Implementación computacional de modelos de procesos espaciales para análisis de redes sociales

dc.contributor.advisorSosa Martínez, Juan Camilo
dc.contributor.authorSolano Velásquez, Jesús David
dc.date.accessioned2022-09-01T15:21:02Z
dc.date.available2022-09-01T15:21:02Z
dc.date.issued2022-09-01
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl modelamiento estadístico de las redes permite identificar su distribución de probabilidad, imputar datos faltantes y realizar predicciones sobre la formación de enlaces. Los modelos latentes abordan el modelamiento desde una perspectiva marginal, incorporan dependencias no condicionales por medio de efectos aleatorios. Un caso particular de los modelos latentes es el modelo basado en procesos espaciales completamente Bayesiano que soluciona los problemas de sobreajuste del modelo de espacio latente de distancia. En este documento se realiza la implementación computacional del modelo y se realiza un estudio de sus bondades de ajuste y bondades de predicción a través de redes sintéticas y reales. El modelo tiene buenas cualidades para la replicación de las estadísticas observadas en la red y la estimación de la superficie latente. Sin embargo, el poder predictivo, medido a través del área bajo la curva (AUC por sus siglas en inglés) no supera el valor de 0.7. También se presenta una forma alternativa de ajustar el modelo usando el algoritmo de caso-control. El modelo basado en la log-verosimilitud estimada tiene una buena calidad de bondad de ajuste. (Texto tomado de la fuente)spa
dc.description.abstractStatistical modeling of networks makes it possible to identify their probability distribution, impute missing data and make predictions about link formation. Latent models approach modeling from a marginal perspective, incorporating non-conditional dependencies through random effects. A particular case of latent models is the fully Bayesian spatial process-based model that solves the overfitting problems of the latent distance space model. In this paper the computational implementation of the model is performed and a study of its goodness of fit and goodness of prediction through synthetic and real networks is carried out. The model has good qualities for the replication of the statistics observed in the network and the estimation of the latent surface. However, the predictive power, as measured by the area under the curve (AUC), does not exceed 0.7. An alternative way of fitting the model using the case-control algorithm is also presented. The model based on the estimated log-likelihood has a good good goodness-of-fit quality.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaAnálisis de Redes Socialesspa
dc.format.extentxv, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82234
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBarabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439):509–512.spa
dc.relation.referencesBender, E. A. and Canfield, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–307.spa
dc.relation.referencesChib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm. The american statistician, 49(4):327–335.spa
dc.relation.referencesCiminelli, J. T., Love, T., and Wu, T. T. (2019). Social network spatial model. Spatial statistics, 29:129–144.spa
dc.relation.referencesDurante, D., Dunson, D. B., et al. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13(1):29–58.spa
dc.relation.referencesFrank, O. and Strauss, D. (1986). Markov graphs. Journal of the american Statistical association, 81(395):832–842.spa
dc.relation.referencesGilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics, 30(4):1141– 1144.spa
dc.relation.referencesGonçalves, L., Subtil, A., Oliveira, M. R., and de Zea Bermudez, P. (2014). Roc curve estimation: An overview. REVSTAT-Statistical journal, 12(1):1–20.spa
dc.relation.referencesHandcock, M. S. and Krivitsky, P. N. (2008). Fitting latent cluster models for networks with latentnet. Journal of Statistical Software, 24(05).spa
dc.relation.referencesHoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the american Statistical association, 100(469):286–295.spa
dc.relation.referencesHoff, P. D. (2009). Multiplicative latent factor models for description and prediction of social networks. Computational and mathematical organization theory, 15(4):261.spa
dc.relation.referencesHoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460):1090–1098.spa
dc.relation.referencesKim, B. (2018). Latent Modeling of Dynamic Social Networks. The Pennsylvania State University.spa
dc.relation.referencesKolaczyk, E. D. and Csárdi, G. (2020). Statistical analysis of network data with R,2nd edn,. Springer.spa
dc.relation.referencesLinkletter, C. D. (2007). Spatial process models for social network analysis. PhD thesis, Citeseer.spa
dc.relation.referencesPadgett, J. F. and Ansell, C. K. (1993). Robust action and the rise of the medici, 1400-1434. American journal of sociology, 98(6):1259–1319.spa
dc.relation.referencesRaftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4):901–919.spa
dc.relation.referencesSalter-Townshend, M. and McCormick, T. H. (2017). Latent space models for multiview network data. The annals of applied statistics, 11(3):1217.spa
dc.relation.referencesSchweinberger, M. and Snijders, T. A. (2003). Settings in social networks: A measurement model. Sociological Methodology, 33(1):307–341.spa
dc.relation.referencesSewell, D. K. (2019). Latent space models for network perception data. Network Science, 7(2):160–179.spa
dc.relation.referencesSewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512):1646–1657.spa
dc.relation.referencesSosa, J. and Betancourt, B. (2022). A latent space model for multilayer network data. Computational Statistics & Data Analysis, page 107432.spa
dc.relation.referencesSosa, J. and Buitrago, L. (2021). A review of latent space models for social networks. Revista Colombiana de Estadística, 44(1):171–200.spa
dc.relation.referencesSosa, J. and Rodríguez, A. (2021). A latent space model for cognitive social structures data. Social Networks, 65:85–97.spa
dc.relation.referencesWang, L., Zhang, Z., Dunson, D., et al. (2019). Common and individual structure of brain networks. The Annals of Applied Statistics, 13(1):85–112.spa
dc.relation.referencesWatts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684):440–442.spa
dc.relation.referencesZachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4):452–473.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembTEORIA BAYESIANA DE DECISIONES ESTADISTICASspa
dc.subject.lembBayesian statistical decision theoryeng
dc.subject.proposalCadenas de Markovspa
dc.subject.proposalMonte Carlospa
dc.subject.proposalBayesianaspa
dc.subject.proposalRedesspa
dc.subject.proposalModelamiento estadísticospa
dc.subject.proposalMarkov Chainseng
dc.subject.proposalBayesianeng
dc.subject.proposalNetworkseng
dc.subject.proposalStatistical modellingeng
dc.titleImplementación computacional de modelos de procesos espaciales para análisis de redes socialesspa
dc.title.translatedComputational implementation of spatial process models for social network analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentModelspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015461454.2022.pdf.pdf
Tamaño:
3.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: