Optimización de la estrategia de Slotting en un centro de distribución logístico de autopartes mediante técnicas heurísticas basadas en computación evolutiva

dc.contributor.advisorRodríguez Velásquez, Elkinspa
dc.contributor.authorMúnera Cardona, Wilson Andrésspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-08-13T21:27:41Zspa
dc.date.available2020-08-13T21:27:41Zspa
dc.date.issued2020-07-08spa
dc.description.abstractAmong the different kind of logistics warehouse activities, the process of materials separation, made to complete orders, understands the operation of the highest cost for a distribution center. In the following application, it arises the strategic optimization of Slotting in a logistic company of auto-parts, with the objective of increase the efficiency of the process by minimizing the total distance traveled to complete a sample of orders. According to the literature review, diverse solution techniques have been proposed for the solution of the theoretical Storage Location Assignment Problem (SLAP) according to the definitions and operating conditions of each approach; for this case, and in continuity with theoretical lines of research, a genetic algorithm is defined as a solution technique. The algorithm parameters are calibrated trough one experimental design to obtain the combination that maximize its performance. The results show that the methodology reduces order completion time by 11.7% compared to current operating conditions based on random allocation policies, by 9.2% contrasted with a benchmark solution founded on allocation rules based on frequencies and classes. With the proposed solution, the company shows a saving in labor and an increase in customer responsiveness, concluding that evolutionary computing metaheuristics obtain acceptable solutions at low computational cost, in the face of solving real application problems in the context of warehouse management.spa
dc.description.abstractEntre las distintas actividades logísticas de almacén, el proceso de separación de materiales para completar las órdenes de pedido comprende la operación de más alto costo para un centro de distribución. En el presente caso de aplicación se plantea la optimización de la estrategia de Slotting en una compañía logística de autopartes, con el fin aumentar la eficiencia de este proceso a través de la minimización de la distancia total recorrida para completar una muestra de pedidos. Según la revisión de literatura, diversas técnicas de solución han sido propuestas para la solución del problema teórico Storage Location Assignment Problem (SLAP) de acuerdo con las definiciones y condiciones de operación de cada planteamiento; para este caso, y en continuidad con líneas de investigación teóricas, se define un algoritmo genético como técnica de solución. Los parámetros del algoritmo son calibrados a través de un diseño de experimentos para obtener la combinación que maximiza su rendimiento, los resultados muestran que la metodología reduce el tiempo de completitud de pedidos en un 11.7% respecto a las condiciones actuales de operación basadas en políticas de asignación aleatorias, y un 9.2% contrastada con una solución benchmark fundamentada en reglas de asignación basadas en frecuencias y clases. Con la solución propuesta, la compañía evidencia un ahorro en mano de obra y un aumento en la capacidad de respuesta al cliente, lo que concluye que metaheurísticas de computación evolutiva obtienen soluciones aceptables a bajo costo computacional, ante la solución de problemas reales de aplicación en el contexto de la gestión de almacenes.spa
dc.description.degreelevelMaestríaspa
dc.format.extent76spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78033
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería de la Organizaciónspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Industrialspa
dc.relation.referencesAbd, Z. (2015). Ant Colony Hyper-heuristics for Travelling Salesman Problem. 76(Iris), 534–538. https://doi.org/10.1016/j.procs.2015.12.333spa
dc.relation.referencesBattini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). Order picking system design: The storage assignment and travel distance estimation (SA&TDE) joint method. International Journal of Production Research, 53(4), 1077–1093. https://doi.org/10.1080/00207543.2014.944282spa
dc.relation.referencesBottani, E., Cecconi, M., Vignali, G., & Montanari, R. (2012). Optimisation of storage allocation in order picking operations through a genetic algorithm. International Journal of Logistics Research and Applications, 15(2), 127–146. https://doi.org/10.1080/13675567.2012.694860spa
dc.relation.referencesChan, H. L., & Pang, K. W. (2011). Association Rule Based Approach for Improving Operation Efficiency in a Randomized Warehouse. (January 2011), 704–710.spa
dc.relation.referencesChen, L., Langevin, A., & Riopel, D. (2010). The storage location assignment and interleaving problem in an automated storage/retrieval system with shared storage. International Journal of Production Research, 48(4), 991–1011. https://doi.org/10.1080/00207540802506218spa
dc.relation.referencesChiang, D. M.-H., Lin, C.-P., & Chen, M.-C. (2011). The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterprise Information Systems, 5(2), 219–234. https://doi.org/10.1080/17517575.2010.537784spa
dc.relation.referencesChuang, Y., Lee, H., & Lai, Y. (2012). Item-associated cluster assignment model on storage allocation problems. Computers & Industrial Engineering, 63(4), 1171–1177. https://doi.org/10.1016/j.cie.2012.06.021spa
dc.relation.referencesDijkstra, A. S., & Roodbergen, K. J. (2017). Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses. Transportation Research Part E: Logistics and Transportation Review, 102, 38–59. https://doi.org/10.1016/j.tre.2017.04.003spa
dc.relation.referencesEne, S., & Öztürk, N. (2012). Storage location assignment and order picking optimization in the automotive industry. International Journal of Advanced Manufacturing Technology, 60(5–8), 787–797. https://doi.org/10.1007/s00170-011-3593-yspa
dc.relation.referencesFontana, M. E., Nepomuceno, V. S., & Garcez, T. V. (2020). a Hybrid Approach Development To Solving the Storage Location Assignment Problem in a Picker-To-Parts System. Brazilian Journal of Operations & Production Management, 17(1), 1–14. https://doi.org/10.14488/bjopm.2020.005spa
dc.relation.referencesFrazelle, E. A., & Sharp, G. . (1989). Correlated assignment strategy can improve any order-picking operation. Industrial Engineering, 21((4)), 33–37.spa
dc.relation.referencesGao, W. (2020). New ant colony optimization algorithm for the traveling salesman problem. International Journal of Computational Intelligence Systems, 13(1), 44–55. https://doi.org/10.2991/ijcis.d.200117.001spa
dc.relation.referencesHe, Y., Wang, A., Su, H., & Wang, M. (2019). Particle Swarm Optimization Using Neighborhood-Based Mutation Operator and Intermediate Disturbance Strategy for Outbound Container Storage Location Assignment Problem. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/9132315spa
dc.relation.referencesHolland, J. (1975). Adaptation in natural and artificial systems. The University of Michigan Press.spa
dc.relation.referencesJiao, Y., Xing, X., Zhang, P., Xu, L., & Liu, X.-R. (2018). Multi-objective storage location allocation optimization and simulation analysis of automated warehouse based on multi-population genetic algorithm. Concurrent Engineering, 26(4).spa
dc.relation.referencesKovacs, A. (2011). Optimizing the storage assignment in a warehouse served by milkrun logistics. 133, 312–318. https://doi.org/10.1016/j.ijpe.2009.10.028spa
dc.relation.referencesLi, H., FANG, Z., & JI, S. (2010). Research on the Slotting Optimization of Automated Stereoscopic Warehouse Based on Discrete Particle Swarm Optimization. 1404–1407.spa
dc.relation.referencesLi, Jianbin, Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447–461. https://doi.org/10.1080/00207543.2016.1187313spa
dc.relation.referencesLi, Jiaxi, Moghaddam, M., & Nof, S. Y. (2016). Dynamic storage assignment with product affinity and ABC classification—a case study. International Journal of Advanced Manufacturing Technology, 84(9–12), 2179–2194. https://doi.org/10.1007/s00170-015-7806-7spa
dc.relation.referencesMarchet, G., Melacini, M., & Perotti, S. (2015). Investigating order picking system adoption: a case-study-based approach. International Journal of Logistics Research and Applications, 18(1), 82–98. https://doi.org/10.1080/13675567.2014.945400spa
dc.relation.referencesMarinakis, Y. (2008). Heuristic and Metaheuristic Algorithms for the Traveling Salesman Problem. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-0-387-74759-0spa
dc.relation.referencesMontgomery, D. C. (2012). Design and Analysis of Experiments. In Design (8th ed., Vol. 2). https://doi.org/10.1198/tech.2006.s372spa
dc.relation.referencesPan, J. C. H., Shih, P. H., Wu, M. H., & Lin, J. H. (2015). A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Computers and Industrial Engineering, 81, 1–13. https://doi.org/10.1016/j.cie.2014.12.010spa
dc.relation.referencesPang, K., & Chan, H. (2017). Data mining-based algorithm for storage location assignment in a randomised warehouse. International Journal of Production Research, 7543(August), 0. https://doi.org/10.1080/00207543.2016.1244615spa
dc.relation.referencesPark, C., & Seo, J. (2010). Comparing heuristic algorithms of the planar storage location assignment problem. Transportation Research Part E, 46(1), 171–185. https://doi.org/10.1016/j.tre.2009.07.004spa
dc.relation.referencesPetersen, C. G., & Aase, G. (2004). A comparison of picking , storage , and routing policies in manual order picking. 92, 11–19. https://doi.org/10.1016/j.ijpe.2003.09.006spa
dc.relation.referencesPierre, B., Vannieuwenhuyse, B., & Dominanta, D. (2003). DYNAMIC ABC STORAGE POLICY IN ERRATIC DEMAND ENVIRONMENTS. 1–12.spa
dc.relation.referencesReddy, V., Muppant, M., & Adil, G. K. (2008a). A branch and bound algorithm for class based storage location assignment. 189, 492–507. https://doi.org/10.1016/j.ejor.2007.05.050spa
dc.relation.referencesReddy, V., Muppant, M., & Adil, G. K. (2008b). Efficient formation of storage classes for warehouse storage location assignment : A simulated annealing approach. 36, 609–618. https://doi.org/10.1016/j.omega.2007.01.006spa
dc.relation.referencesRUNT, & Mintransporte. (2019). CIFRAS RUNT: BALANCE 2018. 2018–2019.spa
dc.relation.referencesSchuur, P. C. (2015). The worst-case performance of the Cube per Order Index slotting strategy is infinitely bad - A technical note. International Journal of Production Economics, 170, 801–804. https://doi.org/10.1016/j.ijpe.2015.05.027spa
dc.relation.referencesUrzúa, M., Mendoza, A., & González, A. O. (2019). Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logistica, 6(4), 103–114. https://doi.org/10.22306/al.v6i4.129spa
dc.relation.referencesvan Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. M. (2018). Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), 1–15. https://doi.org/10.1016/j.ejor.2017.09.002spa
dc.relation.referencesWang, M., & Zhang, R. Q. (2019). A dynamic programming approach for storage location assignment planning problem. Procedia CIRP, 83, 513–516. https://doi.org/10.1016/j.procir.2019.04.113spa
dc.relation.referencesWisittipanich, W., & Kasemset, C. (2015). Metaheuristics for warehouse storage location assignment problems. Chiang Mai University Journal of Natural Sciences, 14(4), 361–377. https://doi.org/10.12982/cmujns.2015.0093spa
dc.relation.referencesYang, P., Peng, Y., Ye, B., & Miao, L. (2017). Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern. Engineering Optimization, 49(9).spa
dc.relation.referencesYang, S., Chen, X., & Xiao, X. (2016). Research on Slotting Optimization of Storage System in the Provincial Measuring Center. (Iceta), 489–494spa
dc.relation.referencesZangaro, F., Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2018). A Model to Optimize the Reference Storage Assignment in a Supermarket to Expedite the Part Feeding Activities. IFAC-PapersOnLine, 51(11), 1470–1475. https://doi.org/10.1016/j.ifacol.2018.08.296spa
dc.relation.referencesZhang, R. Q., Wang, M., & Pan, X. (2019). New model of the storage location assignment problem considering demand correlation pattern. Computers and Industrial Engineering, 129(January), 210–219. https://doi.org/10.1016/j.cie.2019.01.027spa
dc.relation.referencesZhang, Y. (2016). Correlated Storage Assignment Strategy to reduce Travel Distance in Order Picking. IFAC-PapersOnLine, 49(2), 30–35. https://doi.org/10.1016/j.ifacol.2016.03.006spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc650 - Gerencia y servicios auxiliares::658 - Gerencia generalspa
dc.subject.proposalSLAPeng
dc.subject.proposalSLAPspa
dc.subject.proposalOrder pickingspa
dc.subject.proposalOrder pickingeng
dc.subject.proposalOptimización estrategia de slottingspa
dc.subject.proposalSlotting strategy optimizationeng
dc.subject.proposalAlgoritmo genéticospa
dc.subject.proposalGenetic algorithm (GA)eng
dc.subject.proposalAdministración de almacenesspa
dc.subject.proposalWarehouse managementeng
dc.titleOptimización de la estrategia de Slotting en un centro de distribución logístico de autopartes mediante técnicas heurísticas basadas en computación evolutivaspa
dc.title.alternativeSlotting Strategy Optimization in autoparts distribution center through heuristic techniques based on evolutionary computationspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1216714316.2020.pdf
Tamaño:
950.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: