Diseño de un modelo computacional para la gestión inteligente de la información en los transformadores de potencia a partir de fuentes del Internet de la Energía (IoE)

dc.contributor.advisorCarvajal Quintero, Sandra Ximena
dc.contributor.authorTabares Galvis, Yoiner
dc.contributor.researchgroupEnvironmental Energy and Education Policy E3Pspa
dc.date.accessioned2025-04-23T18:39:13Z
dc.date.available2025-04-23T18:39:13Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractEste proyecto investigativo presenta un prototipo computacional diseñado para obtener valor, optimizar la vida útil de los activos en especial de los transformadores de potencia, mediante la integración de datos y procesos en un ecosistema de Internet de la Energía (IoE). La integración de conceptos relacionados con la gestión de activos en los transformadores de potencia de las redes de distribución en Colombia requiere una metodología estructurada. Se propone metodología híbrida que combina el enfoque de pensamiento de diseño, con énfasis en el cumplimiento de la norma de Gestión de Activos (International Organization for Standardization, 2014) con tecnologías de vanguardia como Internet de las Energía y estándar como CRISP-DM. El prototipo busca caracterizar, comprender el comportamiento y facilitar la interacción del transformador de potencia como activo físico productivo de la red eléctrica, mejorar su gestión y seguridad. El dispositivo Coresense ubicado en activos de la Central Hidroeléctrica de Caldas de acuerdo con la criticidad permite a través de sensores recolectar datos en tiempo real sobre variables como temperatura de aceite, el hidrogeno y la humedad de los transformadores de potencia. La plataforma tecnológica actúa como un ecosistema para procesar y almacenar estos datos. El análisis de la información genera indicadores que ayudan en la gestión y mantenimiento preventivo, prolongando la vida útil de los activos. El análisis y visualización de datos en tiempo real permite optimizar la distribución de la energía, ya que se lograría tomar decisiones sobre posibles reemplazos de equipos o solamente necesidades de mantenimiento de los activos, a partir de medir el desempeño y comparar con los estándares internacionales (EIMAC, 2024) y según el activo estudiado, determinar escenarios de operación que permitan mejorar la eficiencia de la red, y de esta manera impactar en la reducción de los costos de mantenimiento, reparación e interrupciones en el servicio, tal como lo plantea debe ser realizada la operación de las redes de distribución según la regulación colombiana (Comisión de Regulación de Energía y Gas, 2018) Para lograr la visualización de información en la gestión de activos de transformadores de potencia, se requiere implementar un panel interactivo que presenta de manera clara las asociaciones entre variables y los comportamientos tempranos del equipo. Este panel se propone que integre gráficos y análisis de datos, facilitando la identificación de patrones y anomalías que podrían señalar problemas inminentes. Lo anterior es la base para comenzar con la implementación de un prototipo computacional que ofrezca una solución tecnológica, fundamentando un ecosistema basado en el concepto IoE, para gestionar la seguridad, confiabilidad y vida útil de los activos en una red de distribución eléctrica (Iberdrola, 2024) (Texto tomado de la fuente).spa
dc.description.abstractThis research project presents a computational prototype designed to add value and optimize the lifespan of assets, especially power transformers, through the integration of data and processes in an Internet of Energy (IoE) ecosystem. The integration of concepts related to asset management in power transformers in distribution networks in Colombia requires a structured methodology. A hybrid methodology is proposed that combines the design thinking approach, with an emphasis on compliance with the Asset Management standard (International Organization for Standardization, 2014), along with cutting-edge technologies such as the Internet of Energy and standards like CRISP-DM. The prototype aims to characterize, understand the behavior, and facilitate the interaction of the power transformer as a productive physical asset of the electrical grid, improving its management and safety. The Coresense device, located on assets in the Caldas Hydroelectric Power Plant according to their criticality, allows the collection of real-time data through sensors that measure variables such as oil temperature, hydrogen, and humidity in power transformers. The technological platform acts as an ecosystem for processing and storing this data. The analysis of this information generates indicators that aid in management and preventive maintenance, prolonging the lifespan of the assets. Real-time data analysis and visualization enable the optimization of energy distribution, as decisions could be made regarding potential equipment replacements or maintenance needs based on performance measurements, comparing them with international standards (EIMAC, 2024), and according to the asset studied, determining operational scenarios that improve grid efficiency. In this way, the system could impact the reduction of maintenance, repair, and service interruption costs, as outlined in the operational requirements for distribution networks under Colombian regulations (Energy and Gas Regulatory Commission, 2018). To achieve the visualization of information in the asset management of power transformers, it is necessary to implement an interactive dashboard that clearly presents the relationships between variables and the early behaviors of the equipment. This dashboard is proposed to integrate graphs and data analysis, facilitating the identification of patterns and anomalies that could indicate imminent problems. The above serves as the foundation for the implementation of a computational prototype that offers a technological solution, based on an IoE-based ecosystem, to manage the safety, reliability, and lifespan of assets in an electrical distribution network (Iberdrola, 2024).eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.methodsEnfocada en la recopilación, procesamiento y análisis de datos para extraer patrones, tendencias y conocimientos relevantes. Utiliza herramientas estadísticas para modelar, interpretar y visualizar datos, con el objetivo de tomar decisiones informadas o generar nuevas hipótesis. Se basa en etapas como la limpieza de datos, la exploración de variables, y la validación de resultados.spa
dc.description.researchareaAnálisis de datosspa
dc.format.extent121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88103
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesABB. (2018). Technical Especifications-CoreSense TM Hydrogen and Moisture Sensor. 122.spa
dc.relation.referencesAENOR. (2015). Asset management. Management systems. Requirements. 29–49.spa
dc.relation.referencesAl-Turjman, F., & Abujubbeh, M. (2019). IoT-enabled smart grid via SM: An overview. Future Generation Computer Systems, 96, 579–590. https://doi.org/10.1016/J.FUTURE.2019.02.012spa
dc.relation.referencesAndersen, O., Thomsen, C., & Torp, K. (2018). SimpleETL: ETL processing by simple specifications. CEUR Workshop Proceedings, 2062.spa
dc.relation.referencesAponte, G., Cadavid, H., Cerón, A. F., Zuñiga, A. F., Tariacuri, J. A., Restrepo, L. H., Calderón, L. C., Cortes, E., Gaona, M., Serna, A. C., & Mena, J. F. (2020). Herramienta De Software Para Estimar El Índice De Salud En Transformadores De Potencia. 18(10), 1–21.spa
dc.relation.referencesArias Velásquez, R. M., Mejía Lara, J. V., & Melgar, A. (2019). Converting data into knowledge for preventing failures in power transformers. Engineering Failure Analysis, 101(March), 215–229. https://doi.org/10.1016/j.engfailanal.2019.03.027spa
dc.relation.referencesBaigent, Drew and Adamiak, Mark and Mackiewicz, Ralph and Sisco, G. (2004). IEC 61850 communication networks and systems in substations: An overview for users. SISCO Systems, 61850(2).spa
dc.relation.referencesBandhu Nath, P., & Uddin, M. (2015). TCP-IP Model in Data Communication and Networking. American Journal of Engineering Research (AJER), 4(10), 102–107. www.ajer.orgspa
dc.relation.referencesBartoletti, C., Desiderio, M., Di Carlo, D., Fazio, G., Muzi, F., Sacerdoti, G., & Salvatori, F. (2004). Vibro-Acoustic Techniques to Diagnose Power Transformers. IEEE Transactions on Power Delivery, 19(1), 221–229. https://doi.org/10.1109/TPWRD.2003.820177spa
dc.relation.referencesBhat, O., Gokhale, P., & Bhat, S. (2018). Introduction to IOT. International Advanced Research Journal in Science, Engineering and Technology ISO, 3297(1). https://doi.org/10.17148/IARJSET.2018.517spa
dc.relation.referencesBlarke, M. B., & Jenkins, B. M. (2013). SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables? Energy Policy. https://doi.org/10.1016/j.enpol.2013.03.039spa
dc.relation.referencesBordeleau, F., Mosconi, E., & Santa-eulalia, L. A. De. (2018). Business Intelligence in Industry 4 . 0 : State of the art and research opportunities. 9, 3944–3953.spa
dc.relation.referencesBrown, M., Woodhouse, S., & Sioshansi, F. (2019). Digitalization of energy. Consumer, Prosumer, Prosumager: How Service Innovations Will Disrupt the Utility Business Model, 3–25.spa
dc.relation.referencesCapasso, C., Veneri, O., Motori, I., & Assante, D. (2018). A novelplatform for the experimental training on Internet of Energy. 2018 IEEE Global Engineering Education Conference (EDUCON), 1746–1752. https://doi.org/10.1109/EDUCON.2018.8363445spa
dc.relation.referencesCarmelo, J., Carrión, R., David, E., & Villanueva, A. (2019). Modelamiento de los arrollamientos para determinación de las tensiones transitorias transferidas en un transformador de potencia Modeling of the windings for determining the transient voltages transferred in a power transformer. 29, 48–58.spa
dc.relation.referencesCarreño Perez, J. C., & Espinel Ortega, A. (2020). Identificación de activos y ciber activos críticos en sistemas de transmisión de energía eléctrica. Tecnura, 24(65), 27–38. https://doi.org/10.14483/22487638.15388spa
dc.relation.referencesCerón, A. F., Orduña, I. F., Aponte, G., & Romero, A. A. (2015). Panorama de la Gestión de Activos para Transformadores de Potencia. Información Tecnológica, 26(3), 99–110. https://doi.org/10.4067/S0718-07642015000300014spa
dc.relation.referencesChec, S. E., & Del, D. (2022). GUÍA METODOLÓGICA PARA EL ANÁLISIS DE CRITICIDAD EN ACTIVOS FÍSICOS PRODUCTIVOS. 1, 1–20. https://sgichec.almeraim.com/sgi/secciones/index.php?a=documentos&option=ver&actual&documentoid=91350&proceso_asociar_id=39875spa
dc.relation.referencesChen, M., Mao, S., Zhang, Y., & Leung, V. C. M. (2014). Big data applications. In SpringerBriefs in Computer Science (Issue 9783319062440, pp. 59–79). Springer. https://doi.org/10.1007/978-3-319-06245-7_6spa
dc.relation.referencesClark, D. D. (1995). Design philosophy of the DARPA internet protocols. Computer Communication Review, 25(1), 102–111. https://doi.org/10.1145/205447.205458spa
dc.relation.referencesComisión de Regulación de Energía y Gas, C. (2018). Resolución CREG 015 de 2018. In Resolución 015 de 2018 (p. 239). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d57726a90525822900064dac?OpenDocumentspa
dc.relation.referencesCórdoba Cely, C., Arteaga Romero, J., & Bonilla Mora, H. (2015). FUNDAMENTOS DEL PENSAMIENTO DE DISEÑO. Cesmag, VI(2), 38–50. https://doi.org/10.15658/cesmag15.05060204spa
dc.relation.referencesCorotinschi, G., & Gǎitan, V. G. (2018). Enabling IoT connectivity for Modbus networks by using IoT edge gateways. 2018 14th International Conference on Development and Application Systems, DAS 2018 - Proceedings, October 2017, 175–179. https://doi.org/10.1109/DAAS.2018.8396092spa
dc.relation.referencesCorredor, P. H. (2010). Visión de las Redes Inteligentes en Colombia. http://www.xm.com.co/boletinxm/publishingimages/boletin256/presentacionpablocorredorensmartgrids.pdfspa
dc.relation.referencesDaki, H., El Hannani, A., Aqqal, A., Haidine, A., & Dahbi, A. (2017). Big Data management in smart grid: concepts, requirements and implementation. Journal of Big Data, 4(1). https://doi.org/10.1186/s40537-017-0070-yspa
dc.relation.referencesDAMA International. (2022). DAMA-DMBOK.spa
dc.relation.referencesDarwish, I., & Saadawi, T. (2018). Attack detection and mitigation techniques in industrial control system-smart grid DNP3. Proceedings - 2018 1st International Conference on Data Intelligence and Security, ICDIS 2018, June, 131–134. https://doi.org/10.1109/ICDIS.2018.00028spa
dc.relation.referencesDeloitte Insights. (2018). The Fourth Industrial Revolution is here—are you ready? In Deloitte Insights. https://doi.org/10.1016/j.jbusres.2015.10.029spa
dc.relation.referencesDíaz Andrade, C., Andrés, C., & Carlos, J. (2011). Smart Grid: Las TICs y la modernización de las redes de energía eléctrica. 9, 53–81. www.icesi.edu.co/sistemas_telematicaspa
dc.relation.referencesDileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146, 2589–2625. https://doi.org/10.1016/j.renene.2019.08.092spa
dc.relation.referencesEast, S., Butts, J., Papa, M., & Shenoi, S. (2009). A taxonomy of attacks on the DNP3 protocol. IFIP Advances in Information and Communication Technology, 311, 67–81. https://doi.org/10.1007/978-3-642-04798-5_5spa
dc.relation.referencesEIMAC. (2024). Normas: Compendio enlaces de normativas internacionales de mantenimiento y gestión de activos. https://eimac.cyvingenieria.com/normas.phpspa
dc.relation.referencesFerrari, A., & Russo, M. (2016). Introducing Microsoft Power BI. Microsoft Press.spa
dc.relation.referencesFoster, P., & Tom, F. (2013). Data science and its relationship to big data and data-driven decision making. https://doi.org/10.1089/big.2013.1508spa
dc.relation.referencesGartner Inc. (2017). Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent From 2016. https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016spa
dc.relation.referencesGartner Inc. (2018). IoT Implementation and Management — From the Edge to the Cloud: A Gartner Trend Insight Report. https://www.gartner.com/doc/3873158?srcId=1-3132930191spa
dc.relation.referencesGiral-Ramírez, W. M., Celedón-Flórez, H. J., Galvis-Restrepo, E., & Zona-Ortiz, A. T. (2017). Smart grids in the colombian electric system: Current situation and potential opportunities. Tecnura, 21(53), 119–137.spa
dc.relation.referencesGómez, V. G. A., & Suárez, S. M. F. (2017). Improvement Strategies for Quality Service Indexes in ENEL Colombia-The planning. Simposio Internacional Sobre La Calidad de La Energía Eléctrica-SICEL, 9, 1–6.spa
dc.relation.referencesHasan, W. K. A., Alraddad, A., Ashour, A., Ran, Y., Alkelsh, M. A., & Ajele, R. A. M. (2019). Design and implementation smart transformer based on IoT. Proceedings - 2019 International Conference on Computing, Electronics and Communications Engineering, ICCECE 2019, August, 16–21. https://doi.org/10.1109/iCCECE46942.2019.8941980spa
dc.relation.referencesHidalgo, D. B., & Perez, Y. M. (2017). Eficiencia energética, competitividad empresarial y economía verde. Revista Publicando, 3(9), 447–466.spa
dc.relation.referencesHitachi ABB. (2019). CoreSense Multi-gas monitoring system.spa
dc.relation.referencesHuang, C., Hu, K., & Huang, Y. (2018). An Intelligent Real-Time Renewables-Based Power Scheduling System for the Internet of Energy. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 860–864. https://doi.org/10.1109/ICIVC.2018.8492903spa
dc.relation.referencesIberdrola. (2024). Internet de la energía. https://www.iberdrola.com/conocenos/nuestra-actividad/smart-grids/internet-energiaspa
dc.relation.referencesIDEAM. (2024). Informe sobre efectos del cambio climático y topología de los territorios. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia. https://www.ideam.gov.co/sala-de-prensa/informes/publicacion-vie-18102024-1200spa
dc.relation.referencesInternational Energy Agency. (2015). Technology Roadmap: Smart Grids.spa
dc.relation.referencesInternational Energy Agency. (2017). Market Report:Energy Efficiency 2017. https://doi.org/10.1787/9789264284234-enspa
dc.relation.referencesInternational Organization for Standardization. (2014). ISO 55001:2014. Asset management — Management systems — Requirements. 2014. https://standards.iteh.ai/catalog/standards/sist/f4b6bcb7-d1d7-4f43-b259-spa
dc.relation.referencesInternational Organization for Standardization. (2018). ISO 55000:2014 Asset management — Overview, principles and terminology. 2018, 60.spa
dc.relation.referencesIoT Analytics - ThingSpeak Internet of Things. (2022). https://thingspeak.com/spa
dc.relation.referencesJaradat, M., Jarrah, M., Bousselham, A., Jararweh, Y., & Al-Ayyoub, M. (2015). The internet of energy: Smart sensor networks and big data management for smart grid. Procedia Computer Science. https://doi.org/10.1016/j.procs.2015.07.250spa
dc.relation.referencesKhan, F., Siddiqui, M. A. B., Rehman, A. U., Khan, J., Asad, M. T. S. A., & Asad, A. (2020). IoT Based Power Monitoring System for Smart Grid Applications. 2020 International Conference on Engineering and Emerging Technologies, ICEET 2020, February, 1–5. https://doi.org/10.1109/ICEET48479.2020.9048229spa
dc.relation.referencesKock, V., Kuge, S., Geissbauer, R., & Schrauf, S. (2014). Industry 4.0: Opportunities and Challenges of the Industrial Internet. Pwc Strategy. https://doi.org/10.1016/j.futures.2014.12.002spa
dc.relation.referencesKuang, Y. (2014). Communication between PLC and arduino based on modbus protocol. Proceedings - 2014 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2014, September 2014, 370–373. https://doi.org/10.1109/IMCCC.2014.83spa
dc.relation.referencesKumar, S., Dalal, S., & Dixit, V. (2014). The OSI Model: Overview the Seven Layers of Computer Networks. International Journal of Computer Science and Information Technology Research, 2, 461–466.spa
dc.relation.referencesLee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.spa
dc.relation.referencesLeón Paime, F. (2019). Desafíos contemporáneos en el desarrollo del sector eléctrico colombiano. En-Contexto Revista de Investigación En Administración, Contabilidad, Economía y Sociedad, 7(11), 26. http://www.unilibre.edu.co/bogota/pdfs/2017/5sim/27D.pdfspa
dc.relation.referencesLiu, L., & Chen, S. (2018). The Application of Artificial Intelligence Technology in Energy Internet. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 1–5. https://doi.org/10.1109/EI2.2018.8582096spa
dc.relation.referencesLoic Lefebvre. (2022). PyModbusTCP. https://pypi.org/project/pyModbusTCP/spa
dc.relation.referencesMarksteiner, S., Jimenez, V. J. E., Valiant, H., & Zeiner, H. (2017). An overview of wireless IoT protocol security in the smart home domain. Joint 13th CTTE and 10th CMI Conference on Internet of Things - Business Models, Users, and Networks, 2018-Janua, 1–8. https://doi.org/10.1109/CTTE.2017.8260940spa
dc.relation.referencesMartinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., Ramirez-Quintana, M. J., & Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048–3061. https://doi.org/10.1109/TKDE.2019.2962680spa
dc.relation.referencesMata, Ó. N., Gómez-Ramírez, G. A., & Acuña Rojas, F. (2023). Metodología para Evaluar la Condición de Transformadores Eléctricos de Potencia Basada en un Índice de Salud. https://doi.org/10.15517/ri.v33i1.50613spa
dc.relation.referencesMicrosoft. (2023). Tutorial de Integration Services. https://learn.microsoft.com/es-es/sql/integration-services/integration-services-tutorials?view=sql-server-ver16spa
dc.relation.referencesMinenergía. (2024). RETIE - Resolución 40117 de 2024. In Ministerio de Minas y Energía. https://www.minenergia.gov.co/documents/11563/Resolución_40117_de_2024.pdf%0Ahttps://normativame.minenergia.gov.co/normatividad/6901/norma/spa
dc.relation.referencesMinisterio de Tecnologías de la Información y las Comunicaciones de Colombia. (2019). CONPES 3975 - Politica Nacional Para La Transformacion Digital e Inteligencia Artificial. Consejo Nacional de Politica Economica y Social - Republica de Colombia, 115. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3975.pdfspa
dc.relation.referencesModbus-IDA. (2006). Modbus Messaging on Tcp / Ip Implementation Guide. 1–46.spa
dc.relation.referencesPais, J. E. de A. e. (2019). ISO 55001 ‐ Diagnosis of the Organization’s State. May 2019. http://hdl.handle.net/10400.26/36473spa
dc.relation.referencesPawar, P., & Vittal K, P. (2019). Design and development of advanced smart energy management system integrated with IoT framework in smart grid environment. Journal of Energy Storage, 25(June), 100846. https://doi.org/10.1016/j.est.2019.100846spa
dc.relation.referencesPerera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Sensing as a service model for smart cities supported by internet of things. Transactions on Emerging Telecommunications Technologies, 25(1), 81–93.spa
dc.relation.referencesPérez Hernández, R. (2012). Análisis de falla en un transformador de potencia. Ingeniería Energética, 33(1), 59–68.spa
dc.relation.referencesPincay-Ponce, J. I., Angulo-Murillo, N. G., Herrera-Tapia, J. S., & Delgado-Muentes, W. R. (2020). Técnicas de minería de datos como soporte para la gestión de un sistema de comercialización de energía eléctrica. Mikarimin. Revista Científica Multidisciplinaria. e-ISSN 2528-7842, 6(2), 19–34.spa
dc.relation.referencesPower, B. I., Excel, U., Desktop, P. B., & Tiles, P. (2021). Microsoft power bi. Available Here: Https://Powerbi. Microsoft. Com/En-Us, 130.spa
dc.relation.referencesPrasojo, R. A., & Suwarno. (2018). Power transformer paper insulation assessment based on oil measurement data using SVM-classifier. International Journal on Electrical Engineering and Informatics, 10(4), 661–673. https://doi.org/10.15676/ijeei.2018.10.4.4spa
dc.relation.referencesPriyo Das, B., & Carlos Leicht PGTR, J. (2019). Digital Power Transformers-An Intelligent Approach to Smart Asset Management. March, 1–8.spa
dc.relation.referencesProvost, F., & Fawcett, T. (2013). c. Big Data, 1(1), 51–59.spa
dc.relation.referencesPushingBox. (2022). PushingBox - Notifications for your Internet of Things devices. https://www.pushingbox.comspa
dc.relation.referencesRuntuwene, J. P. A., Tangkawarow, I. R. H. T., Manoppo, C. T. M., & Salaki, R. J. (2018). A Comparative Analysis of Extract, Transformation and Loading (ETL) Process. IOP Conference Series: Materials Science and Engineering, 306(1), 0–7. https://doi.org/10.1088/1757-899X/306/1/012066spa
dc.relation.referencesSalamanca Jaimes, J. E., Velazco Ochoa, J. A., & Acevedo Camacho, E. A. (2016). ANÁLISIS DE CRITICIDAD Y ÁRBOLES DE DIAGNÓSTICO DE FALLAS PARA TRANSFORMADORES DE POTENCIA.spa
dc.relation.referencesSchmutzler, J., Andersen, C. A., & Wietfeld, C. (2013). Evaluation of OCPP and IEC 61850 for smart charging electric vehicles. World Electric Vehicle Journal, 6(4), 863–874. https://doi.org/10.3390/wevj6040863spa
dc.relation.referencesSchröer, C., Kruse, F., Marx, J., Kruse, F., & Marx, J. (2021). A Systematic Literature Review on Applying Process Model on Applying CRISP-DM Process Model. Procedia Computer Science, 181(2019), 526–534. https://doi.org/10.1016/j.procs.2021.01.199spa
dc.relation.referencesSchuelke-Leech, B. A., Barry, B., Muratori, M., & Yurkovich, B. J. (2015). Big Data issues and opportunities for electric utilities. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2015.07.128spa
dc.relation.referencesShadare, A. E., Musa, S. M., & Akujuobi, C. (2016). Data visualization. December.spa
dc.relation.referencesSoni, D., & Makwana, A. (2017). A survey on mqtt: a protocol of internet of things(IoT). International Conference on Telecommunication, Power Analysis and Computing Techniques (Ictpact - 2017), April, 0–5. https://www.researchgate.net/publication/316018571_A_SURVEY_ON_MQTT_A_PROTOCOL_OF_INTERNET_OF_THINGSIOTspa
dc.relation.referencesUPME. (2016). Parte I Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia. http://www1.upme.gov.co/DemandaEnergetica/Smart Grids Colombia Visión 2030/1_Parte1_Proyecto_BID_Smart_Grids.pdfspa
dc.relation.referencesUstun, T. S. (2021). A critical review of iec 61850 testing tools. Sustainability (Switzerland), 13(11). https://doi.org/10.3390/su13116213spa
dc.relation.referencesWang, Y., Chen, Q., Hong, T., & Kang, C. (2018). Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2018.2818167spa
dc.relation.referencesWu, H., Zhou, Y., Yang, C., Zhu, H., Hao, D., & Ren, S. (2020). A Method of Prediction for Transformer Malfunction Based on Oil Chromatography. Proceedings - 5th International Conference on Automation, Control and Robotics Engineering, CACRE 2020, 1, 444–447. https://doi.org/10.1109/CACRE50138.2020.9230296spa
dc.relation.referencesWu, Y., Wu, Y., Guerrero, J. M., & Vasquez, J. C. (2021). Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures. International Journal of Electrical Power & Energy Systems, 126, 106593.spa
dc.relation.referencesYaman, O., & Bicen, Y. (2019). An Internet of Things (IoT) based Monitoring System for Oil-immersed Transformers. Balkan Journal of Electrical and Computer Engineering, 7(3), 226–234. https://doi.org/10.17694/bajece.524921spa
dc.relation.referencesYosuf, B., Musa, M., Elgorashi, T., Lawey, A. Q., & Elmirghani, J. M. H. (2018). Energy Efficient Service Distribution in Internet of Things. http://arxiv.org/abs/1808.06120spa
dc.relation.referencesYu, Z. J., Haghighat, F., & Fung, B. C. M. (2016). Advances and challenges in building engineering and data mining applications for energy-efficient communities. Sustainable Cities and Society, 25, 33–38.spa
dc.relation.referencesZeynal, H., Eidiani, M., & Yazdanpanah Khorasan, D. (2014). Intelligent Substation Automation Systems for Robust Operation of Smart Grids. https://doi.org/10.1109/ISGT-Asia.2014.6873893spa
dc.relation.referencesZhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. In Renewable and Sustainable Energy Reviews (Vol. 56). https://doi.org/10.1016/j.rser.2015.11.050spa
dc.relation.referencesZhou, K., & Yang, S. (2015). A framework of service-oriented operation model of China’s power system. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2015.05.041spa
dc.relation.referencesZIMMERMAN, H. (1980). Open Systems Interconnection. IEEE Transactions on Communications, 3(1), 15–26. https://doi.org/10.1108/eb047578spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalGestión de datosspa
dc.subject.proposalGestión de activosspa
dc.subject.proposalInternet de la energía (IoE)spa
dc.subject.proposalTransformador de potenciaspa
dc.subject.proposalAnálisis de datosspa
dc.subject.proposalVisualización de datosspa
dc.subject.proposalData managementeng
dc.subject.proposalAsset managementeng
dc.subject.proposalInternet of energy (IoE)eng
dc.subject.proposalPower transformereng
dc.subject.proposalData analysiseng
dc.subject.proposalData visualizationeng
dc.subject.unescoEnergía eléctricaspa
dc.subject.unescoElectric powereng
dc.subject.unescoGestión de la informaciónspa
dc.subject.unescoInformation managementeng
dc.titleDiseño de un modelo computacional para la gestión inteligente de la información en los transformadores de potencia a partir de fuentes del Internet de la Energía (IoE)spa
dc.title.translatedDesign of a computational model for the intelligent management of information in power transformers based on sources from the Internet of Energy (IoE)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053821779.2025.pdf
Tamaño:
3.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: