Open-Source Label-Free Microscopy

dc.contributor.advisorGarcia Sucerquia, Jorge Iván
dc.contributor.authorBuitrago Duque, Carlos Andrés
dc.contributor.cvlac0000127437spa
dc.contributor.googlescholarnCo6tr0AAAAJspa
dc.contributor.orcidBuitrago Duque, Carlos Andrés [0000-0001-7523-9735]spa
dc.contributor.researchgateCarlos-Buitrago-Duquespa
dc.contributor.researchgroupOptica y Procesamiento Opto-Digitalspa
dc.contributor.scopus56051519100spa
dc.date.accessioned2025-04-22T22:25:03Z
dc.date.available2025-04-22T22:25:03Z
dc.date.issued2024-10
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractThe rapid innovation in modern microscopy has outpaced its commercialization and adoption, leaving many users unable to access these advances. Even within the scientific community, adopting complex peer-reported designs can be challenging. To bridge the gap between microscopy innovation and widespread implementation, efforts are needed to democratize the field, making custom, research-grade instruments easily accessible to all. In this thesis, the development of open-source tools to perform label-free analysis in current science and engineering applications through digital holographic microscopy (DHM) systems, and its related technologies, was sought. To achieve it, simulation platforms, which account for the main parameters in an experimental setup, and numerical reconstruction tools that allow the digital processing of label-free recordings, were initially developed and openly distributed. Supported by these tools, accessible instrumentation of DHM systems was pursued, allowing the design and assembly of systems with increased portability and reduced cost and complexity. The developed devices and systems were validated in real-world applications, gathering valuable feedback that highlighted improvement opportunities. Finally, these opportunities were harnessed in the refinement of the proposed systems, both the software and hardware tools, enhancing their functionality. The results were reported on 13 manuscripts submitted to indexed journals of international circulation and shared in 17 presentations in international conferences. These works, which constitute the core of the present thesis, represent significant progress towards accessible, high-performance DHM and DLHM systems, with broad potential applications in both scientific research and education. (Tomado de la fuente)eng
dc.description.abstractLa rápida innovación en microscopía moderna ha superado su comercialización y adopción, dejando a muchos usuarios sin acceso a estos avances. Incluso dentro de la comunidad científica, la incorporación de diseños complejos reportados en la literatura es un desafío. Para cerrar la brecha entre la innovación en microscopía y su implementación generalizada, es necesario democratizar esta área de investigación, facilitando el acceso a instrumentos personalizados de nivel investigativo. En esta tesis se desarrollaron herramientas libres para realizar análisis sin marcadores en aplicaciones actuales de ciencia e ingeniería, mediante sistemas de microscopía holográfica digital (DHM) y tecnologías afines. Para ello, se desarrollaron y distribuyeron plataformas de simulación que incorporan los principales parámetros de un entorno experimental, y herramientas de reconstrucción numérica para el procesamiento digital de registros sin marcadores. Estas herramientas apoyaron el desarrollo de instrumentación accesible para sistemas DHM, permitiendo la creación de dispositivos más portátiles, económicos y de menor complejidad. Los sistemas desarrollados fueron validados en aplicaciones reales, recopilando retroalimentaciones y oportunidades de mejora, que luego fueron aprovechadas para optimizar tanto las herramientas de software como los dispositivos de hardware, mejorando su funcionalidad. Los resultados se reportaron en 13 manuscritos sometidos a revistas indexadas de circulación internacional y 17 presentaciones en conferencias internacionales. Estos trabajos, que constituyen el núcleo de esta tesis, representan un avance significativo hacia sistemas DHM y DLHM accesibles y de alto desempeño, con aplicaciones en investigación y docencia.spa
dc.description.curricularareaFísica.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.researchareaMicroscopía Holográfica Digitalspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88076
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Realistic simulation and real-time reconstruction of digital holographic microscopy experiments in ImageJ. Appl Opt 2022;61:B56. https://doi.org/10.1364/AO.443137.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J, Martínez-Corral M, Sánchez-Ortiga E. Revisiting the sample transmittance and camera bit-depth effects on quantitative phase imaging in off-axis digital holographic microscopy. Opt Lasers Eng 2024;175. https://doi.org/10.1016/j.optlaseng.2023.108002.spa
dc.relation.referencesLopera MJ, Buitrago-Duque C, Garcia-Sucerquia J, Nie Y, Ottevaere H, Trujillo C. Simulation of digital lensless holographic microscopy holograms: a physics-image processing approach. Opt Express 2024;32:48509. https://doi.org/10.1364/OE.541013.spa
dc.relation.referencesTobón-Maya H, Gómez-Ramírez A, Buitrago-Duque C, Garcia-Sucerquia J. Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy. Appl Opt 2023;62:D39. https://doi.org/10.1364/AO.474916.spa
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Point sources for digital lensless holographic microscopy: comparative assessment. Opt Eng 2024;63:1–17. https://doi.org/10.1117/1.oe.63.11.111808.spa
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging. HardwareX 2023;13:e00408. https://doi.org/10.1016/j.ohx.2023.e00408.spa
dc.relation.referencesBuitrago-Duque C, Tobon-Maya H, Zapata-Valencia S, Garcia-Sucerquia J. Cost-effective, DIY, and open-source digital lensless holographic microscope with distortion correction. Opt Eng 2024;63:1–12. https://doi.org/10.1117/1.OE.63.11.111807.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Digital holographic microscopy: our contributions to its democratization. Opt Pura y Apl 2022;55:4070–5. https://doi.org/10.7149/OPA.55.1.51106.spa
dc.relation.referencesMontoya M, Lopera MJ, Gómez-Ramírez A, Buitrago-Duque C, Pabón-Vidal A, Herrera-Ramirez J, et al. FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy. Opt Lasers Eng 2023;165:107546. https://doi.org/10.1016/j.optlaseng.2023.107546.spa
dc.relation.referencesBuitrago-Duque C, Tobón-Maya H, Gómez-Ramírez A, Zapata-Valencia SI, Lopera MJ, Trujillo C, et al. Open-access database for digital lensless holographic microscopy and its application on the improvement of deep-learning-based autofocusing models. Appl Opt 2024;63:B49. https://doi.org/10.1364/ao.507412.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Noise reduction in digital holography phase maps by phase-preserving discrete Fourier resampling. Opt Lett 2023;48:5807. https://doi.org/10.1364/ol.504038.spa
dc.relation.referencesBuitrago-Duque C, Zapata-Valencia S, Garcia-Sucerquia J. Multi-view occlusion removal in digital lensless holographic microscopy. Opt Eng 2024;63:1–9. https://doi.org/10.1117/1.oe.63.11.111806.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Digital Holographic Microscopy Experiments in ImageJ. Focus Microsc. 2023, Porto, Portugal: 2023, p. P1-E/8.spa
dc.relation.referencesBuitrago-Duque C, García-Sucerquia J, Martínez-Corral M, Sánchez-Ortiga E. Sample Transmittance and Camera Bit-Depth Effects in Single-Shot Digital Holographic Microscopy. Opt. Imaging Congr. (3D, COSI, DH, FLatOptics, IS, pcAOP), Washington, D.C.: Optica Publishing Group; 2023, p. HTu3C.2. https://doi.org/10.1364/DH.2023.HTu3C.2.spa
dc.relation.referencesMartinez-Corral M, Buitrago-Duque C, Garcia-Sucerquia J, Sánchez-Ortiga E. Exploring limits in Off-Axis Digital Holographic Microscopy [Invited]. Imaging Appl. Opt. Congr., 2024.spa
dc.relation.referencesBuitrago-Duque C, Patino-Jurado B, Garcia-Sucerquia J. A Comparative Assessment of Point Sources for Digital Lensless Holographic Microscopy. Opt. Lat. Am. Opt. Photonics Conf. 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu4A.12. https://doi.org/10.1364/LAOP.2024.Tu4A.12.spa
dc.relation.referencesTobón-Maya H, Zapata-Valencia S, Buitrago-Duque C, Gomez-Ramirez A, Garcia-Sucerquia J. 3D printable open-source hardware for conical-shaped optical fiber tip fabrication. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.spa
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust Digital Lensless Holographic Microscope for Label-Free Blood Smear Imaging. 10th Int. Symp. Opt. Its Appl., Cali, Colombia: 2022.spa
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust Digital Lensless Holographic Microscope for Label-Free Blood Smear Imaging. Focus Microsc. 2023, Porto, Portugal: 2023, p. P1-E/9.spa
dc.relation.referencesTobon-Maya H, Zapata-Valencia S, Buitrago-Duque C, Garcia-Sucerquia J. Cost-effective, DIY and open-source digital lensless holographic microscopy with astigmatism correction and aberration reduction. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.spa
dc.relation.referencesBuitrago-Duque C, Tobón-Maya H, Garcia-Sucerquia J. Cost-Effective, DIY, and Open-Source Digital Lensless Holographic Microscope with Distortion Correction. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. W4A.20. https://doi.org/10.1364/DH.2024.W4A.20.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Herramientas Libres y de Código Abierto para Investigación y Docencia en Microscopía Holográfica Digital. Encuentro Nac. Óptica y Conf. Andin. y del Caribe en Óptica y sus Apl., Medellin, Colombia: 2021.spa
dc.relation.referencesZapata-Valencia SI, Gómez-Ramírez A, Tobon-Maya H, Buitrago-Duque CA, Garcia-Sucerquia J. Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction. Proc.SPIE, vol. 12723, 2023, p. 1272302. https://doi.org/10.1117/12.2662594.spa
dc.relation.referencesBuitrago-Duque CA, Zapata-Valencia SI, Tobon-Maya H, Gomez-Ramirez A, Garcia-Sucerquia J. Introduction to holography at undergraduate level using research-grade open-source software. Proc.SPIE, vol. 12723, 2023, p. 127231V. https://doi.org/10.1117/12.2670815.spa
dc.relation.referencesGomez-Ramirez A, Tobon-Maya H, Zapata-Valencia S, Buitrago-Duque C, Garcia-Sucerquia J. High-quality open-source dataset of Digital Lensless Holographic Microscopy recordings and reconstructions. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.spa
dc.relation.referencesBuitrago-Duque C, García-Sucerquia J. Single-shot Noise Reduction of Phase Maps through Phase-preserving Sliding Window Spatial Filtering. Opt. Imaging Congr. (3D, COSI, DH, FLatOptics, IS, pcAOP), Washington, D.C.: Optica Publishing Group; 2023, p. HTu3C.6. https://doi.org/10.1364/DH.2023.HTu3C.6.spa
dc.relation.referencesBuitrago-Duque C, Zapata-Valencia S, Garcia-Sucerquia J. Experimental Method to Remove Occlusions in Digital Lensless Holographic Microscopy. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu2B.4. https://doi.org/10.1364/DH.2024.Tu2B.4.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Can Digital Lensless Holographic Microscopy (DLHM) do Quantiative Phase Imaging (QPI)? [Invited]. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Paestum. Italy: n.d.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Compact Self-Interference Digital Holographic Microscope Based on a Budget Fresnel Bi-Mirror. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu5A.2. https://doi.org/10.1364/DH.2024.Tu5A.2.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Realistic modeling of digital holographic microscopy. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.10.102418.spa
dc.relation.referencesBuitrago-Duque C. Noise Reduction in Phase Maps from Digital Holographic Microscopy. Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields. Appl Opt 2019;58:G11. https://doi.org/10.1364/ao.58.000g11.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Sizing calibration in digital lensless holographic microscopy via iterative Talbot self-imaging. Opt Lasers Eng 2020;134:106176. https://doi.org/10.1016/j.optlaseng.2020.106176.spa
dc.relation.referencesTobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia-Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. Appl Opt 2021;60:A205. https://doi.org/10.1364/AO.405605.spa
dc.relation.referencesBuitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Pointwise phasor tuning for single-shot speckle noise reduction in phase wave fields. Opt Lasers Eng 2021;137:106365. https://doi.org/10.1016/j.optlaseng.2020.106365.spa
dc.relation.referencesBuitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Single-shot pseudostochastic speckle noise reduction in numerical complex-valued wavefields. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.7.073107.spa
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Physical pupil manipulation for speckle reduction in digital holographic microscopy. Heliyon 2021;7:e06098. https://doi.org/10.1016/j.heliyon.2021.e06098.spa
dc.relation.referencesAmelinckx S, van Dyck D, van Landuyt J, van Tendeloo G, editors. Handbook of Microscopy. Wiley; 1996. https://doi.org/10.1002/9783527620753.spa
dc.relation.referencesMilestones in light microscopy. Nat Cell Biol 2009;11:1165–1165. https://doi.org/10.1038/ncb1009-1165.spa
dc.relation.referencesGarini Y, Vermolen BJ, Young IT. From micro to nano: recent advances in high-resolution microscopy. Curr Opin Biotechnol 2005;16:3–12. https://doi.org/10.1016/j.copbio.2005.01.003.spa
dc.relation.referencesVangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 2018;6:022003. https://doi.org/10.1088/2050-6120/aaae0c.spa
dc.relation.referencesGrigg FC. Colour-Contrast Phase Microscopy. Nature 1950;165:368–9. https://doi.org/10.1038/165368b0.spa
dc.relation.referencesPark YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 2018;12:578–89. https://doi.org/10.1038/s41566-018-0253-x.spa
dc.relation.referencesZangle TA, Teitell MA. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 2014;11:1221–8. https://doi.org/10.1038/nmeth.3175.spa
dc.relation.referencesPaddock SW, editor. Confocal Microscopy. Humana New York; 2016. https://doi.org/10.1007/978-1-60761-847-8.spa
dc.relation.referencesBewersdorf J, Pick R, Hell SW. Multifocal multiphoton microscopy. Opt Lett 1998;23:655. https://doi.org/10.1364/OL.23.000655.spa
dc.relation.referencesHoover EE, Squier JA. Advances in multiphoton microscopy technology. Nat Photonics 2013;7:93–101. https://doi.org/10.1038/nphoton.2012.361.spa
dc.relation.referencesVerveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EHK. High-resolution three-dimensional imaging of large specimens with light sheet–based microscopy. Nat Methods 2007;4:311–3. https://doi.org/10.1038/nmeth1017.spa
dc.relation.referencesGustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000;198:82–7. https://doi.org/10.1046/j.1365-2818.2000.00710.x.spa
dc.relation.referencesHuang B, Babcock H, Zhuang X. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell 2010;143:1047–58. https://doi.org/10.1016/j.cell.2010.12.002.spa
dc.relation.referencesBechhoefer J. What is superresolution microscopy? Am J Phys 2015;83:22–9. https://doi.org/10.1119/1.4900756.spa
dc.relation.referencesKim MK. Digital Holographic Microscopy: Principles, Techniques, and Applications. Springer; 2011. https://doi.org/10.1007/978-1-4419-7793-9.spa
dc.relation.referencesLatychevskaia T. Iterative phase retrieval for digital holography: tutorial. J Opt Soc Am A 2019;36:D31. https://doi.org/10.1364/JOSAA.36.000D31.spa
dc.relation.referencesZheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 2013;7:739–45. https://doi.org/10.1038/nphoton.2013.187.spa
dc.relation.referencesGuo C, Liu W, Hua X, Li H, Jia S. Fourier light-field microscopy. Opt Express 2019;27:25573. https://doi.org/10.1364/OE.27.025573.spa
dc.relation.referencesPower RM, Huisken J. Putting advanced microscopy in the hands of biologists. Nat Methods 2019;16:1069–73. https://doi.org/10.1038/s41592-019-0618-1.spa
dc.relation.referencesFantner GE, Oates AC. Instruments of change for academic tool development. Nat Phys 2021;17:421–4. https://doi.org/10.1038/s41567-021-01221-3.spa
dc.relation.referencesMaia Chagas A. Haves and have nots must find a better way : The case for open scientific hardware. PLOS Biol 2018;16:e3000014. https://doi.org/10.1371/journal.pbio.3000014.spa
dc.relation.referencesMarder E. Living Science: The haves and the have nots. Elife 2013. https://doi.org/10.7554/eLife.01515.spa
dc.relation.referencesPerry L, Malkin R. Effectiveness of medical equipment donations to improve health systems: how much medical equipment is broken in the developing world? Med Biol Eng Comput 2011;49:719–22. https://doi.org/10.1007/s11517-011-0786-3.spa
dc.relation.referencesPearce JM. Building Research Equipment with Free, Open-Source Hardware. Science (80- ) 2012;337:1303–4. https://doi.org/10.1126/science.1228183.spa
dc.relation.referencesHohlbein J, Diederich B, Marsikova B, Reynaud EG, Holden S, Jahr W, et al. Open microscopy in the life sciences: quo vadis? Nat Methods 2022;19:1020–5. https://doi.org/10.1038/s41592-022-01602-3.spa
dc.relation.referencesCybulski JS, Clements J, Prakash M. Foldscope: Origami-Based Paper Microscope. PLoS One 2014;9:e98781. https://doi.org/10.1371/journal.pone.0098781.spa
dc.relation.referencesDiederich B, Lachmann R, Carlstedt S, Marsikova B, Wang H, Uwurukundo X, et al. A versatile and customizable low-cost 3D-printed open standard for microscopic imaging. Nat Commun 2020;11:5979. https://doi.org/10.1038/s41467-020-19447-9.spa
dc.relation.referencesSharkey JP, Foo DCWW, Kabla A, Baumberg JJ, Bowman RW. A one-piece 3D printed flexure translation stage for open-source microscopy. Rev Sci Instrum 2016;87:025104. https://doi.org/10.1063/1.4941068.spa
dc.relation.referencesSchneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.spa
dc.relation.referencesEdelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced methods of microscope control using μManager software. J Biol Methods 2014;1:e10. https://doi.org/10.14440/jbm.2014.36.spa
dc.relation.referencesSwedlow JR, Goldberg I, Brauner E, Sorger PK. Informatics and Quantitative Analysis in Biological Imaging. Science (80- ) 2003;300:100–2. https://doi.org/10.1126/science.1082602.spa
dc.relation.referencesEisenstein M. Microscopy made to order. Nat Methods 2021;18:1277–81. https://doi.org/10.1038/s41592-021-01313-1.spa
dc.relation.referencesEvanko D. Label-free microscopy. Nat Methods 2010;7:36–36. https://doi.org/10.1038/nmeth.f.288.spa
dc.relation.referencesShaked NT, Boppart SA, Wang L V., Popp J. Label-free biomedical optical imaging. Nat Photonics 2023;17:1031–41. https://doi.org/10.1038/s41566-023-01299-6.spa
dc.relation.referencesZernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 1942;9:974–86. https://doi.org/10.1016/S0031-8914(42)80079-8.spa
dc.relation.referencesBorn M, Wolf E, Bhatia AB, Clemmow PC, Gabor D, Stokes AR, et al. Principles of Optics. 7th ed. Cambridge, UK: Cambridge University Press; 1999. https://doi.org/10.1017/CBO9781139644181.spa
dc.relation.referencesNguyen TH, Kandel M, Shakir HM, Best-Popescu C, Arikkath J, Do MN, et al. Halo-free Phase Contrast Microscopy. Sci Rep 2017;7:44034. https://doi.org/10.1038/srep44034.spa
dc.relation.referencesCuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999;38:6994. https://doi.org/10.1364/AO.38.006994.spa
dc.relation.referencesMarquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 2005;30:468. https://doi.org/10.1364/OL.30.000468.spa
dc.relation.referencesTrolinger JD, Mansoor MM. History and metrology applications of a game-changing technology: digital holography [Invited]. J Opt Soc Am A 2022;39:A29. https://doi.org/10.1364/JOSAA.440610.spa
dc.relation.referencesSchnars U, Jueptner WPO. Digital Holography. Berlin Heidelberg: Springer-Verlag; 2005. https://doi.org/10.1007/b138284.spa
dc.relation.referencesGoodman JW. Introduction to Fourier Optics. 3rd ed. Roberts & Company Publishers; 2005.spa
dc.relation.referencesPicart P, Leval J. General theoretical formulation of image formation in digital Fresnel holography. J Opt Soc Am A 2008;25:1744–61. https://doi.org/10.1364/JOSAA.25.001744.spa
dc.relation.referencesXu L, Miao J, Asundi A. Properties of digital holography based on in-line configuration. Opt Eng 2000;39:3214–9.spa
dc.relation.referencesCuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Opt 2000;39:4070–5. https://doi.org/10.1364/AO.39.004070.spa
dc.relation.referencesTakeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 1982;72:156. https://doi.org/10.1364/JOSA.72.000156.spa
dc.relation.referencesSánchez-Ortiga E, Doblas A, Saavedra G, Martínez-Corral M, Garcia-Sucerquia J. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl Opt 2014;53:2058. https://doi.org/10.1364/AO.53.002058.spa
dc.relation.referencesLatychevskaia T, Fink H-W. Solution to the Twin Image Problem in Holography. Phys Rev Lett 2007;98:233901. https://doi.org/10.1103/PhysRevLett.98.233901.spa
dc.relation.referencesGoodwin EP, Wyant JC. Field Guide to Interferometric Optical Testing. SPIE; 2009. https://doi.org/10.1117/3.702897.spa
dc.relation.referencesCreath K. V Phase-Measurement Interferometry Techniques. Prog. Opt., 1988, p. 349–93. https://doi.org/10.1016/S0079-6638(08)70178-1.spa
dc.relation.referencesGuizar-Sicairos M, Fienup JR. Understanding the twin-image problem in phase retrieval. J Opt Soc Am A 2012;29:2367. https://doi.org/10.1364/JOSAA.29.002367.spa
dc.relation.referencesPopescu G. Quantitative phase imaging of cells and tissues. McGraw Hill Professional; 2011.spa
dc.relation.referencesKreis T. Handbook of Holographic Interferometry: Optical and Digital Methods. Weinheim: WILEY-VCH GmbH & Co; 2005.spa
dc.relation.referencesBrandt GB. Image Plane Holography 1969;8:1421–9. https://doi.org/10.1364/AO.8.001421.spa
dc.relation.referencesErsoy OK. Diffraction, Fourier Optics and Imaging. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2007. https://doi.org/10.1002/0470085002.spa
dc.relation.referencesCastañeda R, Toro W, Garcia-Sucerquia J. Evaluation of the limits of application for numerical diffraction methods based on basic optics concepts. Optik (Stuttg) 2015;126:5963–70. https://doi.org/10.1016/j.ijleo.2015.08.109.spa
dc.relation.referencesSchnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl Opt 1994;33:179–81. https://doi.org/10.1364/AO.33.000179.spa
dc.relation.referencesGabor D. A New Microscopic Principle. Nature 1948;161:777–778.spa
dc.relation.referencesGabor D. Microscopy by reconstructed wave-fronts. Procedings R Soc London 1949;197:454–87. https://doi.org/10.1038/166399b0.spa
dc.relation.referencesGarcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ. Digital in-line holographic microscopy. Appl Opt 2006;45:836. https://doi.org/10.1364/AO.45.000836.spa
dc.relation.referencesPatiño-Jurado B, Botero-Cadavid JF, Garcia-Sucerquia J. Optical Fiber Point-Source for Digital Lensless Holographic Microscopy. J Light Technol 2019;37:5660–6. https://doi.org/10.1109/JLT.2019.2921307.spa
dc.relation.referencesSerabyn E, Liewer K, Lindensmith C, Wallace K, Nadeau J. Compact, lensless digital holographic microscope for remote microbiology. Opt Express 2016;24:28540–8. https://doi.org/10.1364/OE.24.028540.spa
dc.relation.referencesSanz M, Trusiak M, García J, Micó V. Variable zoom digital in-line holographic microscopy. Opt Lasers Eng 2020;127:105939. https://doi.org/10.1016/j.optlaseng.2019.105939.spa
dc.relation.referencesRepetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination. Opt Lett 2004;29:1132. https://doi.org/10.1364/OL.29.001132.spa
dc.relation.referencesJericho MH, Kreuzer HJ. Point Source Digital In-line Holographic Microscopy. In: Ferraro P, Wax A, Zalevvsky Z, editors. Coherent Light Microsc., Springer-Verlag Berlin Heidelberg; 2011, p. 3–30.spa
dc.relation.referencesJericho MH, Jürgen Kreuzer H. Point Source Digital In-Line Holographic Microscopy Digital In-Line Holographic Microscopy, 2011, p. 3–30. https://doi.org/10.1007/978-3-642-15813-1_1.spa
dc.relation.referencesSchnars U, J ptner WPO. Digital recording and numerical reconstruction of holograms. Meas Sci Technol 2002;13:R85–101. https://doi.org/10.1088/0957-0233/13/9/201.spa
dc.relation.referencesKreuzer HJ. Holographic microscope and method of hologram reconstruction. US 6,411,406 B1, 2002.spa
dc.relation.referencesTrujillo C, Piedrahita-Quintero P, Garcia-Sucerquia J. Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ. Appl Opt 2020;59:5788. https://doi.org/10.1364/AO.395672.spa
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. Appl Opt 2010;49:6430–5. https://doi.org/10.1364/AO.49.006430.spa
dc.relation.referencesKemper B, Bauwens A, Bettenworth D, Götte M, Greve B, Kastl L, et al. Label-Free Quantitative In Vitro Live Cell Imaging with Digital Holographic Microscopy, 2019. https://doi.org/10.1007/11663_2019_6.spa
dc.relation.referencesEisenstein M. AI under the microscope: the algorithms powering the search for cells. Nature 2023;623:1095–7. https://doi.org/10.1038/d41586-023-03722-y.spa
dc.relation.referencesShroff H, Testa I, Jug F, Manley S. Live-cell imaging powered by computation. Nat Rev Mol Cell Biol 2024;25:443–63. https://doi.org/10.1038/s41580-024-00702-6.spa
dc.relation.referencesColomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C, Emery Y. Extended depth-of-focus by digital holographic microscopy. Opt Lett 2010;35:1840–2.spa
dc.relation.referencesHong J, Kim Y, Bae H, Hong S. OpenHolo: Open source library for hologram generation, reconstruction and signal processing. Imaging Appl. Opt. Congr., Washington, D.C.: Optica Publishing Group; 2020, p. HF3G.1. https://doi.org/10.1364/DH.2020.HF3G.1.spa
dc.relation.referencesRueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017;18:529. https://doi.org/10.1186/s12859-017-1934-z.spa
dc.relation.referencesHariharan P. Optical Holography: Principles, Techniques, and Applications. 2nd ed. Cambridge, UK: Cambridge University Press; 1996.spa
dc.relation.referencesPiedrahita-Quintero P, Castañeda R, Garcia-Sucerquia J. Numerical wave propagation in ImageJ. Appl Opt 2015;54. https://doi.org/10.1364/AO.54.006410.spa
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Diffraction-based modeling of high-numerical-aperture in-line lensless holograms. Appl Opt 2011;50:1745–52. https://doi.org/10.1364/AO.50.001745.spa
dc.relation.referencesHartley R, Sing Bing Kang. Parameter-Free Radial Distortion Correction with Center of Distortion Estimation. IEEE Trans Pattern Anal Mach Intell 2007;29:1309–21. https://doi.org/10.1109/TPAMI.2007.1147.spa
dc.relation.referencesHwu EE-T, Boisen A. Hacking CD/DVD/Blu-ray for Biosensing. ACS Sensors 2018;3:1222–32. https://doi.org/10.1021/acssensors.8b00340.spa
dc.relation.referencesPatiño-Jurado B, Botero-Cadavid JF, Garcia-Sucerquia J. Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy. Appl Opt 2020;59:2969–75. https://doi.org/10.1364/ao.384208.spa
dc.relation.referencesMaritz MG, Schoeman J. Programmable Aperture Using a Digital Micromirror Device for In-Line Holographic Microscopy. IEEE J Quantum Electron 2022;58:1–8. https://doi.org/10.1109/JQE.2022.3190501.spa
dc.relation.referencesLopera MJ, Trujillo C. Holographic point source for digital lensless holographic microscopy. Opt Lett 2022;47:2862–5. https://doi.org/10.1364/OL.459146.spa
dc.relation.referencesGu N, Li C, Sun L, Liu Z, Sun Y, Xu L. Controllable fabrication of fiber nano-tips by dynamic chemical etching based on siphon principle. J Vac Sci Technol B Microelectron Nanom Struct 2004;22:2283. https://doi.org/10.1116/1.1781185.spa
dc.relation.referencesWróbel P, Stefaniuk T, Antosiewicz TJ, Libura A, Nowak G, Wejrzanowski T, et al. Fabrication of corrugated probes for scanning near-field optical microscopy. In: Kuzmiak V, Markos P, Szoplik T, editors., 2011, p. 80700I. https://doi.org/10.1117/12.886844.spa
dc.relation.referencesPatiño-Jurado B. Fiber optics point-source for digital lensless holographic microscopy. Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesPark Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci 2008;105:13730–5. https://doi.org/10.1073/pnas.0806100105.spa
dc.relation.referencesHanssen E, McMillan PJ, Tilley L. Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2010;40:1127–35. https://doi.org/10.1016/j.ijpara.2010.04.012.spa
dc.relation.referencesSuresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 2005;1:15–30. https://doi.org/10.1016/j.actbio.2004.09.001.spa
dc.relation.referencesMills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KSW, et al. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci 2007;104:9213–7. https://doi.org/10.1073/pnas.0703433104.spa
dc.relation.referencesDubois F, Schockaert C, Callens N, Yourassowsky C. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 2006;14:5895. https://doi.org/10.1364/OE.14.005895.spa
dc.relation.referencesLyu M, Yuan C, Li D, Situ G. Fast autofocusing in digital holography using the magnitude differential. Appl Opt 2017;56:F152. https://doi.org/10.1364/AO.56.00F152.spa
dc.relation.referencesTrujillo CA, Garcia-Sucerquia J. Automatic method for focusing biological specimens in digital lensless holographic microscopy. Opt Lett 2014;39:2569–72. https://doi.org/10.1364/OL.39.002569.spa
dc.relation.referencesBianco V, Memmolo P, Paturzo M, Finizio A, Javidi B, Ferraro P. Quasi noise-free digital holography. Light Sci Appl 2016;5:e16142–e16142. https://doi.org/10.1038/lsa.2016.142.spa
dc.relation.referencesBianco V, Memmolo P, Leo M, Montresor S, Distante C, Paturzo M, et al. Strategies for reducing speckle noise in digital holography. Light Sci Appl 2018;7:48. https://doi.org/10.1038/s41377-018-0050-9.spa
dc.relation.referencesGarcia-Sucerquia J, Herrera-Ramírez J, Velásquez D. Reduction of speckle noise in digital holography by using digital image processing. Opt - Int J Light Electron Opt 2005;116:44–8. https://doi.org/10.1016/j.ijleo.2004.12.004.spa
dc.relation.referencesHincapie D, Herrera-Ramírez J, Garcia-Sucerquia J. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms. Opt Lett 2015;40:1623–6. https://doi.org/10.1364/OL.40.001623.spa
dc.relation.referencesHerrera-Ramirez J, Hincapie-Zuluaga DA, Garcia-Sucerquia J. Speckle noise reduction in digital holography by slightly rotating the object. Opt Eng 2016;55:121714. https://doi.org/10.1117/1.OE.55.12.121714.spa
dc.relation.referencesMaycock J, Hennelly BM, McDonald JB, Castro A, Naughton TJ, Frauel Y, et al. Reduction of speckle in digital holography by discrete Fourier filtering. J Opt Soc Am A 2007;24:1617–22. https://doi.org/10.1364/JOSAA.24.001617.spa
dc.relation.referencesBianco V, Paturzo M, Memmolo P, Finizio A, Ferraro P, Javidi B. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography. Opt Lett 2013;38:619–21. https://doi.org/10.1364/OL.38.000619.spa
dc.relation.referencesZapata-Valencia SI, Tobon-Maya H, Garcia-Sucerquia J. Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging. J Opt Soc Am A 2023;40:C150. https://doi.org/10.1364/JOSAA.482496.spa
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Numerical evaluation of the limit of concentration of colloidal samples for their study with digital lensless holographic microscopy. Appl Opt 2013;52:A310. https://doi.org/10.1364/AO.52.00A310.spa
dc.relation.referencesJericho MH, Kreuzer HJ, Kanka M, Riesenberg R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl Opt 2012;51:1503. https://doi.org/10.1364/AO.51.001503.spa
dc.relation.referencesOzcan A, McLeod E. Lensless Imaging and Sensing. Annu Rev Biomed Eng 2016;18:77–102. https://doi.org/10.1146/annurev-bioeng-092515-010849.spa
dc.relation.referencesWdowiak E, Rogalski M, Arcab P, Zdańkowski P, Józwik M, Trusiak M. Quantitative phase imaging verification in large field-of-view lensless holographic microscopy via two-photon 3D printing. Sci Rep 2024;14:23611. https://doi.org/10.1038/s41598-024-74866-8.spa
dc.relation.referencesUgele M, Weniger M, Leidenberger M, Huang Y, Bassler M, Friedrich O, et al. Label-free, high-throughput detection of P. falciparum infection in sphered erythrocytes with digital holographic microscopy. Lab Chip 2018;18:1704–12.spa
dc.relation.referencesPark Y. Optical Measurement of Biomechanical Properties of Human Red Blood Cell using Digital Holographic Microscopy: Malaria and Sickle Cell Diseases. Biophys J 2013;104:341a. https://doi.org/10.1016/j.bpj.2012.11.1896.spa
dc.relation.referencesKemper B, Vollmer A, von Bally G, Rommel CE, Schnekenburger J. Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J Biomed Opt 2011;16:1. https://doi.org/10.1117/1.3540674.spa
dc.relation.referencesMa C, Li Y, Zhang J, Li P, Xi T, Di J, et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. Opt Express 2017;25:13659. https://doi.org/10.1364/OE.25.013659.spa
dc.relation.referencesChhaniwal V, Singh ASG, Leitgeb RA, Javidi B, Anand A. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror. Opt Lett 2012;37:5127. https://doi.org/10.1364/OL.37.005127.spa
dc.relation.referencesLee K, Park Y. Quantitative phase imaging unit. Opt Lett 2014;39:3630. https://doi.org/10.1364/OL.39.003630.spa
dc.relation.referencesEbrahimi S, Dashtdar M, Sánchez-Ortiga E, Martínez-Corral M, Javidi B. Stable and simple quantitative phase-contrast imaging by Fresnel biprism. Appl Phys Lett 2018;112. https://doi.org/10.1063/1.5021008.spa
dc.relation.referencesSingh ASG, Anand A, Leitgeb RA, Javidi B. Lateral shearing digital holographic imaging of small biological specimens. Opt Express 2012;20:23617. https://doi.org/10.1364/OE.20.023617.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembMicroscopía
dc.subject.lembHolografía
dc.subject.lembMicroscopía digital
dc.subject.lembNanotecnología
dc.subject.proposalDigital Holographic Microscopyeng
dc.subject.proposalOpen Microscopyeng
dc.subject.proposalLabel-Free Imagingeng
dc.subject.proposalQuantitative Phase Imagingeng
dc.subject.proposalOpen Scienceeng
dc.subject.proposalMicroscopía Holográfica Digitalspa
dc.subject.proposalCiencia Abiertaspa
dc.subject.proposalMicroscopía Abiertaspa
dc.subject.proposalImágenes sin marcadoresspa
dc.subject.proposalImágenes Cuantitativas de Fasespa
dc.titleOpen-Source Label-Free Microscopyeng
dc.title.translatedMicroscopía Abierta sin Marcadoresspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152453501.2024.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: