Actividad y rotación de estrellas jóvenes en la era de los grandes censos del firmamento

dc.contributor.advisorPinzón, Giovannispa
dc.contributor.advisorHernández, Jesússpa
dc.contributor.authorBatista Rojas, Maria Graciaspa
dc.contributor.orcidBatista, Maria Gracia [0009000933339477]spa
dc.contributor.researchgroupActivity and Rotation of Young Stellar Objects (ARYSO)eng
dc.date.accessioned2025-09-23T01:16:14Z
dc.date.available2025-09-23T01:16:14Z
dc.date.issued2025-09-19
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl estudio de los procesos físicos que rigen la evolución temprana de las estrellas representa un campo fundamental en la astrofísica moderna. Esta tesis se centra en la caracterización de la actividad y rotación estelar en objetos estelares jóvenes (YSOs) en las regiones de formación estelar de Orión y Tauro, con énfasis en las estrellas T Tauri (TTS), tanto estrellas con disco en acreción (CTTS) como estrellas sin este tipo de discos protoplanetarios (WTTS). Se utilizaron observaciones multibanda (ópticas, ultravioletas y de rayos X) provenientes de misiones como TESS, GALEX y XMM-Newton, además de espectros ópticos de Hectospec, FAST y LAMOST, datos astrométricos y fotométricos de Gaia y 2MASS, así como herramientas computaciones desarrolladas por colaboradores del grupo de investigación ARYSO para medir parámetros estelares como la masa y edad estelar (MassAge) y su periodo de rotación (TESSExtractor). Con el fin de procesar y analizar de forma sistemática grandes volúmenes de datos, en este trabajo se desarrollaron dos herramientas computacionales principales: CATTS (Calculator of Activity in T Tauri Stars), enfocada en la medición automática de índices espectroscópicos de actividad cromosférica, y FLAN (Flare Analyzer), diseñada para detectar y caracterizar eventos eruptivos (flares) en curvas de luz. Estas herramientas permitieron explorar propiedades como los índices logR′HK y logR′IRT , la relación entre actividad y masa, edad, rotación, y la ocurrencia de eventos eruptivos a diferentes escalas temporales. Con CATTS se validó el índice logR′HK como un trazador robusto de actividad cromosférica, encontrando que esta actividad es mayor en estrellas TTS que en la contraparte en secuencia principal de la misma masa. También se observaron correlaciones con la masa estelar mostrando un nivel de saturación alrededor de −3,5 para estrellas con más de 0,5 M⊙. Con FLAN, se detectaron y caracterizaron eventos de flare en 346 estrellas de Tauro, permitiendo determinar energías bolométricas, duraciones, amplitudes y tasas de ocurrencia. Este estudio representa el mayor censo sistemático de flares en la región de Tauro, hasta la fecha. Se observó que las estrellas con detección en rayos X y UV tienden a presentar más flares, y que aquellos con mayor actividad cromosférica generan eventos más energéticos y frecuentes. También se encontró que las estrellas TTS tienden a generar flares más energéticos, frecuentes y duraderos que las estrellas de secuencia principal. Las mediciones UV con GALEX permitieron identificar una correlación inédita entre la amplitud media de los flares ópticos y el índice de color entre las bandas del lejano y cercano UV (FUV-NUV), reforzando su utilidad para confirmar que este tipo de eventos son detectables en diferentes regiones del espectro. Se encontró que, en general, las WTTS presentan niveles más altos de actividad magnética respecto a las estrellas más evolucionadas. Asimismo, el análisis de curvas de luz de TESS reveló que los periodos de rotación de las CTTS son mayores a los de las WTTS, lo cual es coherente con los modelos de disk-locking. El trabajo también puso en evidencia diferencias entre estrellas totalmente y parcialmente convectivas, tanto en la actividad como en la producción de flares, lo que tiene implicaciones directas sobre los mecanismos de dínamo en estrellas jóvenes. Además, se identificó una relación entre el número de Rossby y la saturación magnética, contribuyendo al estudio del comportamiento del dínamo estelar con su rotación y actividad en las fases PMS. Finalmente, las herramientas y bases de datos generadas en este trabajo constituyen una plataforma versátil para estudios futuros sobre evolución estelar temprana, rotación, magnetismo y variabilidad en estrellas de baja masa. Esta tesis no sólo aporta resultados científicos concretos, sino que establece un marco metodológico replicable para abordar preguntas abiertas sobre la física estelar en etapas de formación. (Texto tomado de la fuente).spa
dc.description.abstractThe study of the physical processes that govern the early evolution of stars is a fundamental area in modern astrophysics. This thesis focuses on the characterization of stellar activity and rotation in young stellar objects (YSOs) located in the star-forming regions of Orion and Taurus, with an emphasis on T Tauri stars (TTS), including both accreting disk-bearing stars (CTTS) and non-accreting stars lacking protoplanetary disks (WTTS). Multiwavelength observations were used (optical, ultraviolet, and X-rays) from missions such as TESS, GALEX, and XMM-Newton, along with optical spectra from Hectospec, FAST, and LAMOST, astrometric and photometric data from Gaia and 2MASS, and computational tools developed by collaborators from the ARYSO research group to estimate stellar parameters such as mass and age (MassAge), and rotation periods (TESSExtractor). To process and analyze large volumes of data in a systematic way, two computational tools were developed in this work: CATTS (Calculator of Activity in T Tauri Stars), focused on the automatic measurement of chromospheric activity indices, and FLAN (Flare Analyzer), designed to detect and characterize eruptive events (flares) in light curves. These tools enabled the exploration of properties such as the logR′ HK and logR′IRT indices, the relationships between activity and stellar mass, age, and rotation, and the occurrence of flares over different timescales. Using CATTS, the logR′HK index was validated as a robust tracer of chromospheric activity, showing that TTS display higher activity levels than their main-sequence counterparts of the same mass. Correlations with stellar mass were also found, with saturation occurring around logR′HK∼ −3,5 for stars with masses above 0.5 M⊙. With FLAN, flare events were detected and characterized in 346 stars in Taurus, allowing the determination of bolometric energies, durations, amplitudes, and occurrence rates. This study represents the most comprehensive and systematic flare census in the Taurus region to date. It was found that stars with X-ray and UV detections tend to exhibit a higher flare frequency, and that stars with elevated chromospheric activity produce more energetic and frequent events. TTauri stars were observed to generate flares that are generally more energetic, longer lasting, and more frequent than those observed in main-sequence stars. UV measurements from GALEX revealed a novel correlation between the mean amplitude of optical flares and the color index between the far-UV and near-UV bands (FUV−NUV), reinforcing their utility in confirming that such events are detectable across different spectral regions. In general, WTTS were found to exhibit higher levels of magnetic activity compared to more evolved stars. Additionally, light curve analysis from TESS showed that CTTS rotate more slowly than WTTS, consistent with disk-locking models. This work also revealed differences in activity and flare production between fully convective and partially convective stars, with direct implications for the operation of dynamo mechanisms in young stars. Furthermore, a relationship was identified between the Rossby number and magnetic saturation, contributing to our understanding of the interplay between rotation, magnetic activity, and stellar dynamos during the PMS phase. Finally, the tools and datasets developed in this thesis provide a versatile platform for future studies on early stellar evolution, rotation, magnetism, and variability in low-mass stars. Beyond its concrete scientific contributions, this work establishes a replicable methodological framework to address open questions in stellar physics during the formative stages.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Astronomíaspa
dc.description.researchareaFormación y evolución estelarspa
dc.format.extentxi, 171 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88937
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Astronomíaspa
dc.relation.referencesAdams F. C., 2010, American Astronomical Society, 48, 47
dc.relation.referencesAdams F. C., Proszkow E. M., Fatuzzo M., Myers P. C., 2006, ApJ, 641, 504
dc.relation.referencesAhuir J., Brun A. S., Strugarek A., 2020, A& A, 635, A170
dc.relation.referencesAllred J. C., Hawley S. L., Abbett W. P., Carlsson M., 2006, ApJ, 644, 484
dc.relation.referencesAmard L., Palacios A., Charbonnel C., Gallet F., Bouvier J., 2016, A&A, 587, A105
dc.relation.referencesAmard L., Palacios A., Charbonnel C., Gallet F., Georgy C., Lagarde N., Siess L., 2019, A&A, 631, A77
dc.relation.referencesAnderson G. M., 1976, GCA, 40, 1533
dc.relation.referencesAndre P., Ward-Thompson D., Barsony M., 1993, ApJ, 406, 122
dc.relation.referencesAschwanden M. J., Holman G., O’Flannagain A., Caspi A., McTiernan J. M., Kontar E. P., 2016, ApJ, 832, 27
dc.relation.referencesAstropy Collaboration et al., 2013, A&A, 558, A33
dc.relation.referencesAudard M., Osten R. A., Brown A., Briggs K. R., Güdel M., Hodges-Kluck E., Gizis J. E., 2007, A&A, 471, L63
dc.relation.referencesBagnulo S., Cellino A., Sterzik M. F., 2015, MNRAS, 446, L11
dc.relation.referencesBailer-Jones C. A. L., 2015, PASP, 127, 994
dc.relation.referencesBailer-Jones C. A. L., Rybizki J., Fouesneau M., Mantelet G., Andrae R., 2018, AJ, 156, 58
dc.relation.referencesBaliunas S. L., et al., 1995, ApJ, 438, 269
dc.relation.referencesBaluev R. V., 2008, MNRAS, 385, 1279
dc.relation.referencesBanerjee S., Kroupa P., 2015, MNRAS, 447, 728
dc.relation.referencesBaraffe I., Homeier D., Allard F., Chabrier G., 2015, A&A, 577, A42
dc.relation.referencesBarnes S. A., 2003, ApJ, 586, 464
dc.relation.referencesBarrado y Navascués D., Martín E. L., 2003, AJ, 126, 2997
dc.relation.referencesBasri G., Marcy G. W., Valenti J. A., 1992, ApJ, 390, 622
dc.relation.referencesBayo A., et al., 2011, A&A, 536, A63
dc.relation.referencesBeckwith S. V. W., Sargent A. I., Chini R. S., Guesten R., 1990, AJ, 99, 924
dc.relation.referencesBenbakoura M., Réville V., Brun A. S., Le Poncin-Lafitte C., Mathis S., 2019, A& A, 621, A124
dc.relation.referencesBerger E., 2002, ApJ, 572, 503
dc.relation.referencesBertout C., Basri G., Bouvier J., 1988, ApJ, 330, 350
dc.relation.referencesBessell M. S., Castelli F., Plez B., 1998, A&A, 333, 231
dc.relation.referencesBiazzo K., Melo C. H. F., Pasquini L., Randich S., Bouvier J., Delfosse X., 2009, A&A, 508, 1301
dc.relation.referencesBiddle L. I., Llama J., Cameron A., Prato L., Jardine M., Johns-Krull C. M., 2021, ApJ, 906, 113
dc.relation.referencesBiffi V., et al., 2017, MNRAS, 468, 531–548
dc.relation.referencesBohlin R. C., Mészáros S., Fleming S. W., Gordon K. D., Koekemoer A. M., Kovács J., 2017, AJ, 153, 234
dc.relation.referencesBonnell I. A., Bate M. R., Vine S. G., 2003, MNRAS, 343, 413–418
dc.relation.referencesBose S., 2021, Institute of Theoretical Astrophysics
dc.relation.referencesBouvier J., 2013, in Hennebelle P., Charbonnel C., eds, EAS Publications Series Vol. 62, EAS Publications Series. pp 143–168, doi:10.1051/eas/1362005
dc.relation.referencesBouvier J., Cabrit S., Fernandez M., Martin E. L., Matthews J. M., 1993, A&A, 272, 176
dc.relation.referencesBouvier J., et al., 2016, A&A, 590, A78
dc.relation.referencesBoyle A. W., Bouma L. G., 2023, AJ, 166, 14
dc.relation.referencesBradley L., et al., 2019, astropy/photutils: v0.6, doi:10.5281/zenodo.2533376
dc.relation.referencesBrasseur C. E., Phillip C., Fleming S. W., Mullally S. E., White R. L., 2019, Astrocut: Tools for creating cutouts of TESS images, Astrophysics Source Code Library, record ascl:1905.007
dc.relation.referencesBriceño C., Calvet N., Hernández J., Vivas A. K., Hartmann L., Downes J. J., Berlind P., 2005, AJ, 129, 907
dc.relation.referencesBriceño C., Hartmann L., Hernández J., Calvet N., Vivas A. K., Furesz G., Szentgyorgyi A., 2007, ApJ, 661, 1119
dc.relation.referencesBriceño C., et al., 2019, AJ, 157, 85
dc.relation.referencesBriceno C., 2008, in Reipurth B., ed., , Vol. 4, Handbook of Star Forming Regions, Volume I. Reipurth, p. 838, doi:10.48550/arXiv.0810.2294
dc.relation.referencesBrown J. C., 1971, Solar Physics, 18, 489
dc.relation.referencesBrown D. N., Landstreet J. D., Thompson I., 1981, in Liege International Astrophysical Colloquia. pp 195–198
dc.relation.referencesBrown A. G. A., et al., 2018, Astronomy &; Astrophysics, 616, A1
dc.relation.referencesBrowning M. K., 2008, ApJ, 676, 1262
dc.relation.referencesBrunn V., Marcowith A., Sauty C., Padovani M., Rab C., Meskini C., 2023, MNRAS, 519, 5673
dc.relation.referencesBurrows C. J., et al., 1996, ApJ, 473, 437
dc.relation.referencesCaballero J. A., Solano E., 2008, A&A, 485, 931
dc.relation.referencesCalvet N., Muzerolle J., Briceño C., Hernández J., Hartmann L., Saucedo J. L., Gordon K. D., 2004, AJ, 128, 1294
dc.relation.referencesCalvet N., et al., 2005, ApJL, 630, L185
dc.relation.referencesCamenzind M., 1990, Reviews in Modern Astronomy, 3, 234
dc.relation.referencesCaramazza M., Stelzer B., Magaudda E., Raetz S., Güdel M., Orlando S., Poppenhäger K., 2023, A&A, 676, A14
dc.relation.referencesCardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
dc.relation.referencesCarraro G., 2021, Astrophysics of the Interstellar Medium, 1st ed. edn. UNITEXT for Physics, Springer, libgen.li/file.php?md5=9f27a38db4b482ff5cd5d3dd3f1b6a25
dc.relation.referencesCassak P. A., Liu Y.-H., Shay M., 2017, Journal of Plasma Physics, 83
dc.relation.referencesCastelli F., Kurucz R. L., 2004, A&A, 419, 725
dc.relation.referencesChabrier G., Baraffe I., 1997, A&A, 327, 1039
dc.relation.referencesChabrier G., Küker M., 2006, A&A, 446, 1027
dc.relation.referencesChabrier G., Baraffe I., Allard F., Hauschildt P., 2000, ApJ, 542, 464
dc.relation.referencesChang S. W., Byun Y. I., Hartman J. D., 2015, ApJ, 814, 35
dc.relation.referencesChen B., et al., 2020, Nature Astronomy, 4, 1140
dc.relation.referencesChoi P. I., Herbst W., 1996, AJ, 111, 283
dc.relation.referencesChoudhuri A. R., Gilman P. A., 1987, ApJ, 316, 788
dc.relation.referencesCieza L., Baliber N., 2007, ApJ, 671, 605
dc.relation.referencesCody A. M., Hillenbrand L. A., 2010, ApJS, 191, 389
dc.relation.referencesCody A. M., Hillenbrand L. A., 2018, AJ, 156, 71
dc.relation.referencesCody A. M., et al., 2014, AJ, 147, 82
dc.relation.referencesCody A. M., Hillenbrand L. A., David T. J., Carpenter J. M., Everett M. E., Howell S. B., 2017, ApJ, 836, 41
dc.relation.referencesCoelho P., 2014, in Revista Mexicana de Astronomia y Astrofisica Conference Series. pp 151–151
dc.relation.referencesCohen M., Kuhi L. V., 1979, ApJS, 41, 743
dc.relation.referencesCohen M., Emerson J. P., Beichman C. A., 1989, ApJ, 339, 455
dc.relation.referencesCollier Cameron A., Robinson R. D., 1989, MNRAS, 238, 657
dc.relation.referencesCollier Cameron A., Campbell C. G., Quaintrell H., 1995, A&A, 298, 133
dc.relation.referencesColombo S., Orlando S., Peres G., Reale F., Argiroffi C., Bonito R., Ibgui L., Stehle C., 2020, Mem- SAI, 91, 232
dc.relation.referencesCorsaro E., Bonanno A., Mathur S., García R. A., Santos A. R. G., Breton S. N., Khalatyan A., 2021, A & A, 652, L2
dc.relation.referencesCrespo-Chacón I., Montes D., García-Alvarez D., Fernández-Figueroa M. J., López-Santiago J., Foing B. H., 2006, A&A, 452, 987
dc.relation.referencesCui X.-Q., et al., 2012, Research in Astronomy and Astrophysics, 12, 1197
dc.relation.referencesDa Rio N., Robberto M., Soderblom D. R., Panagia N., Hillenbrand L. A., Palla F., Stassun K. G., 2010, ApJ, 722, 1092
dc.relation.referencesDahlin J., 2020, Physics of Plasmas, 27
dc.relation.referencesDame T. M., Hartmann D., Thaddeus P., 2001, ApJ, 547, 792
dc.relation.referencesDas, Indrani Basu, Shantanu André, Philippe 2021, A&A, 649, L13
dc.relation.referencesDavenport J. R. A., 2016, ApJ, 829, 23
dc.relation.referencesDavenport J. R. A., Covey K. R., Clarke R. W., Boeck A. C., Cornet J., Hawley S. L., 2019, ApJ, 871, 241
dc.relation.referencesDavies C. L., Gregory S. G., Greaves J. S., 2014, MNRAS, 444, 1157
dc.relation.referencesDelfosse X., Forveille T., Perrier C., Mayor M., 1998, A&A, 331, 581
dc.relation.referencesDolan C. J., Mathieu R. D., 2001, AJ, 121, 2124
dc.relation.referencesDonati J. F., Landstreet J. D., 2009, American Astronomical Society, 47, 333
dc.relation.referencesDonati J. F., et al., 2008, MNRAS, 390, 545
dc.relation.referencesDonati J. F., et al., 2010, MNRAS, 402, 1426
dc.relation.referencesDoorsselaere T. V., Shariati H., Debosscher J., 2017, The Astrophysical Journal Supplement Series, 232, 26
dc.relation.referencesDownes J. J., et al., 2014, MNRAS, 444, 1793
dc.relation.referencesDoyle L., Ramsay G., Doyle J. G., Wu K., Scullion E., 2018, MNRAS, 480, 2153
dc.relation.referencesDurney B. R., De Young D. S., Roxburgh I. W., 1993, Solar Physics, 145, 207
dc.relation.referencesEberhard G., Schwarzschild K., 1913, ApJ, 38, 292
dc.relation.referencesEker Z., et al., 2020, MNRAS, 496, 3887
dc.relation.referencesElizabethson: A., Serna J., García-Varela A., Hernández J., Cabrera-García J. F., 2023, AJ, 166, 189
dc.relation.referencesElmegreen B. G., 2006, ApJ, 648, 572–579
dc.relation.referencesErcolano B., Clarke C. J., Drake J. J., 2009, ApJ, 699, 1639
dc.relation.referencesEsplin T. L., Luhman K. L., 2019, AJ, 158, 54
dc.relation.referencesFabricant D., Cheimets P., Caldwell N., Geary J., 1998, PASP, 110, 79
dc.relation.referencesFabricant D., et al., 2005, PASP, 117, 1411
dc.relation.referencesFang X.-S., Zhao G., Zhao J.-K., Chen Y.-Q., Bharat Kumar Y., 2016, MNRAS, 463, 2494
dc.relation.referencesFang X.-S., Zhao G., Zhao J.-K., Bharat Kumar Y., 2018, MNRAS, 476, 908
dc.relation.referencesFeiden G. A., 2016, A&A, 593, A99
dc.relation.referencesFeiden G. A., Jones J., Chaboyer B., 2014, Updating the Dartmouth Stellar Evolution Model Grid: Pre-Main-Sequence Models & Magnetic Fields
dc.relation.referencesFeigelson E. D., Montmerle T., 1999, American Astronomical Society, 37, 363
dc.relation.referencesFeigelson E. D., Jackson J. M., Mathieu R. D., Myers P. C., Walter F. M., 1987, AJ, 94, 1251
dc.relation.referencesFeigelson E. D., Garmire G. P., Pravdo S. H., 2002, ApJ, 572, 335
dc.relation.referencesFinociety B., et al., 2021, MNRAS, 508, 3427
dc.relation.referencesFisher G. H., 1989, ApJ, 346, 1019
dc.relation.referencesFitzpatrick E. L., Massa D., Gordon K. D., Bohlin R., Clayton G. C., 2019, ApJ, 886, 108
dc.relation.referencesFlaccomio E., Micela G., Sciortino S., Cody A. M., Guarcello M. G., Morales-Calderòn M., Rebull L., Stauffer J. R., 2018, A&A, 620, A55
dc.relation.referencesFlaherty K. M., Muzerolle J., 2008, AJ, 135, 966
dc.relation.referencesGaia Collaboration et al., 2016, A&A, 595, A1
dc.relation.referencesGaia Collaboration et al., 2023, A&A, 674, A1
dc.relation.referencesGallet F., Bouvier J., 2013, A&A, 556, A36
dc.relation.referencesGallet F., Bouvier J., 2015, A&A, 577, A98
dc.relation.referencesGallet F., Zanni C., Amard L., 2019, A&A, 632, A6
dc.relation.referencesGalli P. A. B., et al., 2018, ApJ, 859, 33
dc.relation.referencesGao Q., Xin Y., Liu J. F., Zhang X. B., Gao S., 2016, VizieR Online Data Catalog: White-light flares on close binaries from Kepler (Gao+, 2016), VizieR On-line Data Catalog: J/ApJS/224/37. Originally published in: 2016ApJS..224...37G, doi:10.26093/cds/vizier.22240037
dc.relation.referencesGao D.-Y., Liu H.-G., Yang M., Zhou J.-L., 2022, The Astronomical Journal, 164, 213
dc.relation.referencesGarcía-Alvarez D., et al., 2003, A&A, 397, 285
dc.relation.referencesGershberg R. E., 1972, Astrophysics and Space Science, 19, 75
dc.relation.referencesGhosh P., Lamb F. K., 1979, ApJ, 232, 259
dc.relation.referencesGilman P. A., 1980, in Gray D. F., Linsky J. L., eds, , Vol. 114, IAU Colloq. 51: Stellar Turbulence. Springer, pp 19–37, doi:10.1007/3-540-09737-6_7
dc.relation.referencesGilmore G., et al., 2022, Astronomy &; Astrophysics, 666, A120
dc.relation.referencesGizis J. E., Monet D. G., Reid I. N., Kirkpatrick J. D., Liebert J., Williams R. J., 2000, AJ, 120, 1085
dc.relation.referencesGomez M., Hartmann L., Kenyon S. J., Hewett R., 1993, AJ, 105, 1927
dc.relation.referencesGorti U., Dullemond C. P., Hollenbach D., 2009, ApJ, 705, 1237
dc.relation.referencesGregorio-Hetem J., Montmerle T., Rodrigues C. V., Marciotto E., Preibisch T., Zinnecker H., 2009, A&A, 506, 711
dc.relation.referencesGregory S. G., Donati J. F., Morin J., Hussain G. A. J., Mayne N. J., Hillenbrand L. A., Jardine M., 2012, ApJ, 755, 97
dc.relation.referencesGüdel M., Guinan E. F., Skinner S. L., 1997, ApJ, 483, 947
dc.relation.referencesGüdel M., Skinner S. L., Mel’Nikov S. Y., Audard M., Telleschi A., Briggs K. R., 2007, A&A, 468, 529
dc.relation.referencesGuedel M., Benz A. O., Schmitt J. H. M. M., Skinner S. L., 1996, ApJ, 471, 1002
dc.relation.referencesGullbring E., Hartmann L., Briceño C., Calvet N., 1998, ApJ, 492, 323
dc.relation.referencesGünther M. N., et al., 2020, AJ, 159, 60
dc.relation.referencesGutermuth R. A., et al., 2008, ApJ, 674, 336
dc.relation.referencesHall J. C., 2008, Living Reviews in Solar Physics, 5, 2
dc.relation.referencesHall J. C., Ramsey L. W., 1992, AJ, 104, 1942
dc.relation.referencesHarris R. J., Andrews S. M., Wilner D. J., Kraus A. L., 2012, ApJ, 751, 115
dc.relation.referencesHartigan P., Kenyon S. J., Hartmann L., Strom S. E., Edwards S., Welty A. D., Stauffer J., 1991, ApJ, 382, 617
dc.relation.referencesHartmann L., 2000, Accretion Processes in Star Formation. Cambridge Astrophysics, Cambridge University Press, https://books.google.com.mx/books?id=hQ9DJ0pYmEUC
dc.relation.referencesHartmann L., 2002, ApJ, 566, L29
dc.relation.referencesHartmann L., 2008, Accretion Processes in Star Formation. Cambridge astrophysics series, Cambridge University Press, https://books.google.com.mx/books?id=YknYzgEACAAJ
dc.relation.referencesHartmann L., MacGregor K. B., 1982, ApJ, 257, 264
dc.relation.referencesHartmann L. W., Noyes R. W., 1987, American Astronomical Society, 25, 271
dc.relation.referencesHartmann L., Hewett R., Calvet N., 1994, ApJ, 426, 669
dc.relation.referencesHartmann L., Calvet N., Gullbring E., D’Alessio P., 1998, ApJ, 495, 385
dc.relation.referencesHauschildt P. H., Allard F., Baron E., 1999, ApJ, 512, 377
dc.relation.referencesHawley S. L., 1993, PASP, 105, 955
dc.relation.referencesHawley S. L., et al., 1995, ApJ, 453, 464
dc.relation.referencesHawley S. L., Davenport J. R. A., Kowalski A. F., Wisniewski J. P., Hebb L., Deitrick R., Hilton E. J., 2014, ApJ, 797, 121
dc.relation.referencesHennebelle P., Inutsuka S.-i., 2019, Frontiers in Astronomy and Space Sciences, 6
dc.relation.referencesHerbert C., Froebrich D., Scholz A., 2023, Monthly Notices of the Royal Astronomical Society, 520, 5433–5445
dc.relation.referencesHerbig G. H., Kameswara Rao N., 1972, ApJ, 174, 401
dc.relation.referencesHerczeg G. J., Hillenbrand L. A., 2014, ApJ, 786, 97
dc.relation.referencesHernández J., Calvet N., Briceño C., Hartmann L., Berlind P., 2004, AJ, 127, 1682
dc.relation.referencesHernández J., et al., 2007, ApJ, 662, 1067
dc.relation.referencesHernández J., Morales-Calderon M., Calvet N., Hartmann L., Muzerolle J., Gutermuth R., Luhman K. L., Stauffer J., 2010, ApJ, 722, 1226
dc.relation.referencesHernández J., et al., 2014, ApJ, 794, 36
dc.relation.referencesHernández J., et al., 2023, AJ, 165, 205
dc.relation.referencesHertzsprung E., 1923, Bulletin of the Astronomical Institutes of the Netherlands, 2, 15
dc.relation.referencesHillenbrand L. A., 1995, Herbig Ae/Be stars: an investigation of molecular environments and associated stellar populations. University of Massachusetts Amherst
dc.relation.referencesHillenbrand L. A., 2002, arXiv e-prints, pp astro–ph/0210520
dc.relation.referencesHinton P. C., France K., Batista M. G., Serna J., Hernández J., Günther H. M., Kowalski A. F., Schneider P. C., 2022, ApJ, 939, 82
dc.relation.referencesHolman G. D., et al., 2011, Space Science Reviews, 159, 107–166
dc.relation.referencesHunter C., 1977, ApJ, 218, 834
dc.relation.referencesHussain G. A. J., 2012, Astronomische Nachrichten, 333, 4
dc.relation.referencesHusser T. O., Wende-von Berg S., Dreizler S., Homeier D., Reiners A., Barman T., Hauschildt P. H., 2013, A&A, 553, A6
dc.relation.referencesIlin E., Schmidt S. J., Poppenhäger K., Davenport J. R. A., Kristiansen M. H., Omohundro M., 2021, A&A, 645, A42
dc.relation.referencesIrwin J., Hodgkin S., Aigrain S., Bouvier J., Hebb L., Irwin M., Moraux E., 2008, MNRAS, 384, 675
dc.relation.referencesJeffries R. D., Maxted P. F. L., Oliveira J. M., Naylor T., 2006, MNRAS, 371, L6
dc.relation.referencesJohns-Krull C. M., 2007, ApJ, 664, 975
dc.relation.referencesJohns-Krull C. M., Valenti J. A., 1996, ApJL, 459, L95
dc.relation.referencesJohnstone C. P., Jardine M., Gregory S. G., Donati J. F., Hussain G., 2014, MNRAS, 437, 3202
dc.relation.referencesJohnstone C. P., Güdel M., Brott I., Lüftinger T., 2015, A&A, 577, A28
dc.relation.referencesJoncour I., Duchêne G., Moraux E., 2017, A&A, 599, A14
dc.relation.referencesJoncour I., Duchene G., Moraux E., Mundy L., 2018, in American Astronomical Society Meeting Abstracts #231. p. 449.04
dc.relation.referencesJoy A. H., 1945, ApJ, 102, 168
dc.relation.referencesJoy A. H., Abt H. A., 1974, AjPS, 28, 1
dc.relation.referencesKarim T., et al., 2016, AJ, 152, 198
dc.relation.referencesKaroff C., et al., 2016, Nature Communications, 7, 11058
dc.relation.referencesKastner J. H., Huenemoerder D. P., Schulz N. S., Canizares C. R., Weintraub D. A., 2002, ApJ, 567, 434
dc.relation.referencesKazachenko M. D., Albelo-Corchado M. F., Tamburri C. A., Welsch B. T., 2022, Solar Physics, 297, 59
dc.relation.referencesKenyon S. J., Hartmann L., 1995, ApJS, 101, 117
dc.relation.referencesKenyon S. J., Gómez M., Whitney B. A., 2008, in Reipurth B., ed., , Vol. 4, Handbook of Star Forming Regions, Volume I. , p. 405, doi:10.48550/arXiv.0810.1298
dc.relation.referencesKochukhov O., Hackman T., Lehtinen J. J., Wehrhahn A., 2020, A&A, 635, A142
dc.relation.referencesKoenigl A., 1991, ApJL, 370, L39
dc.relation.referencesKontar E. P., et al., 2011, Space Science Reviews, 159, 301–355
dc.relation.referencesKounkel M., et al., 2018, AJ, 156, 84
dc.relation.referencesKowalski A. F., 2024, Stellar flares, https://arxiv.org/abs/2402.07885
dc.relation.referencesKowalski A. F., Hawley S. L., Hilton E. J., Becker A. C., West A. A., Bochanski J. J., Sesar B., 2009, AJ, 138, 633
dc.relation.referencesKowalski A. F., et al., 2017, ApJ, 837, 125
dc.relation.referencesKraft R. P., 1967, ApJ, 150, 551
dc.relation.referencesKraus A. L., Herczeg G. J., Rizzuto A. C., Mann A. W., Slesnick C. L., Carpenter J. M., Hillenbrand L. A., Mamajek E. E., 2017, ApJ, 838, 150
dc.relation.referencesKuhn M. A., Hillenbrand L. A., Sills A., Feigelson E. D., Getman K. V., 2019, ApJ, 870, 32
dc.relation.referencesKurucz R., 1993, Robert Kurucz CD-ROM, 13
dc.relation.referencesLacy C. H., Moffett T. J., Evans D. S., 1976, ApJs, 30, 85
dc.relation.referencesLada C. J., Lada E. A., 2003, American Astronomical Society, 41, 57
dc.relation.referencesLada C. J., Wilking B. A., 1984, ApJ, 287, 610
dc.relation.referencesLandin N. R., Mendes L. T. S., Vaz L. P. R., 2010, A& A, 510, A46
dc.relation.referencesLandin N. R., Mendes L. T. S., Vaz L. P. R., Alencar S. H. P., 2023, MNRAS, 519, 5304
dc.relation.referencesLandini M., Fossi B. C. M., 1971, Solar Physics, 17, 379
dc.relation.referencesLavail A., Kochukhov O., Hussain G. A. J., Alecian E., Herczeg G. J., Johns-Krull C., 2017, A&AP, 608, A77
dc.relation.referencesLevine J. L., Steinhauer A., Elston R. J., Lada E. A., 2006, ApJ, 646, 1215
dc.relation.referencesLiang L., Durier F., Babul A., Davé R., Oppenheimer B. D., Katz N., Fardal M., Quinn T., 2016, MNRAS, 456, 4266–4290
dc.relation.referencesLindegren L., et al., 2021, A&A, 649, A4
dc.relation.referencesLinsky J. L., 1980, American Astronomical Society, 18, 439
dc.relation.referencesLinsky J. L., Hunten D. M., Sowell R., Glackin D. L., Kelch W. L., 1979, ApJS, 41, 481
dc.relation.referencesLomb N. R., 1976, Ap&SS, 39, 447
dc.relation.referencesLong D. M., Gallagher P. T., McAteer R. T. J., Bloomfield D. S., 2011, A&A, 531, A42
dc.relation.referencesLópez-Valdivia R., et al., 2024, MNRAS, 533, 395
dc.relation.referencesLuhman K. L., 2018, AJ, 156, 271
dc.relation.referencesLuhman K. L., Esplin T. L., 2020, AJ, 160, 44
dc.relation.referencesLynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
dc.relation.referencesMaehara H., Shibayama T., Notsu Y., Notsu S., Honda S., Nogami D., Shibata K., 2015, Earth, Planets and Space, 67
dc.relation.referencesMaehara H., Notsu Y., Notsu S., Namekata K., Honda S., Ishii T. T., Nogami D., Shibata K., 2017, PASJ, 69, 41
dc.relation.referencesMaggio A., Sciortino S., Vaiana G. S., Majer P., Bookbinder J., Golub L., Harnden F. R. J., Rosner R., 1987, ApJ, 315, 687
dc.relation.referencesMajewski S. R., et al., 2017, AJ, 154, 94
dc.relation.referencesMarigo P., et al., 2017, ApJ, 835, 77
dc.relation.referencesMathys G., 2009, in Berdyugina S. V., Nagendra K. N., Ramelli R., eds, Astronomical Society of the Pacific Conference Series Vol. 405, Solar Polarization 5: In Honor of Jan Stenflo. p. 473
dc.relation.referencesMatsumoto T., Hanawa T., Nakamura F., 1997, ApJ, 478, 569
dc.relation.referencesMatt S., Pudritz R. E., 2005, ApJL, 632, L135
dc.relation.referencesMatt S., Pudritz R. E., 2008, ApJ, 678, 1109
dc.relation.referencesMatt S. P., Pinzón G., de la Reza R., Greene T. P., 2010, ApJ, 714, 989
dc.relation.referencesMatt S. P., Pinzón G., Greene T. P., Pudritz R. E., 2012, ApJ, 745, 101
dc.relation.referencesMatt S. P., Brun A. S., Baraffe I., Bouvier J., Chabrier G., 2015, The Astrophysical Journal Letters, 799, L23
dc.relation.referencesMcGroarty F., Ray T. P., 2004, A&A, 420, 975
dc.relation.referencesMcGroarty F., Ray T. P., Froebrich D., 2007, A&A, 467, 1197
dc.relation.referencesMicela G., Sciortino S., Serio S., Vaiana G. S., Golub L., Harnden F. R., Rosner R., 1984, in Maeder A., Renzini A., eds, Vol. 105, Observational Tests of the Stellar Evolution Theory. p. 101
dc.relation.referencesMilligan R. O., Dennis B. R., 2009, ApJ, 699, 968
dc.relation.referencesMittag M., Schmitt J. H. M. M., Schröder K. P., 2018, A& A, 618, A48
dc.relation.referencesMiville-Deschênes M. A., et al., 2017, A&A, 599, A109
dc.relation.referencesMohanty S., Basri G., 2003, ApJ, 583, 451
dc.relation.referencesMondrik N., Newton E., Charbonneau D., Irwin J., 2019, ApJ, 870, 10
dc.relation.referencesMontes D., Martin E. L., 1998, A&AS, 128, 485
dc.relation.referencesMontes D., Ramsey L. W., Welty A. D., 1999, ApJS, 123, 283
dc.relation.referencesMorales-Calderón M., et al., 2011, ApJ, 733, 50
dc.relation.referencesMorin J., et al., 2008, MNRAS, 390, 567
dc.relation.referencesMorin J., Donati J. F., Petit P., Delfosse X., Forveille T., Jardine M. M., 2010, MNRAS, 407, 2269
dc.relation.referencesMorin J., Dormy E., Schrinner M., Donati J. F., 2011, MNRAS, 418, L133
dc.relation.referencesMuro G. D., Gunn M., Fearn S., Fearn T., Morgan H., 2023, Solar Physics, 298, 75
dc.relation.referencesMuzerolle J., Hartmann L., Calvet N., 1998, AJ, 116, 2965
dc.relation.referencesMuzerolle J., Calvet N., Briceño C., Hartmann L., Hillenbrand L., 2000, ApJL, 535, L47
dc.relation.referencesMuzerolle J., Hillenbrand L., Calvet N., Briceño C., Hartmann L., 2003, ApJ, 592, 266
dc.relation.referencesNakamura F., 2000, ApJ, 543, 291
dc.relation.referencesNamekata K., et al., 2017, ApJ, 851, 91
dc.relation.referencesNamekata K., et al., 2024, ApJ, 961, 23
dc.relation.referencesNeupert W. M., 1968, ApJL, 153, L59
dc.relation.referencesNewton E. R., Irwin J., Charbonneau D., Berlind P., Calkins M. L., Mink J., 2017, ApJ, 834, 85
dc.relation.referencesNofi L. A., et al., 2021, ApJ, 911, 138
dc.relation.referencesNoyes R. W., Hartmann L. W., Baliunas S. L., Duncan D. K., Vaughan A. H., 1984, ApJ, 279, 763
dc.relation.referencesOgino S., Tomisaka K., Nakamura F., 1999, PASJ, 51, 637
dc.relation.referencesOssendrijver M., 2003, A&AR, 11, 287
dc.relation.referencesOwen J. E., Ercolano B., Clarke C. J., 2011, MNRAS, 412, 13
dc.relation.referencesPaegert M., Stassun K. G., Collins K. A., Pepper J., Torres G., Jenkins J., Twicken J. D., Latham D. W., 2022, VizieR Online Data Catalog: TESS Input Catalog version 8.2 (TIC v8.2) (Paegert+, 2021), VizieR On-line Data Catalog: IV/39. Originally published in: 2021arXiv210804778P
dc.relation.referencesPalla F., Stahler S. W., 1990, ApJL, 360, L47
dc.relation.referencesPalla F., Maeder A., Herbig G., Meynet G., Zinnecker H., 2006, Physics of Star Formation in Galaxies: Saas-Fee Advanced Course 29. Lecture Notes 1999. Swiss Society for Astrophysics and Astronomy. Saas-Fee Advanced Course, Springer Berlin Heidelberg, https://books.google. com.mx/books?id=4M0GCAAAQBAJ
dc.relation.referencesPallavicini R., Golub L., Rosner R., Vaiana G. S., Ayres T., Linsky J. L., 1981, ApJ, 248, 279
dc.relation.referencesParker E. N., 1988, ApJ, 330, 474
dc.relation.referencesParker R. J., Wright N. J., Goodwin S. P., Meyer M. R., 2013, MNRAS, 438, 620–638
dc.relation.referencesPasquini L., et al., 2002, The Messenger, 110, 1
dc.relation.referencesPeña Ramírez K., Béjar V. J. S., Zapatero Osorio M. R., Petr-Gotzens M. G., Martín E. L., 2012, ApJ, 754, 30
dc.relation.referencesPecaut M. J., Mamajek E. E., 2013, ApJS, 208, 9
dc.relation.referencesPfalzner S., 2009, Astronomy &; Astrophysics, 498, L37–L40
dc.relation.referencesPfalzner S., 2011, A&A, 536, A90
dc.relation.referencesPietras M., Falewicz R., Siarkowski M., Bicz K., Preś P., 2022, ApJ, 935, 143
dc.relation.referencesPilyugin L. S., 1993, A&A, 277, 42–52
dc.relation.referencesPinzón G., et al., 2021, AJ, 162, 90
dc.relation.referencesPizzolato N., Maggio A., Micela G., Sciortino S., Ventura P., 2003, A & A, 397, 147
dc.relation.referencesPopinchalk M., et al., 2023, ApJ, 945, 114
dc.relation.referencesPrialnik D., 2009, An Introduction to the Theory of Stellar Structure and Evolution
dc.relation.referencesPriest E., 2014, Magnetohydrodynamics of the Sun. Cambridge University Press
dc.relation.referencesProsser C. F., Randich S., Stauffer J. R., Schmitt J. H. M. M., Simon T., 1996, AJ, 112, 1570
dc.relation.referencesPrugniel P., Vauglin I., Koleva M., 2011, A&A, 531, A165
dc.relation.referencesQuintero Noda C., et al., 2021, A&AP, 652, A161
dc.relation.referencesRadick R. R., et al., 1983, PASP, 95, 300
dc.relation.referencesRandich S., 2010, in Charbonnel C., Tosi M., Primas F., Chiappini C., eds, Vol. 268, Light Elements in the Universe. pp 275–283, doi:10.1017/S1743921310004242
dc.relation.referencesRandich S., Schmitt J. H. M. M., Prosser C. F., Stauffer J. R., 1996, A& A, 305, 785
dc.relation.referencesRandich S., et al., 2022, A&A, 666, A121
dc.relation.referencesRead J., Trentham N., 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363, 2693–2710
dc.relation.referencesRebull L. M., Stauffer J. R., Megeath S. T., Hora J. L., Hartmann L., 2006, ApJ, 646, 297
dc.relation.referencesRebull L. M., et al., 2014, AJ, 148, 92
dc.relation.referencesRebull L. M., Stauffer J. R., Cody A. M., Hillenbrand L. A., Bouvier J., Roggero N., David T. J., 2020, AJ, 159, 273
dc.relation.referencesReiners A., Basri G., 2007, ApJ, 656, 1121
dc.relation.referencesReiners A., Basri G., 2009, A& A, 496, 787
dc.relation.referencesReiners A., Joshi N., Goldman B., 2012, AJ, 143, 93
dc.relation.referencesRekhi P., Ben-Ami S., Perdelwitz V., Shvartzvald Y., 2023, A Census of NUV M-Dwarf Flares Using Archival GALEX Data and the gPhoton2 Pipeline
dc.relation.referencesRicker G. R., et al., 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003
dc.relation.referencesRobrade J., Schmitt J. H. M. M., 2007, A&A, 473, 229
dc.relation.referencesRomanova M. M., Ustyugova G. V., Koldoba A. V., Lovelace R. V. E., 2005, ApJ, 635, L165
dc.relation.referencesRussell H. N., Adams W. S., Joy A. H., 1923, PASP, 35, 189
dc.relation.referencesRybizki J., et al., 2022, MNRAS, 510, 2597
dc.relation.referencesRydgren A. E., Vrba F. J., 1983, AJ, 88, 1017
dc.relation.referencesSalaris M., Cassisi S., 2005, Evolution of Stars and Stellar Populations. Wiley, https://books. google.com.mx/books?id=r1dNzr8viRYC
dc.relation.referencesSánchez-Sanjuán S., Hernández J., Pérez-Villegas Á., Román-Zúñiga C., Aguilar L., Ballesteros- Paredes J., Bonilla-Barroso A., 2024, MNRAS, 534, 2566
dc.relation.referencesScargle J. D., 1982, ApJ, 263, 835
dc.relation.referencesScharf C., 2009, Extrasolar Planets and Astrobiology. G - Reference,Information and Interdisciplinary Subjects Series, University Science Books, https://books.google.com.mx/books? id=hC13VGTTc0QC
dc.relation.referencesSchlafly E. F., et al., 2016, ApJ, 821, 78
dc.relation.referencesScholz A., Coffey J., Brandeker A., Jayawardhana R., 2007, The Astrophysical Journal, 662, 1254– 1267
dc.relation.referencesSchrijver C. J., Zwaan C., 2000, Cambridge Astrophysics Series, 34
dc.relation.referencesSchulz N., 2005, From Dust To Stars: Studies of the Formation and Early Evolution of Stars. Springer Praxis Books, Springer Berlin Heidelberg, https://books.google.com.mx/books? id=4xYTejZIKCQC
dc.relation.referencesSegura A., Walkowicz L. M., Meadows V., Kasting J., Hawley S., 2010, Astrobiology, 10, 751
dc.relation.referencesSerna J., et al., 2021, ApJ, 923, 177
dc.relation.referencesSerna J., et al., 2024, ApJ, 968, 68
dc.relation.referencesSherry W. H., Walter F. M., Wolk S. J., Adams N. R., 2008, AJ, 135, 1616
dc.relation.referencesShibata K., Magara T., 2011, Living Reviews in Solar Physics, 8, 6
dc.relation.referencesShibata K., Masuda S., Shimojo M., Hara H., Yokoyama T., Tsuneta S., Kosugi T., Ogawara Y., 1995, ApJL, 451, L83
dc.relation.referencesShibayama T., et al., 2013, ApJs, 209, 5
dc.relation.referencesShu F. H., Adams F. C., Lizano S., 1987, American Astronomical Society, 25, 23
dc.relation.referencesShu F., Najita J., Ostriker E., Wilkin F., Ruden S., Lizano S., 1994, ApJ, 429, 781
dc.relation.referencesShu F. H., Li Z.-Y., Allen A., 2004, ApJ, 601, 930
dc.relation.referencesSiess L., Dufour E., Forestini M., 2000, A&A, 358, 593
dc.relation.referencesSilverberg S. M., Kowalski A. F., Davenport J. R. A., Wisniewski J. P., Hawley S. L., Hilton E. J., 2016, ApJ, 829, 129
dc.relation.referencesSkrutskie M. F., et al., 2006, AJ, 131, 1163
dc.relation.referencesSkumanich A., 1972, ApJ, 171, 565
dc.relation.referencesSoderblom D. R., 2010, American Astronomical Society, 48, 581
dc.relation.referencesSomers G., Stassun K. G., 2017, AJ, 153, 101
dc.relation.referencesSomers G., Cao L., Pinsonneault M. H., 2020, ApJ, 891, 29
dc.relation.referencesSpitzer L., 1987, Dynamical evolution of globular clusters.
dc.relation.referencesStahler S. W., Walter F. M., 1993, in Levy E. H., Lunine J. I., eds, Protostars and Planets III. p. 405
dc.relation.referencesStahler S. W., Shu F. H., Taam R. E., 1980a, ApJ, 241, 637
dc.relation.referencesStahler S. W., Shu F. H., Taam R. E., 1980b, ApJ, 242, 226
dc.relation.referencesStassun K. G., Mathieu R. D., Mazeh T., Vrba F. J., 1999, AJ, 117, 2941
dc.relation.referencesStassun K. G., et al., 2019, AJ, 158, 138
dc.relation.referencesStauffer J., et al., 2014, AJ, 147, 83
dc.relation.referencesStepien K., 1994, A&A, 292, 191
dc.relation.referencesStill M., Barclay T., 2012, PyKE: Reduction and analysis of Kepler Simple Aperture Photometry data, Astrophysics Source Code Library, record ascl:1208.004
dc.relation.referencesStix M., 1976, A& A, 47, 243
dc.relation.referencesStrom K. M., Strom S. E., 1994, ApJ, 424, 237
dc.relation.referencesStrom K. M., Strom S. E., Edwards S., Cabrit S., Skrutskie M. F., 1989, AJ, 97, 1451
dc.relation.referencesTelleschi A., Güdel M., Briggs K. R., Audard M., Palla F., 2007, A&A, 468, 425
dc.relation.referencesThanathibodee T., et al., 2020, ApJ, 892, 81
dc.relation.referencesThanathibodee T., Calvet N., Hernández J., Maucó K., Briceño C., 2022, AJ, 163, 74
dc.relation.referencesThompson M. J., et al., 1996, Science, 272, 1300
dc.relation.referencesTognelli E., Prada Moroni P. G., Degl’Innocenti S., 2011, A&A, 533, A109
dc.relation.referencesTomisaka K., 1996, PASJ, 48, 701
dc.relation.referencesTsinganos K., 2007, in Ferreira J., Dougados C., Whelan E., eds, , Vol. 723, Lecture Notes in Physics, Berlin Springer Verlag. , p. 117
dc.relation.referencesTsuboi Y., et al., 2016, PASJ, 68
dc.relation.referencesTu Z.-L., Yang M., Zhang Z. J., Wang F. Y., 2020, ApJ, 890, 46
dc.relation.referencesTu Z. L., Yang M., Zhang Z. J., Wang F. Y., 2021, VizieR Online Data Catalog: Superflares on solar-type stars from TESS first year (Tu+, 2020), VizieR On-line Data Catalog: J/ApJ/890/46. Originally published in: 2020ApJ...890...46T, doi:10.26093/cds/vizier.18900046
dc.relation.referencesTytler D., Fan X.-M., Burles S., 1996, Nature, 381, 207–209
dc.relation.referencesVan Doorsselaere T., Shariati H., Debosscher J., 2017, ApJs, 232, 26
dc.relation.referencesVaughan A. H., Preston G. W., 1980, PASP, 92, 385
dc.relation.referencesVentura P., Zeppieri A., Mazzitelli I., D’Antona F., 1998, A&A, 331, 1011
dc.relation.referencesVenuti L., et al., 2017, Astronomy &; Astrophysics, 599, A23
dc.relation.referencesVernazza J. E., Avrett E. H., Loeser R., 1981, ApJs, 45, 635
dc.relation.referencesVida K., Roettenbacher R. M., 2018, A&A, 616, A163
dc.relation.referencesVidotto A. A., et al., 2014, MNRAS, 441, 2361
dc.relation.referencesVilhu O., 1984, A&A, 133, 117
dc.relation.referencesVilhu O., Walter F. M., 1987, ApJ, 321, 958
dc.relation.referencesVrba F. J., Herbst W., Booth J. F., 1988, AJ, 96, 1032
dc.relation.referencesWalcher C. J., Coelho P., Gallazzi A., Charlot S., 2009, MNRAS, 398, L44
dc.relation.referencesWalkowicz L. M., et al., 2011, AJ, 141, 50
dc.relation.referencesWall J. V., Peacock J. A., 1985, MNRAS, 216, 173
dc.relation.referencesWalter F. M., 1986, ApJ, 306, 573
dc.relation.referencesWalter F. M., Linsky J. L., Bowyer S., Garmire G., 1980, ApJL, 236, L137
dc.relation.referencesWarmuth A., Mann G., 2020, A&A, 644, A172
dc.relation.referencesWedemeyer-Böhm S., Carlsson M., 2011, A&A, 528, A1
dc.relation.referencesWest A. A., et al., 2004, AJ, 128, 426
dc.relation.referencesWhite R. J., Basri G., 2003, ApJ, 582, 1109
dc.relation.referencesWhite S. M., Kundu M. R., Jackson P. D., 1989, A&A, 225, 112
dc.relation.referencesWhitworth A., Summers D., 1985, MNRAS, 214, 1
dc.relation.referencesWilson O. C., 1968, ApJ, 153, 221
dc.relation.referencesWilson O. C., 1978, ApJ, 226, 379
dc.relation.referencesWright N. J., 2020, New Astronomy Reviews, 90, 101549
dc.relation.referencesWright N. J., Drake J. J., 2016, Nature, 535, 526–528
dc.relation.referencesWright N. J., Mamajek E. E., 2018, MNRAS, 476, 381
dc.relation.referencesWright J. T., Marcy G. W., Butler R. P., Vogt S. S., 2004, ApJS, 152, 261
dc.relation.referencesWright N. J., Drake J. J., Mamajek E. E., Henry G. W., 2011, ApJ, 743, 48
dc.relation.referencesWright A. H., Driver S. P., Robotham A. S. G., 2018, MNRAS, 480, 3491
dc.relation.referencesWright N. J., Goodwin S., Jeffries R. D., Kounkel M., Zari E., 2022, OB Associations, https: //arxiv.org/abs/2203.10007
dc.relation.referencesYamashita M., Itoh Y., Oasa Y., 2022, PASJ, 74, 1295
dc.relation.referencesYang H., Johns-Krull C. M., 2011, ApJ, 729, 83
dc.relation.referencesYang H., Liu J., Qiao E., Zhang H., Gao Q., Cui K., Han H., 2018, ApJ, 859, 87
dc.relation.referencesZanni C., Ferreira J., 2010, ApJL, 727, L22
dc.relation.referencesZari E., Brown A. G. A., de Bruijne J., Manara C. F., de Zeeuw P. T., 2017, A&A, 608, A148
dc.relation.referencesZhang Z., et al., 2018, ApJ, 858, 41
dc.relation.referencesde Zeeuw P. T., Hoogerwerf R., de Bruijne J. H. J., Brown A. G. A., Blaauw A., 1999, AJ, 117, 354
dc.relation.referencesvan der Marel N., et al., 2021, AJ, 161, 33
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.proposalAstronomíaspa
dc.subject.proposalAstronomyeng
dc.subject.proposalProtostrellasspa
dc.subject.proposalProtostarseng
dc.subject.proposalActividad estelarspa
dc.subject.proposalStellar activityeng
dc.subject.proposalRotación estelarspa
dc.subject.proposalStellar rotationeng
dc.subject.proposalEspectroscopiaspa
dc.subject.proposalSpectroscopyeng
dc.subject.unescoAnálisis espectroquímicospa
dc.subject.unescoSpectrochemical analysiseng
dc.subject.unescoAstrofísicaspa
dc.subject.unescoAstrophysicseng
dc.subject.wikidataevolución estelarspa
dc.subject.wikidatastellar evolutioneng
dc.titleActividad y rotación de estrellas jóvenes en la era de los grandes censos del firmamentospa
dc.title.translatedActivity and rotation of young stellar objects in the era of large-scale sky surveyseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_MariaBatista.pdf
Tamaño:
17.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: