Farmacocinética poblacional en el manejo empírico de infecciones en pacientes con neoplasias hematológicas y neutropenia febril pos-quimioterapia

dc.contributor.advisorSaavedra Trujillo, Carlos Humbertospa
dc.contributor.advisorDíaz Rojas, Jorge Augustospa
dc.contributor.authorParra González, Daniel Sebastiánspa
dc.contributor.researchgroupGrupo de Investigacion en Enfermedades Infecciosasspa
dc.date.accessioned2022-02-03T20:46:25Z
dc.date.available2022-02-03T20:46:25Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLos pacientes con neoplasias hematológicas y neutropenia febril postquimioterapia podrían presentar alteraciones fisiológicas que lleven a cambios en la farmacocinética (PK) de los fármacos comparado a individuos sin cáncer o neutropenia. Estos cambios, en la PK de antibióticos, podrían resultar en fallos terapéuticos y esto a su vez en hospitalizaciones prolongadas, empeoramiento en la severidad de la infección e inclusive en la muerte. En este estudio, se desarrollaron modelos de PK poblacional para cefepime (FEP) y vancomicina (VAN) en el tratamiento empírico de infecciones en pacientes con neutropenia post-quimioterapia. La farmacocinética de FEP fue descrita por un modelo de dos compartimentos con aclaramiento dependiente del nivel de creatinina sérica (SCR), variabilidad interindividual en todos los parámetros y variabilidad residual con una función aditiva. Por otra parte, la farmacocinética de VAN fue descrita con un modelo de dos compartimentos con aclaramiento dependiente del aclaramiento renal de creatinina (ClCr), variabilidad interindividual en todos los parámetros, correlación entre los parámetros V1 y V2 y una variabilidad residual con funciones aditivas dependientes del método de determinación de VAN. Mediante simulaciones de Monte Carlo se encontró que para FEP, el alcance de los objetivos PK/PD (60%fT>MIC y 100%fT>MIC) es muy dependiente de la duración de infusión, así como del efecto de SCR. Para VAN se encuentra que el alcance del indicador AUC/MIC ≥ 400 se ve afectado por cambios en la dosis diaria total y la prolongación de la duración de infusión no afecta el PTA. Se realizó una comparación entre objetivos dependientes de AUC vs Cmin, y se encuentró que el último no es un predictor adecuado del primero. (Texto tomado de la fuente).spa
dc.description.abstractPatients with haematological malignancies and post-chemotherapy febrile neutropenia may present with physiological alterations that could lead to changes in the pharmacokinetics (PK) of drugs compared to individuals without cancer or neutropenia. These changes, in the PK of antibiotics, could result in therapeutic failures and this in turn in prolonged hospitalizations, worsening the severity of infection and even death. In this study, population PK models were developed for cefepime (FEP) and vancomycin (VAN) in the empirical treatment of infections in patients with post-chemotherapy neutropenia. FEP pharmacokinetics was described by a two-compartment model with clearance dependent on serum creatinine level (SCR), interindividual variability in all parameters, and residual variability with an additive function. On the other hand, the PK of VAN was described with a two-compartment model with clearance dependent on renal creatinine clearance (CrCl), interindividual variability in all parameters, correlation between parameters V1 and V2, and a residual variability with additive functions dependent on the VAN determination method. Through Monte Carlo simulations, it was found that the achievement of PK/PD objectives (60%fT>MIC and 100%fT>MIC) for FEP is highly dependent on the duration of the infusion, as well as the effect of SCR. It was found that the achievement of the PK/PD objective AUC/MIC ≥ 400 with VAN was affected by changes in the total daily dose and the prolongation of the duration of the infusion does not affect the PTA. A comparison was made between targets relying on AUC or Cmin, and it was found that the latter is not an adequate predictor of the former.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Farmacologíaspa
dc.description.methodsModelamiento mediante regresión no lineal de efectos mixtos y simulación mediante métodos de Monte Carlo de datos farmacocinéticos de cefepime y vancomicina en una muestra de pacientes con neutropenia febril post-quimioterapia.spa
dc.description.notesIncluye anexosspa
dc.description.researchareaResistencia antimicrobianaspa
dc.description.sponsorshipLos datos analizados en este proyecto fueron obtenidos con el apoyo del Instituto Nacional de Cancerología con financiamiento para el proyecto, de recursos de Inversión Nación, identificado con el código SAP C41030110-012 y de la Universidad Nacional de Colombia en el marco del convenio interinstitucional entre dos instituciones públicas del estado.spa
dc.format.extentxxi, 188 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80871
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesAarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991;32(6):669–670.spa
dc.relation.referencesFood and Drug Administration (FDA). Guidance for Industry Population Pharmacokinetics. 1st ed. February. Rockville, MD: Food and Drug Administration (FDA); 1999.spa
dc.relation.referencesMould DR, Upton RN. Basic Concepts in Population Modeling, Simulation, and Model- Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.spa
dc.relation.referencesBonate PL. Pharmacokinetic-Pharmacodynamic Modeling and Simulation. 2nd ed. New York: Springer International Publishing; 2011.spa
dc.relation.referencesFood and Drug Administration (FDA), FDA. Guidance for Industry: Exposure-Response Relationships - Study Design, Data Analysis and Regulatory Applications. FDA Guid. 2003;(April):1–25.spa
dc.relation.referencesSheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445– 479.spa
dc.relation.referencesAarons L. Software for Population Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet. 1999;36(4):255–264.spa
dc.relation.referencesShargel L,Wu-Pong S, Yu A. Applied Biopharmaceutics and Pharmacokinetics, 5th Edition. vol. 94; 2004.spa
dc.relation.referencesDartois C, Brendel K, Comets E, Laffont CM, Laveille C, Tranchand B, et al. Overview of model-building strategies in population PK/PD analyses: 2002-2004 Literature survey. Br J Clin Pharmacol. 2007;64(5):603–612.spa
dc.relation.referencesWang Y. Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn. 2007;34:575–593.spa
dc.relation.referencesPinheiro JC, Bates DM. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model. J Comput Graph Stat. 1995;4(1):12–35.spa
dc.relation.referencesGibiansky L, Gibiansky E, Bauer R. Comparison of NONMEM 7.2 estimation methods and parallel processing efficiency on a target-mediated drug disposition model. J Pharmacokinet Pharmacodyn. 2012;39(1):17–35.spa
dc.relation.referencesDempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J R Stat Soc Ser B. 1977;39(1):1–22.spa
dc.relation.referencesD Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User’s Guide: Pharmacokinetic/ Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Resource (BMSR); 2009.spa
dc.relation.referencesKarimi B, Lavielle M. Efficient Metropolis-Hastings sampling for nonlinear mixed effects models. In: Proc. BAYSM. Warwick, United Kingdom; 2018.spa
dc.relation.referencesGelman A, Lee D, Guo J. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. J Educ Behav Stat. 2015;40(5):530–543.spa
dc.relation.referencesTatarinova T, Neely MN, Barttoff J, van Guilder M, Yamada W, Bayard D, et al. Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian. J Pharmacokinet Pharmacodyn. 2013;40(2):189–199.spa
dc.relation.referencesBustad A, Terziivanov D, Leary R, Port R, Schumitzky A, Jelliffe R. Parametric and Nonparametric Population Methods : Their Comparative Performance in Analysing a Clinical Data Set and Two Monte Carlo Simulation Studies. Clin Pharmacokinet. 2006;45(4):1–40.spa
dc.relation.referencesYamada WM, Bartroff J, Bayard D, Burke J, Van Guilder M, Jelliffe RW, et al. The Nonparametric Adaptive Grid Algorithm for Population Pharmacokinetic Modeling; 2013.spa
dc.relation.referencesDudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: Ready for prime time. Curr Opin Microbiol. 2000;3(5):515–521.spa
dc.relation.referencesEtte EI, Ludden T. Population Pharmacokinetic Modeling: The Importance of Informative Graphics. Pharm Res. 1995;12(12):1845–1855.spa
dc.relation.referencesMandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic- pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511– 528.spa
dc.relation.referencesBauer RJ. NONMEM users guide: introduction to NONMEM 7.2.0. ICON Dev Solut Ellicott City, MD. 2011.spa
dc.relation.referencesByon W, Smith MK, Chan P, Tortorici MA, Riley S, Dai H, et al. Establishing best practices and guidance in population modeling: An experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometrics Syst Pharmacol. 2013;2(7):1–8.spa
dc.relation.referencesBrendel K, Dartois C, Comets E, Diot AL, Laveille C, Tranchand B, et al. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet. 2007;46(3):221–234.spa
dc.relation.referencesRescigno A, Beck JS, Thakur AK. The use and abuse of models. J Pharmacokinet Biopharm. 1987;15(3):327–340.spa
dc.relation.referencesYano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28(2):171–192.spa
dc.relation.referencesBennet JE, Dolin R, Blaser MJ. Principles and Practice of Infectious Diseases. Eigth edit ed. Elsevier Saunders; 2015.spa
dc.relation.referencesAndrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48 Suppl 1(Suppl S1):5–16.spa
dc.relation.referencesCraig WAA. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin Infect Dis. 2007;26(1):1–10.spa
dc.relation.referencesCraig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1991;74:63–70.spa
dc.relation.referencesMouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/ pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J Antimicrob Chemother. 2005;55(5):601–607.spa
dc.relation.referencesCalbo E, Garau J. Application of Pharmacokinetics and Pharmacodynamics to Antimicrobial Therapy of Community-Acquired Respiratory Tract Infections. Respiration. 2005;72(2):561– 571.spa
dc.relation.referencesScaglione F, Paraboni L. Pharmacokinetics/pharmacodynamics of antibacterials in the Intensive Care Unit: setting appropriate dosing regimens. Int J Antimicrob Agents. 2008;32(4):294–301.spa
dc.relation.referencesRubinstein RY, Kroese DP. Simulation and the Monte Carlo Method. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017.spa
dc.relation.referencesRoberts JA, Kirkpatrick CMJ, Lipman J. Monte Carlo simulations: Maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011;66(2):227–231.spa
dc.relation.referencesAsín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/ pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319–329.spa
dc.relation.referencesTheuretzbacher U. Pharmacokinetic and pharmacodynamic issues for antimicrobial therapy in patients with cancer. Clin Infect Dis. 2012;54(12):1785–1792.spa
dc.relation.referencesÁlvarez Rodríguez JC, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de cefepime en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá [Tesis de Especialidad]. Universidad Nacional de Colombia; 2015.spa
dc.relation.referencesPérez Mesa JA, Cuervo Maldonado SI, Cortés Luna JA, Sánchez Pedraza R, Silva Gómez E, Díaz JA, et al. Farmacocinética de un producto de Vancomicina en pacientes con neoplasias hematológicas y neutropenia febril post-quimioterapia en el Instituto Nacional de Cancerología, Empresa Social del Estado, Bogotá –Colombia [Tesis de Especialidad]. Universidad Nacional de Colombia; 2016.spa
dc.relation.referencesOwen JS, Fiedler-Kelly J. Introduction to Population PK-PD Analysis with NONMEM. 1st ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014.spa
dc.relation.referencesDelattre M, Lavielle M, Poursat MA. A note on BIC in mixed-effects models. Electron J Stat. 2014;8(1):456–475.spa
dc.relation.referencesFood and Drug Administration (FDA). Bioanalytical Method Validation Guidance for Industry. vol. 1043. Rockville, MD: Food and Drug Administration (FDA); 2018.spa
dc.relation.referencesJusko WJ. Use of pharmacokinetic data below lower limit of quantitation values. Pharm Res. 2012;29(9):2628–2631.spa
dc.relation.referencesNguyen THT, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: Metrics and graphics. CPT Pharmacometrics Syst Pharmacol. 2017;6(2):87–109.spa
dc.relation.referencesProost JH. Combined proportional and additive residual error models in population pharmacokinetic modelling. Eur J Pharm Sci. 2017;109(May):S78–S82.spa
dc.relation.referencesLixoft. Monolix 2019 User Guide; 2019 [citado 2020-03-04]. Disponible en: http: //monolix.lixoft.com/single-page/.spa
dc.relation.referencesRyan TP. Modern Regression Methods. John Wiley & Sons, Inc; 2009.spa
dc.relation.referencesMaronna RA, Zamar RH. Robust estimates of location and dispersion for high-dimensional datasets. Technometrics. 2002;44(4):307–317.spa
dc.relation.referencesHutmacher MM, Kowalski KG. Covariate selection in pharmacometric analyses: A review of methods. Br J Clin Pharmacol. 2015;79(1):132–147.spa
dc.relation.referencesThai HT, Mentré F, Holford NHG, Veyrat-Follet C, Comets E. Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: A simulation study in population pharmacokinetics. J Pharmacokinet Pharmacodyn. 2014;41(1):15–33.spa
dc.relation.referencesEfron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26. Efron B. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1–26.spa
dc.relation.referencesJamsen KM, Patel K, Nieforth K, Kirkpatrick CMJ. A Regression Approach to Visual Predictive Checks for Population Pharmacometric Models. CPT Pharmacometrics Syst Pharmacol. 2018;7(10):678–686.spa
dc.relation.referencesRoberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–1083.spa
dc.relation.referencesFink DJ, Sluss PM, Januzzi JL, Lewandrowski KB. Appendix: Laboratory Values of Clinical Importance. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s Princ. Intern. Med.. 18th ed. New York: The McGraw-Hill Companies, Inc; 2012. .spa
dc.relation.referencesUdy AA, Roberts JA, Lipman J. Antibiotic Pharmacokinetic/ Pharmacodynamic Considerations in the Critically Ill. 1st ed. Melbourne, Australia: Springer Nature Singapore; 2018.spa
dc.relation.referencesSavic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: Problems and solutions. AAPS J. 2009;11(3):558–569.spa
dc.relation.referencesDuval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res. 2002;19(12):1835– 1840.spa
dc.relation.referencesDuggan JX. Quantification below the LLOQ in regulated LC-MS/MS assays: A review of bioanalytical considerations and cautions. Bioanalysis. 2019;11(8):797–814.spa
dc.relation.referencesDosne AG, Bergstrand M, Karlsson MO. A strategy for residual error modeling incorporating scedasticity of variance and distribution shape. J Pharmacokinet Pharmacodyn. 2016;43(2):137–151.spa
dc.relation.referencesEndimiani A, Perez F, Bonomo RA. Cefepime: A reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(6):805–824.spa
dc.relation.referencesBarbhaiya RH, Knupp CA, Thomas Forgue S, Matzke GR, Guay DRP, Pittman KA. Pharmacokinetics of cefepime in subjects with renal insufficiency. Clin Pharmacol Ther. 1990;48(3):268–276.spa
dc.relation.referencesCronqvist J, Nilsson-Ehle I, Oqvist B, Norrby SR. Pharmacokinetics of cefepime dihydrochloride arginine in subjects with renal impairment. Antimicrob Agents Chemother. 1992;36(12):2676–2680.spa
dc.relation.referencesJonckheere S, De Neve N, De Beenhouwer H, Berth M, Vermeulen A, Van Bocxlaer J, et al. A model-based analysis of the predictive performance of different renal function markers for cefepime clearance in the ICU. J Antimicrob Chemother. 2016;71(9):2538–2546.spa
dc.relation.referencesTam VH, Mckinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and Pharmacodynamics of Cefepime in Patients with Various Degrees of Renal Function. Antimicrob Agents Chemother. 2003;47(6):1853–1861.spa
dc.relation.referencesLevey A, Perrone RD, Madias NE. Serum Creatinine And Renal Function. Annu Rev Med. 1988;39(1):465–490.spa
dc.relation.referencesAnderson GD. Sex and racial differences in pharmacological response: Where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Women’s Heal. 2005;14(1):19–29.spa
dc.relation.referencesBarbhaiya RH, Knupp CA, Pittman KA. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob Agents Chemother. 1992;36(6):1181–1185.spa
dc.relation.referencesBarbhaiya RH, Forgue ST, Shyu WC, Papp EA, Pittman KA. High-pressure liquid chromatographic analysis of BMY-28142 in plasma and urine. Antimicrob Agents Chemother. 1987;31(1):55–59.spa
dc.relation.referencesBenet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–121.spa
dc.relation.referencesT’jollyn H, Vermeulen A, Van Bocxlaer J, Colin P. A Physiologically Based Pharmacokinetic Perspective on the Clinical Utility of Albumin-Based Dose Adjustments in Critically Ill Patients. Clin Pharmacokinet. 2018;57(1):59–69.spa
dc.relation.referencesLi D. Studies on the Interaction of Cefepime Hydrochloride with Bovine Serum Albumin by Fluorescence, Synchronous Fluorescence, Three-Dimensional Fluorescence and Circular Dichroism. J Bioanal Biomed. 2017;09(02):107–113.spa
dc.relation.referencesDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.spa
dc.relation.referencesWhited L, Grove M, Rose D, Rhodes NJ, Scheetz MH, O’Donnell JN, et al. Pharmacokinetics of Cefepime in Patients with Cancer and Febrile Neutropenia in the Setting of Hematologic Malignancies or Hematopoeitic Cell Transplantation. Pharmacother J Hum Pharmacol Drug Ther. 2016 sep;36(9):1003–1010.spa
dc.relation.referencesRhodes NJ, Grove ME, Kiel PJ, O’Donnell JN, Whited LK, Rose DT, et al. Population pharmacokinetics of cefepime in febrile neutropenia: implications for dose-dependent susceptibility and contemporary dosing regimens. Int J Antimicrob Agents. 2017;50(3):482– 486.spa
dc.relation.referencesLee DG, Choi SM, Yoo JH, Yim DS, Bae KS, Shin WS, et al. Population pharmacokinetics of cefepime in febrile neutropenic patients. J Korean Soc Clin Pharmacol Ther. 2003;11(1):23–29.spa
dc.relation.referencesSime FB, Roberts MS, Tiong IS, Gardner JH, Lehman S, Peake SL, et al. Adequacy of High- Dose Cefepime Regimen in Febrile Neutropenic Patients with Hematological Malignancies. Antimicrob Agents Chemother. 2015;59(9):5463–5469.spa
dc.relation.referencesRoos JF, Bulitta J, Lipman J, Kirkpatrick CMJ. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–993.spa
dc.relation.referencesGeorges B, Conil JM, Seguin T, Dieye E, Cougot P, Decun JF, et al. Cefepime in intensive care unit patients: Validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther. 2008 apr;46(04):157–164.spa
dc.relation.referencesNicasio AM, Ariano RE, Zelenitsky SA, Kim A, Crandon JL, Kuti JL, et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically 111 patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2009;53(4):1476– 1481.spa
dc.relation.referencesDelattre IK, Musuamba FT, Jacqmin P, Taccone FS, Laterre PF, Verbeeck RK, et al. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012;45(10-11):780–786.spa
dc.relation.referencesMcKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351.spa
dc.relation.referencesCrandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(3):1111–1116.spa
dc.relation.referencesRhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu J, et al. Defining Clinical Exposures of Cefepime for Gram-Negative Bloodstream Infections That Are Associated with Improved Survival. Antimicrob Agents Chemother. 2016;60(3):1401–1410.spa
dc.relation.referencesBarbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, et al. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother. 1992;36(3):552–557.spa
dc.relation.referencesThe European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10 ed. Version 10.0. EUCAST; 2020. Disponible en: https://www.eucast.org/.spa
dc.relation.referencesButterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP. Refining vancomycin protein binding estimates: Identification of clinical factors that influence protein binding. Antimicrob Agents Chemother. 2011;55(9):4277–4282.spa
dc.relation.referencesNeely MN, Kato L, Youn G, Kraler L, Bayard D, Van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):1–12.spa
dc.relation.referencesLixoft SAS. Monolix Version 2019R2. 1st ed. Antony, France: Lixoft SAS; 2019. Disponible en: http://lixoft.com/products/monolix/.spa
dc.relation.referencesZamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clinical and Experimental Pharmacology and Physiology. 2019;46(4):292–301.spa
dc.relation.referencesCole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: A primer. American Journal of Epidemiology. 2014;179(2):252–260.spa
dc.relation.referencesRybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clinical Infectious Diseases. 2006;42(SUPPL. 1):35–39.spa
dc.relation.referencesMarsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: A review of population pharmacokinetic analyses. Clinical Pharmacokinetics. 2012;51(1):1–13.spa
dc.relation.referencesConil JM, Georges B, Breden A, Ruiz S, Cougot P, Fourcade O, et al. Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: Superiority of the Chronic Kidney Disease Epidemiology Collaboration equation? Anaesthesia and Intensive Care. 2014;42(2):178–184.spa
dc.relation.referencesLi X, Nielsen J, Cirincione B, Li H, Addy C, Wagner J, et al. Development of a population pharmacokinetic model for taranabant, a cannibinoid-1 receptor inverse agonist. AAPS Journal. 2010;12(4):537–547.spa
dc.relation.referencesStec GP, Atkinson AJ. Analysis of the contributions of permeability and flow to intercompartmental clearance. Journal of Pharmacokinetics and Biopharmaceutics. 1981;9(2):167–180.spa
dc.relation.referencesBrussee JM, Krekels EHJ, Calvier EAM, Pali´c S, Rostami-Hodjegan A, Danhof M, et al. A Pediatric Covariate Function for CYP3A-Mediated Midazolam Clearance Can Scale Clearance of Selected CYP3A Substrates in Children. AAPS Journal. 2019;21(5):1–11.spa
dc.relation.referencesZane NR, Reedy MD, Gastonguay MR, Himebauch AS, Ramsey EZ, Topjian AA, et al. A Population Pharmacokinetic Analysis to Study the Effect of Therapeutic Hypothermia on Vancomycin Disposition in Children Resuscitated from Cardiac Arrest. Pediatric Critical Care Medicine. 2017;18(7):e290–e297.spa
dc.relation.referencesYoshitsugu H, Sakurai T, Ishikawa H, Roy A, Bifano M, Pfister M, et al. Pooled modelbased approach to compare the pharmacokinetics of entecavir between Japanese and non- Japanese chronic hepatitis B patients. Diagnostic Microbiology and Infectious Disease. 2011;70(1):91–100. Disponible en: http://dx.doi.org/10.1016/j.diagmicrobio. 2010.12.009.spa
dc.relation.referencesMartinez JM, Khier S, Morita S, Rauch C, Fabre D. Population pharmacokinetic analysis of fexofenadine in Japanese pediatric patients. Journal of Pharmacokinetics and Pharmacodynamics. 2014;41(2):187–195.spa
dc.relation.referencesMangin O, Urien S, Mainardi JL, Fagon JY, Faisy C. Vancomycin Pharmacokinetic and Pharmacodynamic Models for Critically Ill Patients with Post-Sternotomy Mediastinitis. Clinical Pharmacokinetics. 2014;53(9):849–861.spa
dc.relation.referencesShi S, Klotz U. Age-related changes in pharmacokinetics. Current Drug Metabolism. 2011;12:601–610.spa
dc.relation.referencesMangoni AA, Jackson SHD. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. British Journal of Clinical Pharmacology. 2004;57(1):6–14.spa
dc.relation.referencesLe Normand Y, Milpiedb N, Kergueris MF, Harousseau Jl. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. International Journal of Bio-Medical Computing. 1994;36:121–125.spa
dc.relation.referencesSantos Buelga D, Del Mar Fernandez De Gatta M, Herrera EV, Dominguez-Gil A, García MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrobial Agents and Chemotherapy. 2005;49(12):4934–4941.spa
dc.relation.referencesAl-Kofide H, Zaghloul I, Al-Naim L. Pharmacokinetics of vancomycin in adult cancer patients. Journal of Oncology Pharmacy Practice. 2010;16(4):245–250.spa
dc.relation.referencesJarkowski III A, Forrest A, Sweeney RP, Tan W, Segal BH, Almyroudis N, et al. Characterization of vancomycin pharmacokinetics in the adult acute myeloid leukemia population. Journal of Oncology Pharmacy Practice. 2012;18(1):91–96.spa
dc.relation.referencesHaeseker MB, Croes S, Neef C, Bruggeman CA, Stolk LML, Verbon A. Vancomycin dosing in neutropenic patients. PLoS ONE. 2014;9(11).spa
dc.relation.referencesHirai K, Ishii H, Shimoshikiryo T, Shimomura T, Tsuji D, Inoue K, et al. Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin. Therapeutic Drug Monitoring. 2016;38(6):706–710.spa
dc.relation.referencesBury D, ter Heine R, van de Garde EMW, Nijziel MR, Grouls RJ, Deenen MJ. The effect of neutropenia on the clinical pharmacokinetics of vancomycin in adults. European Journal of Clinical Pharmacology. 2019;75:921–928. 187spa
dc.relation.referencesGuo T, van Hest RM, Roggeveen LF, Fleuren LM, Thoral PJ, Bosman RJ, et al. External Evaluation of Population Pharmacokinetic Models of Vancomycin in Large Cohorts of Intensive Care Unit Patients. Antimicrobial Agents and Chemotherapy. 2019;63(5):1–9. Disponible en: https://doi.org/10.1128/AAC.01708-10.spa
dc.relation.referencesÁlvarez R, Cortés LEL, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy. 2016;60(5):2601–2609.spa
dc.relation.referencesMen P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24 /MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic review and meta-analysis. PLoS ONE. 2016;11(1):1–11.spa
dc.relation.referencesLodise TP, Rhoney DH, Tam VH, McKinnon PS, Drusano GL. Pharmacodynamic profiling of cefepime in plasma and cerebrospinal fluid of hospitalized patients with external ventriculostomies. Diagn Microbiol Infect Dis. 2006;54(3):223–230.spa
dc.relation.referencesRybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2020;77(11):835–863.spa
dc.relation.referencesJung Y, Song KH, Cho JE, Kim HS, Kim NH, Kim TS, et al. Area under the concentrationtime curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. International Journal of Antimicrobial Agents. 2014;43(2):179–183. Disponible en: http://dx.doi.org/10. 1016/j.ijantimicag.2013.10.017.spa
dc.relation.referencesCasapao AM, Lodise TP, Davis SL, Claeys KC, Kullar R, Levine DP, et al. Association between Vancomycin Day 1 Exposure Profile and Outcomes among Patients with Methicillin- Resistant Staphylococcus aureus Infective Endocarditis. Antimicrobial Agents and Chemotherapy. 2015;59(6):2978–2985. Disponible en: http://dx.doi.org/10.1128.spa
dc.relation.referencesGawronski KM, Goff DA, Jack Brown, Khadem TM, Bauer KA. A stewardship program’s retrospective evaluation of vancomycin auc24/mic and time to microbiological clearance in patients with methicillin-resistant staphylococcus aureus bacteremia and osteomyelitis. Clinical Therapeutics. 2013;35(6):772–779. Disponible en: http://dx.doi.org/10. 1016/j.clinthera.2013.05.008.spa
dc.relation.referencesKullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clinical Infectious Diseases. 2011;52(8):975–981.spa
dc.relation.referencesSuzuki Y, Tokimatsu I, Morinaga Y, Sato Y, Takano K, Kohno K, et al. A retrospective analysis to estimate target trough concentration of vancomycin for febrile neutropenia in patients with hematological malignancy. Clinica Chimica Acta. 2015;440:183–187. Disponible en: http://dx.doi.org/10.1016/j.cca.2014.11.027.spa
dc.relation.referencesRybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. American Journal of Health-System Pharmacy. 2009;66(1):82–98.spa
dc.relation.referencesLundberg SM, Lee SI. A unified approach to interpreting model predictions; 2017. Disponible en: https://github.com/slundberg/shap.spa
dc.relation.referencesAljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin Area under the Curve and Acute Kidney Injury: A Meta-analysis. Clinical Infectious Diseases. 2019;69(11):1881–1887.spa
dc.relation.referencesHof F, Bridge LJ. Exact solutions and equi-dosing regimen regions for multi-dose pharmacokinetics models with transit compartments. Journal of Pharmacokinetics and Pharmacodynamics. 2021;48(1):99–131. Disponible en: https://doi.org/10.1007/ s10928-020-09719-8.spa
dc.relation.referencesYap BW, Sim CH. Comparisons of various types of normality tests. J Stat Comput Simul. 2011;81(12):2141–2155.spa
dc.relation.referencesNyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, et al. Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol. 2015;79(1):6–17.spa
dc.relation.referencesSnowden TJ, Graaf PHVD, Tindall MJ. Model reduction in mathematical pharmacology. Journal of Pharmacokinetics and Pharmacodynamics. 2018;45(4):537–555. Disponible en: https://doi.org/10.1007/s10928-018-9584-y.spa
dc.relation.referencesDerbalah A, Al-Sallami HS, Duffull SB. Reduction of quantitative systems pharmacology models using artificial neural networks. Journal of Pharmacokinetics and Pharmacodynamics. 2021;3. Disponible en: https://doi.org/10.1007/s10928-021-09742-3.spa
dc.relation.referencesHornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 1991;4(2):251–257.spa
dc.relation.referencesAbadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large- Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Disponible en: https://www.tensorflow.org/.spa
dc.relation.referencesKingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. 2015:1–15.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsFebrile Neutropeniaeng
dc.subject.decsNeutropenia Febrilspa
dc.subject.decsHematologic Neoplasmseng
dc.subject.decsNeoplasias Hematológicasspa
dc.subject.decsQuimioterapiaspa
dc.subject.decsDrug therapyeng
dc.subject.proposalVancomicinaspa
dc.subject.proposalCefepimespa
dc.subject.proposalFarmacocinéticaspa
dc.subject.proposalSimulaciónspa
dc.subject.proposalDosificaciónspa
dc.subject.proposalÁrea bajo la curvaspa
dc.subject.proposalVancomycineng
dc.subject.proposalCefepimeeng
dc.subject.proposalPharmacokineticseng
dc.subject.proposalSimulationeng
dc.subject.proposalDosageeng
dc.subject.proposalNeutropenia febril inducida por quimioterapiaspa
dc.subject.proposalChemotherapy-induced febrile neutropeniaeng
dc.subject.proposalArea under curveeng
dc.titleFarmacocinética poblacional en el manejo empírico de infecciones en pacientes con neoplasias hematológicas y neutropenia febril pos-quimioterapiaspa
dc.title.translatedPopulation pharmacokinetics in the empirical management of infections in patients with hematological malignancies and post-chemotherapy febrile neutropeniaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Nacional de Cancerologíaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 5 de 5
Cargando...
Miniatura
Nombre:
1049629987.2021.pdf
Tamaño:
16.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Farmacología
Cargando...
Miniatura
Nombre:
Anteproyecto de Tesis_190607_03.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexo 1: Anteproyecto de tesis
Cargando...
Miniatura
Nombre:
SustentacionTesis.zip
Tamaño:
7.21 MB
Formato:
Unknown data format
Descripción:
Anexo 2: Sustentación de Tesis de Maestría
Cargando...
Miniatura
Nombre:
Script_Vancomicina.rar
Tamaño:
109.17 MB
Formato:
Unknown data format
Descripción:
Anexo 3: Scripts Vancomicina
Cargando...
Miniatura
Nombre:
Script_Cefepime.zip
Tamaño:
95.56 MB
Formato:
Unknown data format
Descripción:
Anexo 4: Scripts Cefepime

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: