅsjö, B., & Kruse, H. (2006). Zoonoses in the Emergence of Human Viral Diseases. Perspectives in Medical Virology, 16, 15-41. https://doi.org/10.1016/S0168-7069(06)16003-6spa
dc.relation.referencesAydemir, M. N., Aydemir, H. B., Korkmaz, E. M., Budak, M., Cekin, N., & Pinarbasi, E. (2021). Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Reports, 22, 101012. https://doi.org/10.1016/j.genrep.2020.101012spa
dc.relation.referencesBalmeh, N., Mahmoudi, S., Mohammadi, N., & Karabedianhajiabadi, A. (2020). Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Informatics in Medicine Unlocked, 20, 100407. https://doi.org/10.1016/j.imu.2020.100407spa
dc.relation.referencesBanaganapalli, B., Al-Rayes, N., Awan, Z. A., Alsulaimany, F. A., Alamri, A. S., Elango, R., Malik, M. Z., & Shaik, N. A. (2021). Multilevel systems biology analysis of lung transcriptomics data identifies key miRNAs and potential miRNA target genes for SARS-CoV-2 infection. Computers in Biology and Medicine, 135, 104570. https://doi.org/10.1016/j.compbiomed.2021.104570spa
dc.relation.referencesBarreda-Manso, M. A., Nieto-Díaz, M., Soto, A., Muñoz-Galdeano, T., Reigada, D., & Maza, R. M. (2021). In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3′-UTR. International Journal of Molecular Sciences, 22(11), 6094. https://doi.org/10.3390/ijms22116094spa
dc.relation.referencesBattaglia, R., Alonzo, R., Pennisi, C., Caponnetto, A., Ferrara, C., Stella, M., Barbagallo, C., Barbagallo, D., Ragusa, M., Purrello, M., & Di Pietro, C. (2021). MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease. International Journal of Molecular Sciences, 22(24), 13192. https://doi.org/10.3390/ijms222413192spa
dc.relation.referencesBernard, M. A., Zhao, H., Yue, S. C., Anandaiah, A., Koziel, H., & Tachado, S. D. (2014). Novel HIV-1 MiRNAs Stimulate TNFα Release in Human Macrophages via TLR8 Signaling Pathway. PLOS ONE, 9(9), e106006. https://doi.org/10.1371/journal.pone.0106006spa
dc.relation.referencesBernhardt, H. S. (2012). The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others)(a). Biology Direct, 7, 23. https://doi.org/10.1186/1745-6150-7-23spa
dc.relation.referencesBernier, A., & Sagan, S. M. (2018). The Diverse Roles of microRNAs at the Host–Virus Interface. Viruses, 10(8), 440. https://doi.org/10.3390/v10080440spa
dc.relation.referencesBetel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), R90. https://doi.org/10.1186/gb-2010-11-8-r90spa
dc.relation.referencesBoni, M. F., Lemey, P., Jiang, X., Lam, T. T.-Y., Perry, B. W., Castoe, T. A., Rambaut, A., & Robertson, D. L. (2020). Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiology, 5(11), 1408-1417. https://doi.org/10.1038/s41564-020-0771-4spa
dc.relation.referencesBrister, J. R., Ako-adjei, D., Bao, Y., & Blinkova, O. (2015). NCBI Viral Genomes Resource. Nucleic Acids Research, 43(Database issue), D571-D577. https://doi.org/10.1093/nar/gku1207spa
dc.relation.referencesCallahan, V., Hawks, S., Crawford, M. A., Lehman, C. W., Morrison, H. A., Ivester, H. M., Akhrymuk, I., Boghdeh, N., Flor, R., Finkielstein, C. V., Allen, I. C., Weger-Lucarelli, J., Duggal, N., Hughes, M. A., & Kehn-Hall, K. (2021). The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent Manner. Viruses, 13(6), 1062. https://doi.org/10.3390/v13061062spa
dc.relation.referencesCanakoglu, A., Pinoli, P., Bernasconi, A., Alfonsi, T., Melidis, D. P., & Ceri, S. (2021). ViruSurf: An integrated database to investigate viral sequences. Nucleic Acids Research, 49(D1), D817-D824. https://doi.org/10.1093/nar/gkaa846spa
dc.relation.referencesCao, C., Cai, Z., Xiao, X., Rao, J., Chen, J., Hu, N., Yang, M., Xing, X., Wang, Y., Li, M., Zhou, B., Wang, X., Wang, J., & Xue, Y. (2021). The architecture of the SARS-CoV-2 RNA genome inside virion. Nature Communications, 12(1), 3917. https://doi.org/10.1038/s41467-021-22785-xspa
dc.relation.referencesCarrasco-Hernandez, R., Jácome, R., López Vidal, Y., & Ponce de León, S. (2017). Are RNA Viruses Candidate Agents for the Next Global Pandemic? A Review. ILAR Journal, 58(3), 343-358. https://doi.org/10.1093/ilar/ilx026spa
dc.relation.referencesCeraolo, C., & Giorgi, F. M. (2020). Genomic variance of the 2019-nCoV coronavirus. Journal of Medical Virology, 92(5), 522-528. https://doi.org/10.1002/jmv.25700spa
dc.relation.referencesChan, Agnes. P., Choi, Y., & Schork, N. J. (2020). CONSERVED GENOMIC TERMINALS OF SARS-COV-2 AS CO-EVOLVING FUNCTIONAL ELEMENTS AND POTENTIAL THERAPEUTIC TARGETS. bioRxiv. https://doi.org/10.1101/2020.07.06.190207spa
dc.relation.referencesChan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221-236. https://doi.org/10.1080/22221751.2020.1719902spa
dc.relation.referencesChen, C.-Y., Ping, Y.-H., Lee, H.-C., Chen, K.-H., Lee, Y.-M., Chan, Y.-J., Lien, T.-C., Jap, T.-S., Lin, C.-H., Kao, L.-S., & Chen, Y.-M. A. (2007). Open Reading Frame 8a of the Human Severe Acute Respiratory Syndrome Coronavirus Not Only Promotes Viral Replication but Also Induces Apoptosis. The Journal of Infectious Diseases, 196(3), 405-415. https://doi.org/10.1086/519166spa
dc.relation.referencesChen, L., Song, W., Davis, I. C., Shrestha, K., Schwiebert, E., Sullender, W. M., & Matalon, S. (2009). Inhibition of Na+ transport in lung epithelial cells by respiratory syncytial virus infection. American Journal of Respiratory Cell and Molecular Biology, 40(5), 588-600. https://doi.org/10.1165/rcmb.2008-0034OCspa
dc.relation.referencesChen, Y., & Wang, X. (2020). miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Research, 48(D1), D127-D131. https://doi.org/10.1093/nar/gkz757spa
dc.relation.referencesChen, Y., Ye, W., Zhang, Y., & Xu, Y. (2015). High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Research, 43(16), 7762-7768. https://doi.org/10.1093/nar/gkv784spa
dc.relation.referencesChen, Z., Liang, H., Chen, X., Ke, Y., Zhou, Z., Yang, M., Zen, K., Yang, R., Liu, C., & Zhang, C.-Y. (2016). An Ebola virus-encoded microRNA-like fragment serves as a biomarker for early diagnosis of Ebola virus disease. Cell Research, 26(3), 380-383. https://doi.org/10.1038/cr.2016.21spa
dc.relation.referencesChow, J. T.-S., & Salmena, L. (2020). Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes, 11(9). https://doi.org/10.3390/genes11091002spa
dc.relation.referencesCingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. https://doi.org/10.4161/fly.19695spa
dc.relation.referencesConzade, R., Grant, R., Malik, M. R., Elkholy, A., Elhakim, M., Samhouri, D., Ben Embarek, P. K., & Van Kerkhove, M. D. (2018). Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases. Viruses, 10(8), 425. https://doi.org/10.3390/v10080425spa
dc.relation.referencesCorman, V. M., Ithete, N. L., Richards, L. R., Schoeman, M. C., Preiser, W., Drosten, C., & Drexler, J. F. (2014). Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat. Journal of Virology, 88(19), 11297-11303. https://doi.org/10.1128/JVI.01498-14spa
dc.relation.referencesCui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192. https://doi.org/10.1038/s41579-018-0118-9spa
dc.relation.referencesCullen, B. R. (2004). Transcription and Processing of Human microRNA Precursors. Molecular Cell, 16(6), 861-865. https://doi.org/10.1016/j.molcel.2004.12.002spa
dc.relation.referencesCullen, B. R. (2010). Five questions about viruses and microRNAs. PLoS Pathogens, 6(2), e1000787. https://doi.org/10.1371/journal.ppat.1000787spa
dc.relation.referencesCyranoski, D. (2020). Did pangolins spread the China coronavirus to people? https://www.nature.com/articles/d41586-020-00364-2spa
dc.relation.referencesda Silva, P. G., Mesquita, J. R., de São José Nascimento, M., & Ferreira, V. A. M. (2021). Viral, host and environmental factors that favor anthropozoonotic spillover of coronaviruses: An opinionated review, focusing on SARS-CoV, MERS-CoV and SARS-CoV-2. The Science of the Total Environment, 750, 141483. https://doi.org/10.1016/j.scitotenv.2020.141483spa
dc.relation.referencesDanecek, P., & McCarthy, S. A. (2017). BCFtools/csq: Haplotype-aware variant consequences. Bioinformatics (Oxford, England), 33(13), 2037-2039. https://doi.org/10.1093/bioinformatics/btx100spa
dc.relation.referencesDaniloski, Z., Jordan, T. X., Ilmain, J. K., Guo, X., Bhabha, G., tenOever, B. R., & Sanjana, N. E. (2020). The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. BioRxiv, 2020.06.14.151357. https://doi.org/10.1101/2020.06.14.151357spa
dc.relation.referencesDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and high-performance computing. Nature methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109spa
dc.relation.referencesDe, M. N., Walker, C., Borges, R., Weilguny, L., Slodkowicz, G., & Goldman, N. (2020). Issues with SARS-CoV-2 sequencing dat. https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473spa
dc.relation.referencesDenison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses. RNA Biology, 8(2), 270-279. https://doi.org/10.4161/rna.8.2.15013spa
dc.relation.referencesDickey, L. L., Worne, C. L., Glover, J. L., Lane, T. E., & O’Connell, R. M. (2016). MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. Journal of Neuroinflammation, 13(1), 240. https://doi.org/10.1186/s12974-016-0699-zspa
dc.relation.referencesDomingo, E., Martínez-Salas, E., Sobrino, F., de la Torre, J. C., Portela, A., Ortín, J., López-Galindez, C., Pérez-Breña, P., Villanueva, N., Nájera, R., VandePol, S., Steinhauer, D., DePolo, N., & Holland, J. (1985). The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: Biological relevance — a review. Gene, 40(1), 1-8. https://doi.org/10.1016/0378-1119(85)90017-4spa
dc.relation.referencesDuffy, S., Shackelton, L. A., & Holmes, E. C. (2008). Rates of evolutionary change in viruses: Patterns and determinants. Nature Reviews Genetics, 9(4), 267-276. https://doi.org/10.1038/nrg2323spa
dc.relation.referencesDuy, J., Honko, A. N., Altamura, L. A., Bixler, S. L., Wollen-Roberts, S., Wauquier, N., O’Hearn, A., Mucker, E. M., Johnson, J. C., Shamblin, J. D., Zelko, J., Botto, M. A., Bangura, J., Coomber, M., Pitt, M. L., Gonzalez, J.-P., Schoepp, R. J., Goff, A. J., & Minogue, T. D. (2018). Virus-encoded miRNAs in Ebola virus disease. Scientific Reports, 8(1), 6480. https://doi.org/10.1038/s41598-018-23916-zspa
dc.relation.referencesElizondo, V., Harkins, G. W., Mabvakure, B., Smidt, S., Zappile, P., Marier, C., Maurano, M., Perez, V., Mazza, N., Beloso, C., Ifran, S., Fernandez, M., Santini, A., Perez, V., Estevez, V., Nin, M., Manrique, G., Perez, L., Ross, F., … Duerr, R. (2020). SARS-CoV-2 genomic characterization and clinical manifestation of the COVID-19 outbreak in Uruguay. medRxiv, 2020.10.08.20208546. https://doi.org/10.1101/2020.10.08.20208546spa
dc.relation.referencesEl-Sayed, A., & Kamel, M. (2021). Coronaviruses in humans and animals: The role of bats in viral evolution. Environmental Science and Pollution Research, 28(16), 19589-19600. https://doi.org/10.1007/s11356-021-12553-1spa
dc.relation.referencesFan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11(3), 210. https://doi.org/10.3390/v11030210spa
dc.relation.referencesFarkas, C., Mella, A., & Haigh, J. J. (2020). Large-scale population analysis of SARS-CoV-2 whole genome sequences reveals host-mediated viral evolution with emergence of mutations in the viral Spike protein associated with elevated mortality rates (p. 2020.10.23.20218511). https://doi.org/10.1101/2020.10.23.20218511spa
dc.relation.referencesFarrag, M. A., Amer, H. M., Bhat, R., & Almajhdi, F. N. (2021). Sequence and phylogentic analysis of MERS-CoV in Saudi Arabia, 2012–2019. Virology Journal, 18(1), 90. https://doi.org/10.1186/s12985-021-01563-7spa
dc.relation.referencesFarrag, M. A., Amer, H. M., Bhat, R., Hamed, M. E., Aziz, I. M., Mubarak, A., Dawoud, T. M., Almalki, S. G., Alghofaili, F., Alnemare, A. K., Al-Baradi, R. S., Alosaimi, B., & Alturaiki, W. (2021). SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. International Journal of Environmental Research and Public Health, 18(12), 6312. https://doi.org/10.3390/ijerph18126312spa
dc.relation.referencesFehr, A. R., & Perlman, S. (2015). Coronaviruses: An Overview of Their Replication and Pathogenesis. En H. J. Maier, E. Bickerton, & P. Britton (Eds.), Coronaviruses: Methods and Protocols (pp. 1-23). Springer. https://doi.org/10.1007/978-1-4939-2438-7_1spa
dc.relation.referencesFerron, F., Subissi, L., Morais, A. T. S. D., Le, N. T. T., Sevajol, M., Gluais, L., Decroly, E., Vonrhein, C., Bricogne, G., Canard, B., & Imbert, I. (2018). Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences, 115(2), E162-E171. https://doi.org/10.1073/pnas.1718806115spa
dc.relation.referencesForni, D., Cagliani, R., Clerici, M., & Sironi, M. (2017). Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology, 25(1), 35-48. https://doi.org/10.1016/j.tim.2016.09.001spa
dc.relation.referencesFrutos, R., Serra-Cobo, J., Pinault, L., Lopez Roig, M., & Devaux, C. A. (2021). Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.591535spa
dc.relation.referencesFu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. https://doi.org/10.1093/bioinformatics/bts565spa
dc.relation.referencesFulzele, S., Sahay, B., Yusufu, I., Lee, T. J., Sharma, A., Kolhe, R., & Isales, C. M. (2020). COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile. Aging and Disease, 11(3), 509-522. https://doi.org/10.14336/AD.2020.0428spa
dc.relation.referencesGasparello, J., Finotti, A., & Gambari, R. (2021). Tackling the COVID-19 “cytokine storm” with microRNA mimics directly targeting the 3’UTR of pro-inflammatory mRNAs. Medical Hypotheses, 146, 110415. https://doi.org/10.1016/j.mehy.2020.110415spa
dc.relation.referencesGeoghegan, J. L., Duchêne, S., & Holmes, E. C. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathogens, 13(2), e1006215. https://doi.org/10.1371/journal.ppat.1006215spa
dc.relation.referencesGojobori, T., Moriyama, E. N., & Kimura, M. (1990). Molecular clock of viral evolution, and the neutral theory. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 10015-10018. https://doi.org/10.1073/pnas.87.24.10015spa
dc.relation.referencesGraepel, K. W., Lu, X., Case, J. B., Sexton, N. R., Smith, E. C., & Denison, M. R. (2017). Proofreading-deficient coronaviruses adapt over long-term passage for increased fidelity and fitness without reversion of exoribonuclease-inactivating mutations. BioRxiv, 175562. https://doi.org/10.1101/175562spa
dc.relation.referencesGralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12(2), 135. https://doi.org/10.3390/v12020135spa
dc.relation.referencesGruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: Improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69-79.spa
dc.relation.referencesGuan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J., Guan, Y. J., Butt, K. M., Wong, K. L., Chan, K. W., Lim, W., Shortridge, K. F., Yuen, K. Y., Peiris, J. S. M., & Poon, L. L. M. (2003). Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science, 302(5643), 276-278. https://doi.org/10.1126/science.1087139spa
dc.relation.referencesGuzzi, P. H., Mercatelli, D., Ceraolo, C., & Giorgi, F. M. (2020). Master Regulator Analysis of the SARS-CoV-2/Human Interactome. Journal of Clinical Medicine, 9(4), 982. https://doi.org/10.3390/jcm9040982spa
dc.relation.referencesHadfield, J., Megill, C., Bell, S. M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., & Neher, R. A. (2018). Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 34(23), 4121-4123. https://doi.org/10.1093/bioinformatics/bty407spa
dc.relation.referencesHan, G.-Z. (2020). Pangolins Harbor SARS-CoV-2-Related Coronaviruses. Trends in Microbiology, 28(7), 515-517. https://doi.org/10.1016/j.tim.2020.04.001spa
dc.relation.referencesHasan, M. M., Akter, R., Ullah, M. S., Abedin, M. J., Ullah, G. M. A., & Hossain, M. Z. (2014). A Computational Approach for Predicting Role of Human MicroRNAs in MERS-CoV Genome. Advances in Bioinformatics, 2014, e967946. https://doi.org/10.1155/2014/967946spa
dc.relation.referencesHofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429-3431.spa
dc.relation.referencesHon, C.-C., Lam, T.-Y., Shi, Z.-L., Drummond, A. J., Yip, C.-W., Zeng, F., Lam, P.-Y., & Leung, F. C.-C. (2008). Evidence of the Recombinant Origin of a Bat Severe Acute Respiratory Syndrome (SARS)-Like Coronavirus and Its Implications on the Direct Ancestor of SARS Coronavirus. Journal of Virology, 82(4), 1819-1826. https://doi.org/10.1128/JVI.01926-07spa
dc.relation.referencesHu, J., Peng, P., Cao, X., Wu, K., Chen, J., Wang, K., Tang, N., & Huang, A. (2022). Increased immune escape of the new SARS-CoV-2 variant of concern Omicron. Cellular & Molecular Immunology, 1-3. https://doi.org/10.1038/s41423-021-00836-zspa
dc.relation.referencesHuang, H.-Y., Lin, Y.-C.-D., Li, J., Huang, K.-Y., Shrestha, S., Hong, H.-C., Tang, Y., Chen, Y.-G., Jin, C.-N., Yu, Y., Xu, J.-T., Li, Y.-M., Cai, X.-X., Zhou, Z.-Y., Chen, X.-H., Pei, Y.-Y., Hu, L., Su, J.-J., Cui, S.-D., … Huang, H.-D. (2020). miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Research, 48(D1), D148-D154. https://doi.org/10.1093/nar/gkz896spa
dc.relation.referencesHussain, M., & Asgari, S. (2014). MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proceedings of the National Academy of Sciences, 111(7), 2746-2751. https://doi.org/10.1073/pnas.1320123111spa
dc.relation.referencesHussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., & Guo, D. (2005). Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 79(9), 5288-5295. https://doi.org/10.1128/JVI.79.9.5288-5295.2005spa
dc.relation.referencesHuston, N. C., Wan, H., Strine, M. S., de Cesaris Araujo Tavares, R., Wilen, C. B., & Pyle, A. M. (2021). Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Molecular Cell, 81(3), 584-598.e5. https://doi.org/10.1016/j.molcel.2020.12.041spa
dc.relation.referencesIto, K., & Murphy, D. (2013). Application of ggplot2 to Pharmacometric Graphics. CPT: Pharmacometrics & Systems Pharmacology, 2, e79. https://doi.org/10.1038/psp.2013.56spa
dc.relation.referencesJohn, G., Sahajpal, N. S., Mondal, A. K., Ananth, S., Williams, C., Chaubey, A., Rojiani, A. M., & Kolhe, R. (2021). Next-Generation Sequencing (NGS) in COVID-19: A Tool for SARS-CoV-2 Diagnosis, Monitoring New Strains and Phylodynamic Modeling in Molecular Epidemiology. Current Issues in Molecular Biology, 43(2), 845-867. https://doi.org/10.3390/cimb43020061spa
dc.relation.referencesKalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., Rivas, E., Eddy, S. R., Finn, R. D., Bateman, A., & Petrov, A. I. (2021). Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research, 49(D1), D192-D200. https://doi.org/10.1093/nar/gkaa1047spa
dc.relation.referencesKelly, J. A., Woodside, M. T., & Dinman, J. D. (2021). Programmed −1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology, 554, 75-82. https://doi.org/10.1016/j.virol.2020.12.010spa
dc.relation.referencesKeng, C.-T., Choi, Y.-W., Welkers, M. R. A., Chan, D. Z. L., Shen, S., Gee Lim, S., Hong, W., & Tan, Y.-J. (2006). The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology, 354(1), 132-142. https://doi.org/10.1016/j.virol.2006.06.026spa
dc.relation.referencesKim, D., Lee, J.-Y., Yang, J.-S., Kim, J. W., Kim, V. N., & Chang, H. (2020). The Architecture of SARS-CoV-2 Transcriptome. Cell, 181(4), 914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011spa
dc.relation.referencesKim, W. R., Park, E. G., Kang, K.-W., Lee, S.-M., Kim, B., & Kim, H.-S. (2020). Expression Analyses of MicroRNAs in Hamster Lung Tissues Infected by SARS-CoV-2. Molecules and Cells, 43(11), 953-963. https://doi.org/10.14348/molcells.2020.0177spa
dc.relation.referencesKopecky-Bromberg, S. A., Martínez-Sobrido, L., Frieman, M., Baric, R. A., & Palese, P. (2007). Severe Acute Respiratory Syndrome Coronavirus Open Reading Frame (ORF) 3b, ORF 6, and Nucleocapsid Proteins Function as Interferon Antagonists. Journal of Virology, 81(2), 548-557. https://doi.org/10.1128/JVI.01782-06spa
dc.relation.referencesKorber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E. E., Bhattacharya, T., Parker, M. D., Partridge, D. G., Evans, C. M., Silva, T. de, Group, on behalf of the S. C.-19 G., LaBranche, C. C., & Montefiori, D. C. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. BioRxiv, 2020.04.29.069054. https://doi.org/10.1101/2020.04.29.069054spa
dc.relation.referencesKosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22(5), 1208-1222. https://doi.org/10.1093/molbev/msi105spa
dc.relation.referencesKozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Research, 47(D1), D155-D162. https://doi.org/10.1093/nar/gky1141spa
dc.relation.referencesKrol, J., Sobczak, K., Wilczynska, U., Drath, M., Jasinska, A., Kaczynska, D., & Krzyzosiak, W. J. (2004). Structural Features of MicroRNA (miRNA) Precursors and Their Relevance to miRNA Biogenesis and Small Interfering RNA/Short Hairpin RNA Design *. Journal of Biological Chemistry, 279(40), 42230-42239. https://doi.org/10.1074/jbc.M404931200spa
dc.relation.referencesKrüger, J., & Rehmsmeier, M. (2006). RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Research, 34(Web Server issue), W451-W454. https://doi.org/10.1093/nar/gkl243spa
dc.relation.referencesLam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., Li, W.-J., Jiang, B.-G., Wei, W., Yuan, T.-T., Zheng, K., Cui, X.-M., Li, J., Pei, G.-Q., Qiang, X., … Cao, W.-C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282-285. https://doi.org/10.1038/s41586-020-2169-0spa
dc.relation.referencesLarsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276-3278. https://doi.org/10.1093/bioinformatics/btu531spa
dc.relation.referencesLatinne, A., Hu, B., Olival, K. J., Zhu, G., Zhang, L., Li, H., Chmura, A. A., Field, H. E., Zambrana-Torrelio, C., Epstein, J. H., Li, B., Zhang, W., Wang, L.-F., Shi, Z.-L., & Daszak, P. (2020). Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 11(1), 4235. https://doi.org/10.1038/s41467-020-17687-3spa
dc.relation.referencesLau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Tsoi, H.-W., Wong, B. H. L., Wong, S. S. Y., Leung, S.-Y., Chan, K.-H., & Yuen, K.-Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences, 102(39), 14040-14045. https://doi.org/10.1073/pnas.0506735102spa
dc.relation.referencesLi, F. (2013). Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Research, 100(1), 246-254. https://doi.org/10.1016/j.antiviral.2013.08.014spa
dc.relation.referencesLi, F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology, 3(1), 237-261. https://doi.org/10.1146/annurev-virology-110615-042301spa
dc.relation.referencesLi, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics (Oxford, England), 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191spa
dc.relation.referencesLi, X., Fu, Z., Liang, H., Wang, Y., Qi, X., Ding, M., Sun, X., Zhou, Z., Huang, Y., Gu, H., Li, L., Chen, X., Li, D., Zhao, Q., Liu, F., Wang, H., Wang, J., Zen, K., & Zhang, C.-Y. (2018). H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell Research, 28(2), 157-171. https://doi.org/10.1038/cr.2018.3spa
dc.relation.referencesLi, X., Giorgi, E. E., Marichannegowda, M. H., Foley, B., Xiao, C., Kong, X.-P., Chen, Y., Gnanakaran, S., Korber, B., & Gao, F. (2020). Emergence of SARS-CoV-2 through recombination and strong purifying selection. Science Advances, eabb9153. https://doi.org/10.1126/sciadv.abb9153spa
dc.relation.referencesLi, X., & Zou, X. (2019). An overview of RNA virus-encoded microRNAs. ExRNA, 1(1), 37. https://doi.org/10.1186/s41544-019-0037-6spa
dc.relation.referencesLi, Z., Luo, Q., Xu, H., Zheng, M., Abdalla, B. A., Feng, M., Cai, B., Zhang, X., Nie, Q., & Zhang, X. (2017). MiR-34b-5p Suppresses Melanoma Differentiation-Associated Gene 5 (MDA5) Signaling Pathway to Promote Avian Leukosis Virus Subgroup J (ALV-J)-Infected Cells Proliferaction and ALV-J Replication. Frontiers in Cellular and Infection Microbiology, 7, 17. https://doi.org/10.3389/fcimb.2017.00017spa
dc.relation.referencesLiu, Q., Du, J., Yu, X., Xu, J., Huang, F., Li, X., Zhang, C., Li, X., Chang, J., Shang, D., Zhao, Y., Tian, M., Lu, H., Xu, J., Li, C., Zhu, H., Jin, N., & Jiang, C. (2017). MiRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discovery, 3(1), 1-17. https://doi.org/10.1038/celldisc.2017.21spa
dc.relation.referencesLiu, Y., Sun, J., Zhang, H., Wang, M., Gao, G. F., & Li, X. (2016). Ebola virus encodes a miR-155 analog to regulate importin-α5 expression. Cellular and Molecular Life Sciences, 73(19), 3733-3744. https://doi.org/10.1007/s00018-016-2215-0spa
dc.relation.referencesLiu, Y., Wimmer, E., & Paul, A. V. (2009). Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(9), 495-517. https://doi.org/10.1016/j.bbagrm.2009.09.007spa
dc.relation.referencesLokugamage, K. G., Hage, A., de Vries, M., Valero-Jimenez, A. M., Schindewolf, C., Dittmann, M., Rajsbaum, R., & Menachery, V. D. (2020). Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of Virology, 94(23), e01410-20. https://doi.org/10.1128/JVI.01410-20spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8spa
dc.relation.referencesLu, D., Chatterjee, S., Xiao, K., Riedel, I., Wang, Y., Foo, R., Bär, C., & Thum, T. (2020). MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 148, 46-49. https://doi.org/10.1016/j.yjmcc.2020.08.017spa
dc.relation.referencesLu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: Spike features determining «host jump» of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468-478. https://doi.org/10.1016/j.tim.2015.06.003spa
dc.relation.referencesLu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8spa
dc.relation.referencesMa, X., Zhao, X., Zhang, Z., Guo, J., Guan, L., Li, J., Mi, M., Huang, Y., & Tong, D. (2018). Differentially expressed non-coding RNAs induced by transmissible gastroenteritis virus potentially regulate inflammation and NF-κB pathway in porcine intestinal epithelial cell line. BMC Genomics, 19(1), 747. https://doi.org/10.1186/s12864-018-5128-5spa
dc.relation.referencesMadhugiri, R., Fricke, M., Marz, M., & Ziebuhr, J. (2016). Chapter Four—Coronavirus cis-Acting RNA Elements. En J. Ziebuhr (Ed.), Advances in Virus Research (Vol. 96, pp. 127-163). Academic Press. https://doi.org/10.1016/bs.aivir.2016.08.007spa
dc.relation.referencesMallick, B., Ghosh, Z., & Chakrabarti, J. (2009). MicroRNome Analysis Unravels the Molecular Basis of SARS Infection in Bronchoalveolar Stem Cells. PLOS ONE, 4(11), e7837. https://doi.org/10.1371/journal.pone.0007837spa
dc.relation.referencesMasters, P. S. (2006). The Molecular Biology of Coronaviruses. En Advances in Virus Research (Vol. 66, pp. 193-292). Academic Press. https://doi.org/10.1016/S0065-3527(06)66005-3spa
dc.relation.referencesMatarese, A., Gambardella, J., Sardu, C., & Santulli, G. (2020). miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19. Biomedicines, 8(11), 462. https://doi.org/10.3390/biomedicines8110462spa
dc.relation.referencesMeckiff, B. J., Ramírez-Suástegui, C., Fajardo, V., Chee, S. J., Kusnadi, A., Simon, H., Grifoni, A., Pelosi, E., Weiskopf, D., Sette, A., Ay, F., Seumois, G., Ottensmeier, C. H., & Vijayanand, P. (2020). Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells. Social Science Research Network, 3641939. https://doi.org/10.2139/ssrn.3641939spa
dc.relation.referencesMemish, Z. A., Cotten, M., Meyer, B., Watson, S. J., Alsahafi, A. J., Al Rabeeah, A. A., Corman, V. M., Sieberg, A., Makhdoom, H. Q., Assiri, A., Al Masri, M., Aldabbagh, S., Bosch, B.-J., Beer, M., Müller, M. A., Kellam, P., & Drosten, C. (2014). Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerging Infectious Diseases, 20(6), 1012-1015. https://doi.org/10.3201/eid2006.140402spa
dc.relation.referencesMenachery, V. D., Graham, R. L., & Baric, R. S. (2017). Jumping species—A mechanism for coronavirus persistence and survival. Current Opinion in Virology, 23, 1-7. https://doi.org/10.1016/j.coviro.2017.01.002spa
dc.relation.referencesMerino, G. A., Raad, J., Bugnon, L. A., Yones, C., Kamenetzky, L., Claus, J., Ariel, F., Milone, D. H., & Stegmayer, G. (2020). Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics, 36(24), 5571-5581. https://doi.org/10.1093/bioinformatics/btaa1002spa
dc.relation.referencesMi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. (2019). PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Research, 47(D1), D419-D426. https://doi.org/10.1093/nar/gky1038spa
dc.relation.referencesMichel, C. J., Mayer, C., Poch, O., & Thompson, J. D. (2020). Characterization of accessory genes in coronavirus genomes. Virology Journal, 17(1), 131. https://doi.org/10.1186/s12985-020-01402-1spa
dc.relation.referencesMignone, F., Grillo, G., Licciulli, F., Iacono, M., Liuni, S., Kersey, P. J., Duarte, J., Saccone, C., & Pesole, G. (2005). UTRdb and UTRsite: A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Research, 33(Database issue), D141-146. https://doi.org/10.1093/nar/gki021spa
dc.relation.referencesMiller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), 1-8. https://doi.org/10.1109/GCE.2010.5676129spa
dc.relation.referencesMishra, R., Kumar, A., Ingle, H., & Kumar, H. (2020). The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Frontiers in Immunology, 10, 3079. https://doi.org/10.3389/fimmu.2019.03079spa
dc.relation.referencesMorales, L., Oliveros, J. C., Fernandez-Delgado, R., tenOever, B. R., Enjuanes, L., & Sola, I. (2017). SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology. Cell Host & Microbe, 21(3), 344-355. https://doi.org/10.1016/j.chom.2017.01.015spa
dc.relation.referencesMorel, B., Barbera, P., Czech, L., Bettisworth, B., Hübner, L., Lutteropp, S., Serdari, D., Kostaki, E.-G., Mamais, I., Kozlov, A. M., Pavlidis, P., Paraskevis, D., & Stamatakis, A. (2021). Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult. Molecular Biology and Evolution, 38(5), 1777-1791. https://doi.org/10.1093/molbev/msaa314spa
dc.relation.referencesMurrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Molecular Biology and Evolution, 30(5), 1196-1205. https://doi.org/10.1093/molbev/mst030spa
dc.relation.referencesMurrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., & Kosakovsky Pond, S. L. (2012). Detecting individual sites subject to episodic diversifying selection. PLoS Genetics, 8(7), e1002764. https://doi.org/10.1371/journal.pgen.1002764spa
dc.relation.referencesNelson, J. W., & Breaker, R. R. (2017). The lost language of the RNA World. Science Signaling, 10(483). https://doi.org/10.1126/scisignal.aam8812spa
dc.relation.referencesNowick, K., Walter Costa, M. B., Höner zu Siederdissen, C., & Stadler, P. F. (2019). Selection Pressures on RNA Sequences and Structures. Evolutionary Bioinformatics Online, 15. https://doi.org/10.1177/1176934319871919spa
dc.relation.referencesOmoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E. A., Saksena, N. K., & Fujii, Y. R. (2004). HIV-1 nef suppression by virally encoded microRNA. Retrovirology, 1(1), 44. https://doi.org/10.1186/1742-4690-1-44spa
dc.relation.referencesOmrani, A. S., Al-Tawfiq, J. A., & Memish, Z. A. (2015). Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction. Pathogens and Global Health, 109(8), 354-362. https://doi.org/10.1080/20477724.2015.1122852spa
dc.relation.referencesOostra, M., de Haan, C. A. M., & Rottier, P. J. M. (2007). The 29-Nucleotide Deletion Present in Human but Not in Animal Severe Acute Respiratory Syndrome Coronaviruses Disrupts the Functional Expression of Open Reading Frame 8. Journal of Virology, 81(24), 13876-13888. https://doi.org/10.1128/JVI.01631-07spa
dc.relation.referencesPang, K. C., Frith, M. C., & Mattick, J. S. (2006). Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends in Genetics, 22(1), 1-5. https://doi.org/10.1016/j.tig.2005.10.003spa
dc.relation.referencesParadis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics (Oxford, England), 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412spa
dc.relation.referencesPeng, X., Gralinski, L., Ferris, M. T., Frieman, M. B., Thomas, M. J., Proll, S., Korth, M. J., Tisoncik, J. R., Heise, M., Luo, S., Schroth, G. P., Tumpey, T. M., Li, C., Kawaoka, Y., Baric, R. S., & Katze, M. G. (2011). Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection. MBio, 2(6). https://doi.org/10.1128/mBio.00198-11spa
dc.relation.referencesPham, T. N., Lukhele, S., Hajjar, F., Routy, J.-P., & Cohen, É. A. (2014). HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology, 11(1), 15. https://doi.org/10.1186/1742-4690-11-15spa
dc.relation.referencesPickett, B. E., Greer, D. S., Zhang, Y., Stewart, L., Zhou, L., Sun, G., Gu, Z., Kumar, S., Zaremba, S., Larsen, C. N., Jen, W., Klem, E. B., & Scheuermann, R. H. (2012). Virus Pathogen Database and Analysis Resource (ViPR): A Comprehensive Bioinformatics Database and Analysis Resource for the Coronavirus Research Community. Viruses, 4(11), 3209-3226. https://doi.org/10.3390/v4113209spa
dc.relation.referencesPierce, J. B., Simion, V., Icli, B., Pérez-Cremades, D., Cheng, H. S., & Feinberg, M. W. (2020). Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Genes, 11(11), 1354. https://doi.org/10.3390/genes11111354spa
dc.relation.referencesPiskol, R., & Stephan, W. (2008). Analyzing the Evolution of RNA Secondary Structures in Vertebrate Introns Using Kimura’s Model of Compensatory Fitness Interactions. Molecular Biology and Evolution, 25(11), 2483-2492. https://doi.org/10.1093/molbev/msn195spa
dc.relation.referencesPlante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P.-Y. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116-121. https://doi.org/10.1038/s41586-020-2895-3spa
dc.relation.referencesPond, S. L. K., Murrell, B., & Poon, A. F. Y. (2012). Evolution of viral genomes: Interplay between selection, recombination, and other forces. Methods in Molecular Biology (Clifton, N.J.), 856, 239-272. https://doi.org/10.1007/978-1-61779-585-5_10spa
dc.relation.referencesPrasad, A. N., Ronk, A. J., Widen, S. G., Wood, T. G., Basler, C. F., & Bukreyev, A. (2020). Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. Journal of Virology, 94(6). https://doi.org/10.1128/JVI.01441-19spa
dc.relation.referencesQu, X.-X., Hao, P., Song, X.-J., Jiang, S.-M., Liu, Y.-X., Wang, P.-G., Rao, X., Song, H.-D., Wang, S.-Y., Zuo, Y., Zheng, A.-H., Luo, M., Wang, H.-L., Deng, F., Wang, H.-Z., Hu, Z.-H., Ding, M.-X., Zhao, G.-P., & Deng, H.-K. (2005). Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. The Journal of Biological Chemistry, 280(33), 29588-29595. https://doi.org/10.1074/jbc.M500662200spa
dc.relation.referencesQu, Z., & Adelson, D. (2012). Evolutionary conservation and functional roles of ncRNA. Frontiers in Genetics, 3, 205. https://doi.org/10.3389/fgene.2012.00205spa
dc.relation.referencesR Core Team. (2021). R: The R Project for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRabaan, A. A., Al-Ahmed, S. H., Sah, R., Alqumber, M. A., Haque, S., Patel, S. K., Pathak, M., Tiwari, R., Yatoo, Mohd. I., Haq, A. U., Bilal, M., Dhama, K., & Rodriguez-Morales, A. J. (2021). MERS-CoV: Epidemiology, molecular dynamics, therapeutics, and future challenges. Annals of Clinical Microbiology and Antimicrobials, 20(1), 8. https://doi.org/10.1186/s12941-020-00414-7spa
dc.relation.referencesRabi, F. A., Al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. (2020). SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens, 9(3), 231. https://doi.org/10.3390/pathogens9030231spa
dc.relation.referencesRahaman, M., Komanapalli, J., Mukherjee, M., Byram, P. K., Sahoo, S., & Chakravorty, N. (2021). Decrypting the role of predicted SARS-CoV-2 miRNAs in COVID-19 pathogenesis: A bioinformatics approach. Computers in Biology and Medicine, 136, 104669. https://doi.org/10.1016/j.compbiomed.2021.104669spa
dc.relation.referencesRaj, V. S., Mou, H., Smits, S. L., Dekkers, D. H. W., Müller, M. A., Dijkman, R., Muth, D., Demmers, J. A. A., Zaki, A., Fouchier, R. A. M., Thiel, V., Drosten, C., Rottier, P. J. M., Osterhaus, A. D. M. E., Bosch, B. J., & Haagmans, B. L. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495(7440), 251-254. https://doi.org/10.1038/nature12005spa
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032spa
dc.relation.referencesRangan, R., Zheludev, I. N., & Das, R. (2020). RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. BioRxiv, 2020.03.27.012906. https://doi.org/10.1101/2020.03.27.012906spa
dc.relation.referencesRicagno, S., Egloff, M.-P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Ziebuhr, J., & Canard, B. (2006). Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11892-11897. https://doi.org/10.1073/pnas.0601708103spa
dc.relation.referencesRivas, E. (2020). RNA structure prediction using positive and negative evolutionary information. PLOS Computational Biology, 16(10), e1008387. https://doi.org/10.1371/journal.pcbi.1008387spa
dc.relation.referencesSaçar Demirci, M. D., & Adan, A. (2020). Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ, 8. https://doi.org/10.7717/peerj.9369spa
dc.relation.referencesSaini, S., Saini, A., Thakur, C. J., Kumar, V., Gupta, R. D., & Sharma, J. K. (2020). Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. Molecular Biology Research Communications, 9(2), 83-91. https://doi.org/10.22099/mbrc.2020.36507.1487spa
dc.relation.referencesSalamatbakhsh, M., Mobaraki, K., Sadeghimohammadi, S., & Ahmadzadeh, J. (2019). The global burden of premature mortality due to the Middle East respiratory syndrome (MERS) using standard expected years of life lost, 2012 to 2019. BMC Public Health, 19(1), 1523. https://doi.org/10.1186/s12889-019-7899-2spa
dc.relation.referencesShang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224. https://doi.org/10.1038/s41586-020-2179-yspa
dc.relation.referencesShi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science (New York, N.Y.), 368(6494), 1016-1020. https://doi.org/10.1126/science.abb7015spa
dc.relation.referencesShu, Y., & McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance, 22(13). https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494spa
dc.relation.referencesSimmonds, P. (2020). Pervasive RNA secondary structure in the genomes of SARS-CoV-2 and other coronaviruses – an endeavour to understand its biological purpose. BioRxiv, 2020.06.17.155200. https://doi.org/10.1101/2020.06.17.155200spa
dc.relation.referencesSiniscalchi, C., Di Palo, A., Russo, A., & Potenza, N. (2021). Human MicroRNAs Interacting With SARS-CoV-2 RNA Sequences: Computational Analysis and Experimental Target Validation. Frontiers in Genetics, 12, 760. https://doi.org/10.3389/fgene.2021.678994spa
dc.relation.referencesSmith, E. C., Blanc, H., Vignuzzi, M., & Denison, M. R. (2013). Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics. PLOS Pathogens, 9(8), e1003565. https://doi.org/10.1371/journal.ppat.1003565spa
dc.relation.referencesSola, I., Mateos-Gomez, P. A., Almazan, F., Zuñiga, S., & Enjuanes, L. (2011). RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biology, 8(2), 237-248. https://doi.org/10.4161/rna.8.2.14991spa
dc.relation.referencesStamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England), 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033spa
dc.relation.referencesSticht, C., De La Torre, C., Parveen, A., & Gretz, N. (2018). miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE, 13(10). https://doi.org/10.1371/journal.pone.0206239spa
dc.relation.referencesSweileh, W. M. (2017). Global research trends of World Health Organization’s top eight emerging pathogens. Globalization and Health, 13. https://doi.org/10.1186/s12992-017-0233-9spa
dc.relation.referencesTang, H., Gao, Y., Li, Z., Miao, Y., Huang, Z., Liu, X., Xie, L., Li, H., Wen, W., Zheng, Y., & Su, W. (2020). The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clinical and Translational Medicine, 10(6), e200. https://doi.org/10.1002/ctm2.200spa
dc.relation.referencesTang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012-1023. https://doi.org/10.1093/nsr/nwaa036spa
dc.relation.referencesTeng, Y., Wang, Y., Zhang, X., Liu, W., Fan, H., Yao, H., Lin, B., Zhu, P., Yuan, W., Tong, Y., & Cao, W. (2015). Systematic Genome-wide Screening and Prediction of microRNAs in EBOV During the 2014 Ebolavirus Outbreak. Scientific Reports, 5(1), 9912. https://doi.org/10.1038/srep09912spa
dc.relation.referencesToyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y., & Kiyotani, K. (2020). SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. Journal of Human Genetics, 65(12), 1075-1082. https://doi.org/10.1038/s10038-020-0808-9spa
dc.relation.referencesVerma, S., Dwivedy, A., Kumar, N., & Biswal, B. K. (2020). Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets (p. 2020.11.02.365049). https://doi.org/10.1101/2020.11.02.365049spa
dc.relation.referencesVlachos, I. S., & Hatzigeorgiou, A. G. (2017). Functional Analysis of miRNAs Using the DIANA Tools Online Suite. Methods in Molecular Biology (Clifton, N.J.), 1517, 25-50. https://doi.org/10.1007/978-1-4939-6563-2_2spa
dc.relation.referencesWalls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058spa
dc.relation.referencesWalter Costa, M. B., Höner zu Siederdissen, C., Dunjić, M., Stadler, P. F., & Nowick, K. (2019a). SSS-test: A novel test for detecting positive selection on RNA secondary structure. BMC Bioinformatics, 20(1), 151. https://doi.org/10.1186/s12859-019-2711-yspa
dc.relation.referencesWang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470-473. https://doi.org/10.1016/S0140-6736(20)30185-9spa
dc.relation.referencesWang, N., Shang, J., Jiang, S., & Du, L. (2020). Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00298spa
dc.relation.referencesWang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Li, Y., Wu, Y., Wang, J., Iwamoto, A., Woo, P. C. Y., Yuen, K.-Y., Yan, J., Lu, G., & Gao, G. F. (2014). Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host & Microbe, 16(3), 328-337. https://doi.org/10.1016/j.chom.2014.08.009spa
dc.relation.referencesWeaver, S., Shank, S. D., Spielman, S. J., Li, M., Muse, S. V., & Kosakovsky Pond, S. L. (2018). Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Molecular Biology and Evolution, 35(3), 773-777. https://doi.org/10.1093/molbev/msx335spa
dc.relation.referencesWickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686spa
dc.relation.referencesWolf, Y. I., Kazlauskas, D., Iranzo, J., Lucía-Sanz, A., Kuhn, J. H., Krupovic, M., Dolja, V. V., & Koonin, E. V. (2018). Origins and Evolution of the Global RNA Virome. MBio, 9(6). https://doi.org/10.1128/mBio.02329-18spa
dc.relation.referencesWong, M. C., Cregeen, S. J. J., Ajami, N. J., & Petrosino, J. F. (2020). Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BioRxiv, 2020.02.07.939207. https://doi.org/10.1101/2020.02.07.939207spa
dc.relation.referencesWorld Health Organization (WHO). (2022, de Enero). WHO Coronavirus Disease (COVID-19). https://covid19.who.intspa
dc.relation.referencesWu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/s41586-020-2008-3spa
dc.relation.referencesWyler, E., Mösbauer, K., Franke, V., Diag, A., Gottula, L. T., Arsiè, R., Klironomos, F., Koppstein, D., Hönzke, K., Ayoub, S., Buccitelli, C., Hoffmann, K., Richter, A., Legnini, I., Ivanov, A., Mari, T., Del Giudice, S., Papies, J., Praktiknjo, S., … Landthaler, M. (2021). Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience, 24(3), 102151. https://doi.org/10.1016/j.isci.2021.102151spa
dc.relation.referencesXing, Y., Li, X., Gao, X., & Dong, Q. (2020). MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences. Frontiers in Microbiology, 0. https://doi.org/10.3389/fmicb.2020.01502spa
dc.relation.referencesXu, K., Zheng, B.-J., Zeng, R., Lu, W., Lin, Y.-P., Xue, L., Li, L., Yang, L.-L., Xu, C., Dai, J., Wang, F., Li, Q., Dong, Q.-X., Yang, R.-F., Wu, J.- R., & Sun, B. (2009). Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein. Virology, 388(2), 279-285. https://doi.org/10.1016/j.virol.2009.03.032spa
dc.relation.referencesYang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Research, 206, 120-133. https://doi.org/10.1016/j.virusres.2015.02.025spa
dc.relation.referencesYang, H.-C., Chen, C., Wang, J.-H., Liao, H.-C., Yang, C.-T., Chen, C.-W., Lin, Y.-C., Kao, C.-H., Lu, M.-Y. J., & Liao, J. C. (2020). Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proceedings of the National Academy of Sciences, 117(48), 30679-30686. https://doi.org/10.1073/pnas.2007840117spa
dc.relation.referencesYang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R. S., & Li, F. (2015). Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 89(17), 9119-9123. https://doi.org/10.1128/JVI.01279-15spa
dc.relation.referencesYe, Z.-W., Yuan, S., Yuen, K.-S., Fung, S.-Y., Chan, C.-P., & Jin, D.-Y. (2020). Zoonotic origins of human coronaviruses. International Journal of Biological Sciences, 16(10), 1686-1697. https://doi.org/10.7150/ijbs.45472spa
dc.relation.referencesYones, C., Raad, J., Bugnon, L. A., Milone, D. H., & Stegmayer, G. (2021). High precision in microRNA prediction: A novel genome-wide approach with convolutional deep residual networks. Computers in Biology and Medicine, 134, 104448. https://doi.org/10.1016/j.compbiomed.2021.104448spa
dc.relation.referencesZhan, S., Wang, Y., & Chen, X. (2020). RNA virus-encoded microRNAs: Biogenesis, functions and perspectives on application. ExRNA, 2(1), 15. https://doi.org/10.1186/s41544-020-00056-zspa
dc.relation.referencesZhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. https://doi.org/10.1093/molbev/msi237spa
dc.relation.referencesZhang, L., Jackson, C. B., Mou, H., Ojha, A., Rangarajan, E. S., Izard, T., Farzan, M., & Choe, H. (2020). The D614G mutation in the SARS-CoV2 spike protein reduces S1 shedding and increases infectivity. BioRxiv, 2020.06.12.148726. https://doi.org/10.1101/2020.06.12.148726spa
dc.relation.referencesZhang, L., Jackson, C. B., Mou, H., Ojha, A., Rangarajan, E. S., Izard, T., Farzan, M., & Choe, H. (2020). The D614G mutation in the SARS-CoV2 spike protein reduces S1 shedding and increases infectivity. BioRxiv, 2020.06.12.148726. https://doi.org/10.1101/2020.06.12.148726spa
dc.relation.referencesZhang, X., Chu, H., Wen, L., Shuai, H., Yang, D., Wang, Y., Hou, Y., Zhu, Z., Yuan, S., Yin, F., Chan, J. F.-W., & Yuen, K.-Y. (2020). Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerging Microbes & Infections, 9(1), 733-746. https://doi.org/10.1080/22221751.2020.1738277spa
dc.relation.referencesZhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.otherCoronavirusspa
dc.subject.otherBetacoronavirusspa
dc.subject.proposalEvolución molecularspa
dc.subject.proposalTransmisión inter-especiesspa
dc.subject.proposalEstructura secundaria de RNAspa
dc.subject.proposalSelección positivaspa
dc.subject.proposalRNA pequeño derivado del virusspa
dc.subject.proposalMolecular evolutioneng
dc.subject.proposalInter-species transmissioneng
dc.subject.proposalRNA secondary structureeng
dc.subject.proposalPositive selectioneng
dc.subject.proposalVirus-derived small RNAeng
dc.titleEvolución molecular de Betacoronavirus zoonóticos asociados con el Síndrome de Distrés Respiratorio Agudo (SDRA)spa
dc.title.translatedMolecular evolution of zoonotic Betacoronavirus associated with Acute Respiratory Distress Syndrome (ARDS)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDetección de variabilidad molecular en el genoma del virus SARS-CoV-2 y otros Betacoronavirus: Hacia un sistema de vigilancia molecular pandémico y post-pandémicospa
oaire.fundernameDirección de Investigación y Extensión Bogotá (DIEB) - Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1083904793-2022.pdf
Tamaño:
3.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: