Estudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soporte

dc.contributor.advisorSuarez Herrera, Marco Fidel
dc.contributor.authorMoreno Piza, Oscar Javier
dc.contributor.researchgroupElectroquímica y Termodinámica Computacionalspa
dc.date.accessioned2023-07-07T21:02:53Z
dc.date.available2023-07-07T21:02:53Z
dc.date.issued2022
dc.descriptionilustracionesspa
dc.description.abstractLas baterías de litio-azufre han sido foco de estudio durante varios años, sin embargo, su implementación se ha visto limitada debido a su corta vida útil debido al efecto ‘suttle’, el cual se debe al transporte de los polisulfuros hacia el ánodo formando depósitos altamente resistivos que pasivan los electrodos. Este inconveniente puede solucionarse al restringir los procesos de transporte de estas especies desde el cátodo al ánodo y al mismo tiempo mejorar la cinética de transferencia de carga de las reacciones electroquímicas. Este trabajo de investigación estudia las reacciones redox del azufre elemental en acetonitrilo (CH3CN) y dimetilsulfóxido (DMSO) sobre electrodos de trabajo de carbón vítreo y carbón vítreo modificado con una lámina delgada de poli(3,4-etilenodioxitiofeno) (PEDOT) empleando voltamperometría cíclica, voltamperometría ac y espectroscopia de impedancia electroquímica. Como electrolitos se emplearon hexafluorofosfato de tetrabutilamonio (TBAPF6), 1-Butil-3-metilimidazolio tetrafluoroborato ([Bmim][BF4]) y 1-Butil-3-metilimidazolio triflato ([Bmim][OTf]). Se encontró que la cinética de transferencia de carga para la primera reacción de reducción del S8 sobre carbón vítreo es más rápido en CH3CN que en DMSO y cuando [Bmim][OTf] se usa como electrolito. Por otro lado, se encontró que el PEDOT es electrocatalítico para la primera reacción de reducción del azufre elemental. Finalmente, al encapsular el azufre entre láminas de PEDOT es posible aumentar el tiempo de retención de las especies de azufre al interior del PEDOT bajo ciclos sucesivos de oxido-reducción si se usan líquidos iónicos puros como electrolitos (Texto tomado de la fuente)spa
dc.description.abstractThe commercial use of Lithium-sulfur batteries has been limited by their short service life due to the shuttle effect of polysulfides, which is due the transport of polysulfides towards the anode and the formation of highly resistive deposits that passivate the electrodes. This problem can be solved by decreasing the transport of these species from the cathode to the anode and improving at the same time the kinetics of electron transfer reactions. This work studies by electrochemical impedance spectroscopy and cyclic and ac voltammetry the redox reactions of elemental sulfur in either acetonitrile (CH3CN) or Dimethyl sulfoxide (DMSO) using as a working electrode either pristine glassy carbon (GC) or GC modified with a thin film of Poly 3,4-ethylenedioxythiophene (GC-PEDOT) as working electrodes. As electrolytes were studied tetrabutylammonium hexafluorophosphate (TBAPF6), 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) and 1-Butyl-3-methylimidazolium triflate ([Bmim][OTf]). It was found that the kinetics of the first reduction reaction of S8 on GC is much faster in CH3CN than in DMSO and when [Bmim][OTf] is used as electrolyte. On the other hand, it was found that PEDOT is electrocatalytic for the first reduction reaction of elemental sulfur. Finally, by encapsulating the sulfur in PEDOT it is possible to increase the retention of the sulfur species inside PEDOT upon redox cycling if pure ionic liquids are used as electrolytes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaMateriales y Energíaspa
dc.format.extentxxi, 69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84171
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesC.-E. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, R. Westerholm, Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air., Environ Health Perspect. 110 (2002) 451–488. https://doi.org/10.1289/ehp.110-1241197spa
dc.relation.referencesM.E. Munawer, Human health and environmental impacts of coal combustion and post-combustion wastes, Journal of Sustainable Mining. 17 (2018) 87–96. https://doi.org/10.1016/j.jsm.2017.12.007spa
dc.relation.referencesG.P. Peters, R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. le Quéré, G. Marland, M.R. Raupach, C. Wilson, The challenge to keep global warming below 2 °C, Nat Clim Chang. 3 (2013) 4–6. https://doi.org/10.1038/nclimate1783spa
dc.relation.referencesD. Castelvecchi, Electric cars and batteries: how will the world produce enough?, Nature. 596 (2021) 336–339. https://doi.org/10.1038/d41586-021-02222-1spa
dc.relation.referencesK. Siczek, Next-generation Batteries with Sulfur Cathodes, 1st Edition, Academic Press, (2019) 44-92. ISBN 9780128163924spa
dc.relation.referencesK. Siczek, The Toxicity of Secondary Lithium-Sulfur Batteries Components, Batteries. 6 (2020) 45. https://doi.org/10.3390/batteries6030045spa
dc.relation.referencesX. Gu, L. Hencz, S. Zhang, Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries, Batteries. 2 (2016) 33. https://doi.org/10.3390/batteries2040033spa
dc.relation.referencesR. Wang, K. Wang, H. Tao, W. Zhao, M. Jiang, J. Yan, K. Jiang, Controllable electrolytic formation of Ti2O as an efficient sulfur host in lithium–sulfur (Li–S) batteries, Journal of Materials Chemistry A. 8 (2020) 11224–11232. https://doi.org/10.1039/D0TA01454Kspa
dc.relation.referencesS.K. Yongju Jung, Effect of Organic Solvents and Electrode Materials on Electrochemical Reduction of Sulfur, International Journal of Electrochemical Science. 3 (2008) 566-577spa
dc.relation.referencesZ. Gong, Q. Wu, F. Wang, X. Li, X. Fan, H. Yang, Z. Luo, PEDOT-PSS coated sulfur/carbon composite on porous carbon papers for high sulfur loading lithium–sulfur batteries, RSC Advances. 5 (2015) 96862-96869. https://doi.org/10.1039/C5RA18567Jspa
dc.relation.referencesJ. Lee, W. Choi, Surface Modification of Sulfur Cathodes with PEDOT:PSS Conducting Polymer in Lithium-Sulfur Batteries, Journal of the Electrochemical Society. 162 (2015) A935-A939. https://doi.org/10.1149/2.0651506jesspa
dc.relation.referencesA.B. Puthirath, A. Baburaj, K. Kato, D. Salpekar, N. Chakingal, Y. Cao, G. Babu, P.M. Ajayan, High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery, Electrochimica Acta. 306 (2019) 489–497. https://doi.org/10.1016/j.electacta.2019.03.136.spa
dc.relation.referencesS. Zeng, L. Li, L. Xie, D. Zhao, N. Wang, S. Chen, Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries, ChemSusChem. 10 (2017) 3378-3386. https://doi.org/10.1002/cssc.201700913spa
dc.relation.referencesY. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Application of Polyaniline for Li‐Ion Batteries, Lithium–Sulfur Batteries, and Supercapacitors, ChemSusChem. 12 (2019) 1591-1611. https://doi.org/10.1002/cssc.201802186spa
dc.relation.referencesG.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries, Advanced Energy Materials. 2 (2012) 1238-1245. https://doi.org/10.1002/aenm.201200017spa
dc.relation.referencesJ. Wang, S.Y. Chew, Z.W. Zhao, S. Ashraf, D. Wexler, J. Chen, S.H. Ng, S.L. Chou, H.K. Liu, Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon. 46 (2008) 229–235. https://doi.org/10.1016/j.carbon.2007.11.007spa
dc.relation.referencesK. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, Ionic liquids for high performance lithium metal batteries, Journal of Energy Chemistry. 59 (2021) 320-333. https://doi.org/10.1016/j.jechem.2020.11.017spa
dc.relation.referencesL.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications. 8 (2006) 610–614. https://doi.org/10.1016/j.elecom.2006.02.007spa
dc.relation.referencesJ. Scheers, S. Fantini, P. Johansson, A review of electrolytes for lithium–sulphur batteries, Journal of Power Sources. 255 (2014) 204–218. https://doi.org/10.1016/j.jpowsour.2014.01.023spa
dc.relation.referencesL.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries, MRS Bulletin. 39 (2014) 436-442. https://doi.org/10.1557/mrs.2014.86spa
dc.relation.referencesJ.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531-20541. https://doi.org/10.1021/jp408037espa
dc.relation.referencesM. Liu, X. Wu, X. Shen, K. Luan, Y. Zhang, S. Yao, Effects of nano-TiO 2 particle size on microstructure and electrochemical performance of TiO 2 /PEDOT nanocomposites cathode in lithium-sulphur battery, Materials Technology. 36 (2021) 616–622. https://doi.org/10.1080/10667857.2020.1782310spa
dc.relation.referencesY. Ansari, S. Zhang, B. Wen, F. Fan, Y. Chiang, Stabilizing Li–S Battery Through Multilayer Encapsulation of Sulfur, Advanced Energy Materials. 9 (2019) 1802213. https://doi.org/10.1002/aenm.201802213spa
dc.relation.referencesY. Jia, Y.-S. Zhao, X.-X. Yang, M.-X. Ren, Y.-Q. Wang, B.-Y. Lei, D.-L. Zhao, Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries, International Journal of Hydrogen Energy. 46 (2021) 7642-7652. https://doi.org/10.1016/j.ijhydene.2020.11.199spa
dc.relation.referencesY. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide, Nature Communications. 11 (2020) 845. https://doi.org/10.1038/s41467-020-14686-2spa
dc.relation.referencesL. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes, Energy and Environmental Science. 9 (2016) 224-231. https://doi.org/10.1039/C5EE02837Jspa
dc.relation.referencesJ.W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20531–20541. https://doi.org/10.1021/jp408037espa
dc.relation.referencesE. Levillain, F. Gaillard, A. Demortier, J.P. Lelieur, Electrochemical and spectroelectrochemical study of the oxidation of S2−4 and S2−6 ions in liquid ammonia, Journal of Electroanalytical Chemistry. 405 (1996) 85–94. https://doi.org/10.1016/0022-0728(95)04334-9spa
dc.relation.referencesT. Fujinaga, T. Kuwamoto, S. Okazaki, M. Hojo, Electrochemical Reduction of Elemental Sulfur in AcetonitrileBulletin of the Chemical Society of Japan. 53 (1980) 2851-2855. https://doi.org/10.1246/bcsj.53.2851spa
dc.relation.referencesJ. Paris, V. Plichon, Electrochemistry of polysulphide ions in dimethylacetamide: basic properties and oxidation in acid medium, Electrochimica Acta. 27 (1982) 1501–1508. https://doi.org/10.1016/0013-4686(82)80045-5spa
dc.relation.referencesF. Gaillard, E. Levillain, Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide, Journal of Electroanalytical Chemistry. 398 (1995) 77–87. https://doi.org/10.1016/0022-0728(95)04144-1spa
dc.relation.referencesE. Levillain, F. Gaillard, P. Leghie, A. Demortier, J.P. Lelieur, On the understanding of the reduction of sulfur (S8) in dimethylformamide (DMF), Journal of Electroanalytical Chemistry. 420 (1997) 167-177. https://doi.org/10.1016/S0022-0728(96)04796-1spa
dc.relation.referencesR. Chen, T. Zhao, F. Wu, From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels, Chemical Communications. 51 (2015) 18–33. https://doi.org/10.1039/C4CC05109Bspa
dc.relation.referencesM. v. Merritt, D.T. Sawyer, Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8- species, Inorganic Chemistry. 9 (1970) 211–215. https://doi.org/10.1021/ic50084a003spa
dc.relation.referencesR. Bonnaterre, G. Cauquis, Spectrophotometric study of the electrochemical reduction of sulphur in organic media, Journal of the Chemical Society. (1972) 293. https://doi.org/10.1039/c39720000293spa
dc.relation.referencesA.S. Baranski, W.R. Fawcett, C.M. Gilbert, Use of microelectrodes for the rapid determination of the number of electrons involved in an electrode reaction, Analytical Chemistry. 57 (1985) 166–170. https://doi.org/10.1021/ac00279a041spa
dc.relation.referencesR.P. Martin, W.H. Doub, J.L. Roberts, D.T. Sawyer, Electrochemical reduction of sulfur in aprotic solvents, Inorganic Chemistry. 12 (1973) 1921–1925. https://doi.org/10.1021/ic50126a047spa
dc.relation.referencesP. Leghié, J.-P. Lelieur, E. Levillain, Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide, Electrochemistry Communications. 4 (2002) 406–411. https://doi.org/10.1016/S1388-2481(02)00333-8spa
dc.relation.referencesF. Gaillard, E. Levillain, M.-C. Dhamelincourt, P. Dhamelincourt, J.P. Lelieur, Polysulphides in dimethylformamide: a micro-Raman spectroelectrochemical study, Journal of Raman Spectroscopy. 28 (1997) 511–517. https://doi.org/10.1002/(SICI)1097-4555(199707)28:7<511::AID-JRS119>3.0.CO;2-4spa
dc.relation.referencesF. Gaillard, E. Levillain, J.P. Lelieur, Polysulfides in dimethylformamide: Only the radical anions S3− and S4− are reducible, Journal of Electroanalytical Chemistry. 432 (1997) 129–138. https://doi.org/10.1016/S0022-0728(97)00192-7spa
dc.relation.referencesA. Evans, M.I. Montenegro, D. Pletcher, The mechanism for the cathodic reduction of sulphur in dimethylformamide: low temperature voltammetry, Electrochemistry Communications. 3 (2001) 514–518. https://doi.org/10.1016/S1388-2481(01)00203-Xspa
dc.relation.referencesN.S.A. Manan, L. Aldous, Y. Alias, P. Murray, L.J. Yellowlees, M.C. Lagunas, C. Hardacre, Electrochemistry of Sulfur and Polysulfides in Ionic Liquids, Journal of Physical Chemistry B. 115 (2011) 13873–13879. https://doi.org/10.1021/jp208159vspa
dc.relation.referencesQ. Zou, Y.-C. Lu, Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study, Journal of Physical Chemistry Letters. 7 (2016) 1518-1525. https://doi.org/10.1021/acs.jpclett.6b00228spa
dc.relation.referencesC.C. Herrmann, G.G. Perrault, A.A. Pilla, Dual reference electrode for electrochemical pulse studies, Analytical Chemistry. 40 (1968) 1173–1174. https://doi.org/10.1021/ac60263a011spa
dc.relation.referencesM.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes, Physical Chemistry Chemical Physics. 14 (2012) 14391. https://doi.org/10.1039/c2cp42719bspa
dc.relation.referencesM.F. Suarez-Herrera, J.M. Feliu, Electrochemical Properties of Thin Films of Polythiophene Polymerized on Basal Plane Platinum Electrodes in Nonaqueous Media, Journal of Physical Chemistry B. 113 (2009) 1899–1905. https://doi.org/10.1021/jp8089837spa
dc.relation.referencesM.F. Suárez-Herrera, M. Costa-Figueiredo, J.M. Feliu, Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water, Langmuir. 28 (2012) 5286–5294. https://doi.org/10.1021/la205097pspa
dc.relation.referencesW.E. van der Linden, J.W. Dieker, Glassy carbon as electrode material in electro- analytical chemistry, Analytica Chimica Acta. 119 (1980) 1–24. https://doi.org/10.1016/S0003-2670(00)00025-8spa
dc.relation.referencesA. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Glassy carbon electrodes, Carbon. 39 (2001) 1195–1205. https://doi.org/10.1016/S0008-6223(00)00228-1spa
dc.relation.referencesHonghua. Zhang, L.A. Coury, Effects of high-intensity ultrasound on glassy carbon electrodes, Analytical Chemistry. 65 (1993) 1552–1558. https://doi.org/10.1021/ac00059a012spa
dc.relation.referencesR.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes, Analytical Chemistry. 56 (1984) 136–141. https://doi.org/10.1021/ac00266a005spa
dc.relation.referencesO. Dumanlı, A.N. Onar, Activation of glassy carbon electrodes by photocatalytic pretreatment, Electrochimica Acta. 54 (2009) 6438–6444. https://doi.org/10.1016/j.electacta.2009.05.096spa
dc.relation.referencesG.K. Kiema, M. Aktay, M.T. McDermott, Preparation of reproducible glassy carbon electrodes by removal of polishing impurities, Journal of Electroanalytical Chemistry. 540 (2003) 7–15. https://doi.org/10.1016/S0022-0728(02)01264-0spa
dc.relation.referencesR.J. Rice, N.M. Pontikos, R.L. McCreery, Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes, Journal of the American Chemical Society. 112 (1990) 4617–4622. https://doi.org/10.1021/ja00168a001spa
dc.relation.referencesL.H. Edelson, A.M. Glaeser, Method for removing surface porosity on glassy carbon tiles, Carbon. 24 (1986) 635–637. https://doi.org/10.1016/0008-6223(86)90153-3spa
dc.relation.referencesA.P. Sandoval, M.F. Suárez-Herrera, J.M. Feliu, Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes, Electrochemistry Communications. 46 (2014) 84–86. https://doi.org/10.1016/j.elecom.2014.06.016spa
dc.relation.referencesE. Yildirim, G. Wu, X. Yong, T.L. Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, S.-W. Yang, A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS, Journal of Materials Chemistry C. 6 (2018) 5122–5131. https://doi.org/10.1039/C8TC00917Aspa
dc.relation.referencesJ. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment, Polymer. 45 (2004) 8443–8450. https://doi.org/10.1016/j.polymer.2004.10.001spa
dc.relation.referencesT.R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, C.-Y. Chao, Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display, Journal of Materials Chemistry C. 3 (2015) 3760–3766. https://doi.org/10.1039/C5TC00276Aspa
dc.relation.referencesY. Xia, J. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, Journal of Materials Chemistry. 21 (2011) 4927. https://doi.org/10.1039/c0jm04177gspa
dc.relation.referencesF. Arnaud-Neu, R. Delgado, S. Chaves, Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers (IUPAC Technical Report), Pure and Applied Chemistry. 75 (2003) 71–102. https://doi.org/10.1351/pac200375010071spa
dc.relation.referencesM. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Gutmann Donor and Acceptor Numbers for Ionic Liquids, Chemistry - A European Journal. 18 (2012) 10969–10982. https://doi.org/10.1002/chem.201200584spa
dc.relation.referencesM. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rüther, Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids, Electrochimica Acta. 180 (2015) 636-644. https://doi.org/10.1016/j.electacta.2015.08.132spa
dc.relation.referencesK. Ueno, J.-W. Park, A. Yamazaki, T. Mandai, N. Tachikawa, K. Dokko, M. Watanabe, Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries, The Journal of Physical Chemistry C. 117 (2013) 20509-20516. https://doi.org/10.1021/jp407158yspa
dc.relation.referencesC. Dillard, A. Singh, V. Kalra, Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries with in Situ Infrared Spectroelectrochemistry, The Journal of Physical Chemistry C. 122 (2018) 18195-18203. https://doi.org/10.1021/acs.jpcc.8b02506spa
dc.relation.referencesC.Y. Lee, J.P. Bullock, G.F. Kennedy, A.M. Bond, Effects of Coupled Homogeneous Chemical Reactions on the Response of Large-Amplitude AC Voltammetry: Extraction of Kinetic and Mechanistic Information by Fourier Transform Analysis of Higher Harmonic Data, The Journal of Physical Chemistry A. 114 (2010) 10122–10134. https://doi.org/10.1021/jp105626zspa
dc.relation.referencesP. Córdoba-Torres, T.J. Mesquita, R.P. Nogueira, Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure, The Journal of Physical Chemistry C. 119 (2015) 4136–4147. https://doi.org/10.1021/jp512063fspa
dc.relation.referencesJ. Zheng, M. Gu, H. Chen, P. Meduri, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries, Journal of Materials Chemistry A. 1 (2013) 8464. https://doi.org/10.1039/c3ta11553dspa
dc.relation.referencesS. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries, Journal of Power Sources. 252 (2014) 150–155. https://doi.org/10.1016/j.jpowsour.2013.11.119spa
dc.relation.referencesD. Su, M. Cortie, H. Fan, G. Wang, Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High‐Capacity Cathodes for Lithium–Sulfur Batteries, Advanced Materials. 29 (2017) 1700587. https://doi.org/10.1002/adma.201700587spa
dc.relation.referencesJ. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M.H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries, Nano Letters. 14 (2014) 2345–2352. https://doi.org/10.1021/nl404721hspa
dc.relation.referencesI.C. Monge-Romero, M.F. Suárez-Herrera, Electrocatalysis of the hydroquinone/benzoquinone redox couple at platinum electrodes covered by a thin film of poly(3,4-ethylenedioxythiophene), Synthetic Metals. 175 (2013) 36–41. https://doi.org/10.1016/j.synthmet.2013.04.027spa
dc.relation.referencesE.S. Stoyanov, K.-C. Kim, C.A. Reed, A Strong Acid that Does Not Protonate Water, Journal of Physical Chemistry A. 108 (2004) 9310–9315. https://doi.org/10.1021/jp047409lspa
dc.relation.referencesD.K. Singh, P. Donfack, B. Rathke, J. Kiefer, A. Materny, Interplay of Different Moieties in the Binary System 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate/Water Studied by Raman Spectroscopy and Density Functional Theory Calculations, Journal of Physical Chemistry A B. 123 (2019) 4004–4016. https://doi.org/10.1021/acs.jpcb.9b00066spa
dc.relation.referencesA. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev, Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at 25 °C: A New Approach for the Study of Polysulfides’ Equilibria, Environmental Science & Technology. 38 (2004) 6633–6644. https://doi.org/10.1021/es049514espa
dc.relation.referencesH.-L. Wu, R.T. Haasch, B.R. Perdue, C.A. Apblett, A.A. Gewirth, The effect of water-containing electrolyte on lithium-sulfur batteries, Journal of Power Sources. 369 (2017) 50–56. https://doi.org/10.1016/j.jpowsour.2017.09.044spa
dc.relation.referencesH. Liu, M.N. Radford, C. Yang, W. Chen, M. Xian, Inorganic hydrogen polysulfides: chemistry, chemical biology and detection, British Journal of Pharmacology. 176 (2019) 616–627. https://doi.org/10.1111/bph.14330spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.proposalElectroquímica del azufrespa
dc.subject.proposalElectrocatálisisspa
dc.subject.proposalBaterías de azufre-litiospa
dc.subject.proposalPolímeros conductoresspa
dc.subject.proposalLíquidos iónicosspa
dc.subject.proposalElectrochemistry of sulfureng
dc.subject.proposalElectrocatalysiseng
dc.subject.proposalSulfur-lithium batterieseng
dc.subject.proposalconductive polymerseng
dc.subject.proposalIonic liquids.eng
dc.titleEstudio de los procesos redox del azufre elemental en solventes orgánicos usando carbón vítreo modificado con PEDOT (3,4-etilén-dioxi-tiofeno) y líquidos iónicos como electrolitos de soportespa
dc.title.translatedElectrochemical study of the redox processes of elemental sulfur in organic solvents using poly (3,4-ethylene-dioxy-thiophene) modified glassy carbon electrodes as working electrodes and ionic liquids as electrolyteseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio de los procesos redox de azufre elemental en solventes orgánicos cuando se utilizan líquidos iónicos como electrolitos y electrodos de carbón vítreo modificados con Poli (3,4-etilén-dioxi- tiofeno) como electrodos de trabajo.spa
oaire.fundernameFundación para la promoción de la ciencia y tecnología del banco de la repúblicaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073518865.2022.pdf
Tamaño:
2.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: