Implementación computacional de modelos de procesos espaciales para análisis de redes sociales
| dc.contributor.advisor | Sosa Martínez, Juan Camilo | |
| dc.contributor.author | Solano Velásquez, Jesús David | |
| dc.date.accessioned | 2022-09-01T15:21:02Z | |
| dc.date.available | 2022-09-01T15:21:02Z | |
| dc.date.issued | 2022-09-01 | |
| dc.description | ilustraciones, graficas | spa |
| dc.description.abstract | El modelamiento estadístico de las redes permite identificar su distribución de probabilidad, imputar datos faltantes y realizar predicciones sobre la formación de enlaces. Los modelos latentes abordan el modelamiento desde una perspectiva marginal, incorporan dependencias no condicionales por medio de efectos aleatorios. Un caso particular de los modelos latentes es el modelo basado en procesos espaciales completamente Bayesiano que soluciona los problemas de sobreajuste del modelo de espacio latente de distancia. En este documento se realiza la implementación computacional del modelo y se realiza un estudio de sus bondades de ajuste y bondades de predicción a través de redes sintéticas y reales. El modelo tiene buenas cualidades para la replicación de las estadísticas observadas en la red y la estimación de la superficie latente. Sin embargo, el poder predictivo, medido a través del área bajo la curva (AUC por sus siglas en inglés) no supera el valor de 0.7. También se presenta una forma alternativa de ajustar el modelo usando el algoritmo de caso-control. El modelo basado en la log-verosimilitud estimada tiene una buena calidad de bondad de ajuste. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Statistical modeling of networks makes it possible to identify their probability distribution, impute missing data and make predictions about link formation. Latent models approach modeling from a marginal perspective, incorporating non-conditional dependencies through random effects. A particular case of latent models is the fully Bayesian spatial process-based model that solves the overfitting problems of the latent distance space model. In this paper the computational implementation of the model is performed and a study of its goodness of fit and goodness of prediction through synthetic and real networks is carried out. The model has good qualities for the replication of the statistics observed in the network and the estimation of the latent surface. However, the predictive power, as measured by the area under the curve (AUC), does not exceed 0.7. An alternative way of fitting the model using the case-control algorithm is also presented. The model based on the estimated log-likelihood has a good good goodness-of-fit quality. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Estadística | spa |
| dc.description.researcharea | Análisis de Redes Sociales | spa |
| dc.format.extent | xv, 74 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82234 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Estadística | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
| dc.relation.indexed | RedCol | spa |
| dc.relation.indexed | LaReferencia | spa |
| dc.relation.references | Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439):509–512. | spa |
| dc.relation.references | Bender, E. A. and Canfield, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–307. | spa |
| dc.relation.references | Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american statistician, 49(4):327–335. | spa |
| dc.relation.references | Ciminelli, J. T., Love, T., and Wu, T. T. (2019). Social network spatial model. Spatial statistics, 29:129–144. | spa |
| dc.relation.references | Durante, D., Dunson, D. B., et al. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13(1):29–58. | spa |
| dc.relation.references | Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the american Statistical association, 81(395):832–842. | spa |
| dc.relation.references | Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics, 30(4):1141– 1144. | spa |
| dc.relation.references | Gonçalves, L., Subtil, A., Oliveira, M. R., and de Zea Bermudez, P. (2014). Roc curve estimation: An overview. REVSTAT-Statistical journal, 12(1):1–20. | spa |
| dc.relation.references | Handcock, M. S. and Krivitsky, P. N. (2008). Fitting latent cluster models for networks with latentnet. Journal of Statistical Software, 24(05). | spa |
| dc.relation.references | Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the american Statistical association, 100(469):286–295. | spa |
| dc.relation.references | Hoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and mathematical organization theory, 15(4):261. | spa |
| dc.relation.references | Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460):1090–1098. | spa |
| dc.relation.references | Kim, B. (2018). Latent Modeling of Dynamic Social Networks. The Pennsylvania State University. | spa |
| dc.relation.references | Kolaczyk, E. D. and Csárdi, G. (2020). Statistical analysis of network data with R,2nd edn,. Springer. | spa |
| dc.relation.references | Linkletter, C. D. (2007). Spatial process models for social network analysis. PhD thesis, Citeseer. | spa |
| dc.relation.references | Padgett, J. F. and Ansell, C. K. (1993). Robust action and the rise of the medici, 1400-1434. American journal of sociology, 98(6):1259–1319. | spa |
| dc.relation.references | Raftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4):901–919. | spa |
| dc.relation.references | Salter-Townshend, M. and McCormick, T. H. (2017). Latent space models for multiview network data. The annals of applied statistics, 11(3):1217. | spa |
| dc.relation.references | Schweinberger, M. and Snijders, T. A. (2003). Settings in social networks: A measurement model. Sociological Methodology, 33(1):307–341. | spa |
| dc.relation.references | Sewell, D. K. (2019). Latent space models for network perception data. Network Science, 7(2):160–179. | spa |
| dc.relation.references | Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512):1646–1657. | spa |
| dc.relation.references | Sosa, J. and Betancourt, B. (2022). A latent space model for multilayer network data. Computational Statistics & Data Analysis, page 107432. | spa |
| dc.relation.references | Sosa, J. and Buitrago, L. (2021). A review of latent space models for social networks. Revista Colombiana de Estadística, 44(1):171–200. | spa |
| dc.relation.references | Sosa, J. and Rodríguez, A. (2021). A latent space model for cognitive social structures data. Social Networks, 65:85–97. | spa |
| dc.relation.references | Wang, L., Zhang, Z., Dunson, D., et al. (2019). Common and individual structure of brain networks. The Annals of Applied Statistics, 13(1):85–112. | spa |
| dc.relation.references | Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684):440–442. | spa |
| dc.relation.references | Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4):452–473. | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
| dc.subject.lemb | TEORIA BAYESIANA DE DECISIONES ESTADISTICAS | spa |
| dc.subject.lemb | Bayesian statistical decision theory | eng |
| dc.subject.proposal | Cadenas de Markov | spa |
| dc.subject.proposal | Monte Carlo | spa |
| dc.subject.proposal | Bayesiana | spa |
| dc.subject.proposal | Redes | spa |
| dc.subject.proposal | Modelamiento estadístico | spa |
| dc.subject.proposal | Markov Chains | eng |
| dc.subject.proposal | Bayesian | eng |
| dc.subject.proposal | Networks | eng |
| dc.subject.proposal | Statistical modelling | eng |
| dc.title | Implementación computacional de modelos de procesos espaciales para análisis de redes sociales | spa |
| dc.title.translated | Computational implementation of spatial process models for social network analysis | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Model | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015461454.2022.pdf.pdf
- Tamaño:
- 3.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 4.57 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

