Identificación de variantes germinales en 63 genes de susceptibilidad al cáncer en mujeres colombianas con cáncer de mama no seleccionado
dc.contributor.advisor | Sierra Díaz, Diana Carolina | |
dc.contributor.advisor | Ospina Lagos, Sandra Yaneth | |
dc.contributor.author | Silva Igua, Liliana Esperanza | |
dc.contributor.orcid | Liliana Silva-Igua [0000000244425209] | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-09-05T15:22:55Z | |
dc.date.available | 2025-09-05T15:22:55Z | |
dc.date.issued | 2025-08-04 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | Objetivo: Identificar variantes germinales en 63 genes de susceptibilidad al cáncer en mujeres con carcinoma epitelial invasivo de mama, analizar su correlación con los subtipos tumorales y las vías de señalización o procesos biológicos relacionados. Diseño: Estudio observacional. Pacientes: Mujeres con carcinoma epitelial invasivo de mama, reclutadas entre 2019 y 2022. Lugar: Hospitales de Bogotá, Medellín, Cali, Bucaramanga, Valledupar y ciudades del Eje Cafetero. Metodología: Mediante secuenciación de exoma completo (Whole Exome Sequencing-WES), se estudiaron 400 mujeres con cáncer de mama, analizando variantes germinales con frecuencias alélicas poblacionales entre 1 % y 5 %, en 63 genes de susceptibilidad al cáncer. Se empleó Weighted Gene Correlation Network Analysis (WGCNA), así como pruebas estadísticas, para analizar y evaluar la correlación genotipo-fenotipo. Resultados: Se identificaron 73 variantes germinales en 29 genes, presentes en el 99,25% de las pacientes. El análisis WGCNA agrupó estos genes en módulos con variantes recurrentes implicadas en vías tumorigénicas. Se identificaron seis grupos, cada uno correlacionado con un subtipo molecular: Luminal A, Luminal B, HER2 enriquecido y triple negativo. Se encontraron correlaciones con significancia estadística entre variantes germinales y subtipos tumorales (valor p = 0,0470). La prueba de Chi-cuadrado de Pearson evidenció una relación estadísticamente significativa entre módulos y subtipos tumorales (valor p = 0,0009995). Conclusiones: Las variantes germinales en diversas vías tumorigénicas se correlacionan con los subtipos moleculares del cáncer de mama, lo que evidencia la influencia del componente poligénico en su heterogeneidad. WGCNA permitió una mejor comprensión de esta relación y facilitó la identificación de correlaciones genotipo-fenotipo. Esta metodología, poco utilizada, ofreció ventajas significativas sobre métodos tradicionales para el análisis de los datos genómicos (Texto tomado de la fuente). | spa |
dc.description.abstract | Objective: To identify germline variants in 63 cancer susceptibility genes in women with invasive epithelial breast carcinoma, analyze their correlation with tumor subtypes and related signaling pathways or biological processes. Design: Observational study. Patients: Women with invasive epithelial breast carcinoma, recruited between 2019 and 2022. Location: Hospitals in Bogotá, Medellín, Cali, Bucaramanga, Valledupar, and cities in the Coffee Axis region. Methodology: Using whole-exome sequencing (WES), 400 women with breast cancer were studied, analyzing germline variants with population allele frequencies between 1% and 5% across 63 cancer susceptibility genes. Weighted Gene Correlation Network Analysis (WGCNA) was employed to analyze the correlation between genetic variants and statistical tests were used to evaluate the genotype-phenotype correlation. Results: Seventy-three germline variants were identified in 29 genes, present in 99.25% of patients. The WGCNA analysis grouped these genes into modules with recurrent variants involved in tumorigenic pathways. Six groups were identified, each correlated with a molecular subtype: Luminal A, Luminal B, HER2-enriched, and triple-negative. Statistically significant correlations were found between germline variants and tumor subtypes (p values = 0.0470). The Pearson chi-squared test showed a statistically significant relationship between modules and tumor subtypes (p = 0.0009995). Conclusions: Germline variants in various tumorigenic pathways correlate with molecular subtypes of breast cancer, highlighting the influence of the polygenic component on its heterogeneity. WGCNA allowed for a better understanding of this relationship and facilitated the identification of genotype-phenotype correlations. This methodology, underutilized, offered significant advantages over traditional methods for analyzing these data. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Genética Humana | |
dc.description.methods | Desde el Centro de Investigación en Genética y Genómica de la Universidad del Rosario (CIGGUR), se desarrolló un estudio observacional retrospectivo en una población de mujeres con cáncer de mama, denominado “Genómica funcional para la descripción de mutaciones en el diagnóstico molecular del cáncer de seno no seleccionado en población colombiana”. Entre los objetivos del estudio matriz, se identificaron variantes germinales con frecuencias alélicas menores al 1%, considerando la realización de estudios funcionales subsecuentes para estas variantes de alta penetrancia. En este trabajo, se analizaron los datos obtenidos en esta cohorte de pacientes, incluyendo la identificación, descripción y análisis de las variantes encontradas en una frecuencia alélica poblacional entre el 1 % y 5 % (obtenida a partir de datos de exoma de gnomAD) en 63 genes de susceptibilidad al desarrollo de cáncer de mama, por medio de WES (Whole Exome Sequencing-WES). | |
dc.description.researcharea | Genética Molecular del Cáncer de Mama | |
dc.format.extent | 127 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88630 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Medicina | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Medicina - Maestría en Genética Humana | |
dc.relation.references | Global Cancer Observatory. International Agency for Research on Cancer, World Health Organization; 2025. Available from: https://gco.iarc.fr | |
dc.relation.references | Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast [Internet]. 2022 Dec 1;66:15–23. Available from: https://doi.org/10.1016/j.breast.2022.08.010 | |
dc.relation.references | McCartan DP, Chatterjee S. Hereditary and familial cancer. Surgery (Oxford) [Internet]. 2021;39(4):228–33. Available from: https://www.sciencedirect.com/science/article/pii/S0263931921000302 | |
dc.relation.references | Martin CA, Suárez Villasmil L, Sembaj A, Gomez Balangione F, Zunino S, Montes C del C, et al. Características clínicas de pacientes con Cáncer de Mama y / o Cáncer de Ovario con mutaciones en los genes BRCA1 y BRCA2 en Córdoba, Argentina. Rev Fac Cienc Med Cordoba. 2022 Sep 16;79(3):228–34. | |
dc.relation.references | Torabi Dalivandan S, Plummer J, Gayther SA. Risks and Function of Breast Cancer Susceptibility Alleles. Cancers (Basel) [Internet]. 2021;13(16). Available from: https://www.mdpi.com/2072-6694/13/16/3953 | |
dc.relation.references | Yanes T, Young MA, Meiser B, James PA. Clinical applications of polygenic breast cancer risk: a critical review and perspectives of an emerging field. Breast Cancer Research [Internet]. 2020;22(1):21. Available from: https://doi.org/10.1186/s13058-020-01260-3 | |
dc.relation.references | Easton DF, Pharoah PDP, Antoniou AC, Tischkowitz M, Tavtigian S V, Nathanson KL, et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. New England Journal of Medicine [Internet]. 2015;372(23):2243–57. Available from: https://www.nejm.org/doi/full/10.1056/NEJMsr1501341 | |
dc.relation.references | Admoun C, Mayrovitz H. The Etiology of Breast Cancer. In: Exon Publications. 2022. p. 21–30. | |
dc.relation.references | Zavala VA, Serrano-Gomez SJ, Dutil J, Fejerman L. Genetic Epidemiology of Breast Cancer in Latin America. Genes (Basel) [Internet]. 2019;10(2). Available from: https://www.mdpi.com/2073-4425/10/2/153 | |
dc.relation.references | Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol [Internet]. 2020;84:106535. Available from: https://www.sciencedirect.com/science/article/pii/S1567576920304768 | |
dc.relation.references | Taurin S, Alkhalifa H. Breast cancers, mammary stem cells, and cancer stem cells, characteristics, and hypotheses. Neoplasia [Internet]. 2020;22(12):663–78. Available from: https://www.sciencedirect.com/science/article/pii/S147655862030155X | |
dc.relation.references | C HL, C DA, J SR, D DW, Karthik G. Atypical Hyperplasia of the Breast — Risk Assessment and Management Options. New England Journal of Medicine [Internet]. 2025 Apr 12;372(1):78–89. Available from: https://doi.org/10.1056/NEJMsr1407164 | |
dc.relation.references | Youn HJ, Han W. A Review of the Epidemiology of Breast Cancer in Asia: Focus on Risk Factors. Asian Pacific Journal of Cancer Prevention [Internet]. 2020;21(4):867–80. Available from: https://journal.waocp.org/article_89012.html | |
dc.relation.references | Naaman SC, Shen S, Zeytinoglu M, Iyengar NM. Obesity and Breast Cancer Risk: The Oncogenic Implications of Metabolic Dysregulation. J Clin Endocrinol Metab [Internet]. 2022 Aug 1;107(8):2154–66. Available from: https://doi.org/10.1210/clinem/dgac241 | |
dc.relation.references | Ritte R, Tikk K, Lukanova A, Tjønneland A, Olsen A, Overvad K, et al. Reproductive factors and risk of hormone receptor positive and negative breast cancer: a cohort study. BMC Cancer [Internet]. 2013;13(1):584. Available from: https://doi.org/10.1186/1471-2407-13-584 | |
dc.relation.references | Coughlin SS. Epidemiology of Breast Cancer in Women. In: Ahmad A, editor. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress [Internet]. Cham: Springer International Publishing; 2019. p. 9–29. Available from: https://doi.org/10.1007/978-3-030-20301-6_2 | |
dc.relation.references | Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, et al. BOADICEA: a comprehensive breast cancer risk prediction modelincorporating genetic and nongenetic risk factors. Genetics in Medicine [Internet]. 2019;21(8):1708–18. Available from: https://doi.org/10.1038/s41436-018-0406-9 | |
dc.relation.references | Pike MC, Pearce CL. Mammographic density, MRI background parenchymal enhancement and breast cancer risk. Annals of Oncology [Internet]. 2013 Nov 1;24:viii37–41. Available from: https://doi.org/10.1093/annonc/mdt310 | |
dc.relation.references | Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results From Prospective Analysis of EMBRACE. JNCI: Journal of the National Cancer Institute [Internet]. 2013 Jun 5;105(11):812–22. Available from: https://doi.org/10.1093/jnci/djt095 | |
dc.relation.references | Fan X, Wynn J, Shang N, Liu C, Fedotov A, Hallquist MLG, et al. Penetrance of Breast Cancer Susceptibility Genes From the eMERGE III Network. JNCI Cancer Spectr [Internet]. 2021 Aug 1;5(4):pkab044. Available from: https://doi.org/10.1093/jncics/pkab044 | |
dc.relation.references | Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov [Internet]. 2022 Jan 12;12(1):31–46. Available from: https://doi.org/10.1158/2159-8290.CD-21-1059 | |
dc.relation.references | Yeo SK, Guan JL. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer [Internet]. 2017 Nov 1;3(11):753–60. Available from: https://doi.org/10.1016/j.trecan.2017.09.001 | |
dc.relation.references | Sawaki M, Shien T, Iwata H. TNM classification of malignant tumors (Breast Cancer Study Group). Jpn J Clin Oncol [Internet]. 2019 Mar 1;49(3):228–31. Available from: https://doi.org/10.1093/jjco/hyy182 | |
dc.relation.references | Yip CH, and Rhodes A. Estrogen and Progesterone Receptors in Breast Cancer. Future Oncology [Internet]. 2014 Nov 1;10(14):2293–301. Available from: https://doi.org/10.2217/fon.14.110 | |
dc.relation.references | Eliyatkin N, Yalcin E, Zengel B, Aktaş S, Vardar E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. Journal of Breast Health. 2015 Apr 7;11(2):59–66. | |
dc.relation.references | Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet [Internet]. 2016;293(2):247–69. Available from: https://doi.org/10.1007/s00404-015-3859-y | |
dc.relation.references | Orrantia-Borunda E ANPAAL et al. Subtypes of Breast Cancer. In: Brisbane (AU): Exon Publications, editor. Breast Cancer. 2022. | |
dc.relation.references | Røge R, Nielsen S, Riber-Hansen R, Vyberg M. Ki-67 Proliferation Index in Breast Cancer as a Function of Assessment Method: A NordiQC Experience. Applied Immunohistochemistry & Molecular Morphology [Internet]. 2021;29(2). Available from: https://journals.lww.com/appliedimmunohist/fulltext/2021/02000/ki_67_proliferation_index_in_breast_cancer_as_a.4.aspx | |
dc.relation.references | Creighton CJ, Fu X, Hennessy BT, Casa AJ, Zhang Y, Gonzalez-Angulo AM, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Research [Internet]. 2010;12(3):R40. Available from: https://doi.org/10.1186/bcr2594 | |
dc.relation.references | Cui X, Schiff R, Arpino G, Osborne CK, Lee A V. Biology of Progesterone Receptor Loss in Breast Cancer and Its Implications for Endocrine Therapy. Journal of Clinical Oncology [Internet]. 2025 Apr 13;23(30):7721–35. Available from: https://doi.org/10.1200/JCO.2005.09.004 | |
dc.relation.references | Wajid S, Samad FA, Syed AS, Kazi F. Ki-67 and Its Relation With Complete Pathological Response in Patients With Breast Cancer. Cureus [Internet]. 2021;13(7):e16788. Available from: http://dx.doi.org/10.7759/cureus.16788 | |
dc.relation.references | Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol [Internet]. 2022;Volume 10-2022. Available from: https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.813457 | |
dc.relation.references | Ellsworth DL, Turner CE, Ellsworth RE. A Review of the Hereditary Component of Triple Negative Breast Cancer: High- and Moderate-Penetrance Breast Cancer Genes, Low-Penetrance Loci, and the Role of Nontraditional Genetic Elements. J Oncol [Internet]. 2019 Jan 1;2019(1):4382606. Available from: https://doi.org/10.1155/2019/4382606 | |
dc.relation.references | John EM, Miron A, Gong G, Phipps AI, Felberg A, Li FP, et al. Prevalence of Pathogenic BRCA1 Mutation Carriers in 5 US Racial/Ethnic Groups. JAMA [Internet]. 2007 Dec 26;298(24):2869–76. Available from: https://doi.org/10.1001/jama.298.24.2869 | |
dc.relation.references | Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, et al. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol [Internet]. 2022;83:152–65. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X20301814 | |
dc.relation.references | Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun [Internet]. 2021;12(1):1786. Available from: https://doi.org/10.1038/s41467-021-22024-3 | |
dc.relation.references | Venkatesh J, Wasson MCD, Brown JM, Fernando W, Marcato P. LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett [Internet]. 2021;509:81–8. Available from: https://www.sciencedirect.com/science/article/pii/S0304383521001567 | |
dc.relation.references | Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Annals of Oncology [Internet]. 2015 Jul 1;26(7):1291–9. Available from: https://doi.org/10.1093/annonc/mdv022 | |
dc.relation.references | Wendt C, and Margolin S. Identifying breast cancer susceptibility genes – a review of the genetic background in familial breast cancer. Acta Oncol (Madr) [Internet]. 2019 Feb 1;58(2):135–46. Available from: https://doi.org/10.1080/0284186X.2018.1529428 | |
dc.relation.references | Petrucelli N DMPT. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer [Internet]. 2022 [cited 2025 Apr 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1247/ | |
dc.relation.references | Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol [Internet]. 2017 Sep 1;3(9):1190–6. Available from: https://doi.org/10.1001/jamaoncol.2017.0424 | |
dc.relation.references | Wang YA, Jian JW, Hung CF, Peng HP, Yang CF, Cheng HCS, et al. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer [Internet]. 2018;18(1):315. Available from: https://doi.org/10.1186/s12885-018-4229-5 | |
dc.relation.references | TSAOUSIS GN, PAPADOPOULOU E, AGIANNITOPOULOS K, PEPE G, TSOULOS N, BOUKOVINAS I, et al. Revisiting the Implications of Positive Germline Testing Results Using Multi-gene Panels in Breast Cancer Patients. Cancer Genomics Proteomics [Internet]. 2022;19(1):60–78. Available from: https://cgp.iiarjournals.org/content/19/1/60 | |
dc.relation.references | Hu C, Polley EC, Yadav S, Lilyquist J, Shimelis H, Na J, et al. The Contribution of Germline Predisposition Gene Mutations to Clinical Subtypes of Invasive Breast Cancer From a Clinical Genetic Testing Cohort. JNCI: Journal of the National Cancer Institute [Internet]. 2020 Dec 14;112(12):1231–41. Available from: https://doi.org/10.1093/jnci/djaa023 | |
dc.relation.references | Torres D, Rashid MU, Gil F, Umana A, Ramelli G, Robledo JF, et al. High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Res Treat [Internet]. 2007;103(2):225–32. Available from: https://doi.org/10.1007/s10549-006-9370-1 | |
dc.relation.references | Sanabria MC, Muñoz G, Vargas CI. Análisis de las mutaciones más frecuentes del gen BRCA1 (185delAG y 5382insC) en mujeres con cáncer de mama en Bucaramanga, Colombia. Biomédica [Internet]. 2009 Mar 1;29(1):61–72. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/42 | |
dc.relation.references | Hernández JEL, Llacuachaqui M, Palacio GV, Figueroa JD, Madrid J, Lema M, et al. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Medellín, Colombia. Hered Cancer Clin Pract [Internet]. 2014;12(1):11. Available from: https://doi.org/10.1186/1897-4287-12-11 | |
dc.relation.references | Briceño-Balcázar IGGADDNANSMCDRD& CGMC. Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia. Colomb Med [Internet]. 2017 Apr;48:58–63. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-95342017000200058&nrm=iso | |
dc.relation.references | Cock-Rada AM, Ossa CA, Garcia HI, Gomez LR. A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Fam Cancer [Internet]. 2018;17(1):23–30. Available from: https://doi.org/10.1007/s10689-017-0004-z | |
dc.relation.references | Torres D, Bermejo JL, Rashid MU, Briceño I, Gil F, Beltran A, et al. Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Sci Rep [Internet]. 2017;7(1):4713. Available from: https://doi.org/10.1038/s41598-017-05056-y | |
dc.relation.references | Cortés C, Rivera AL, Trochez D, Solarte M, Gómez D, Cifuentes L, et al. Mutational analysis of BRCA1 and BRCA2 genes in women with familial breast cancer from different regions of Colombia. Hered Cancer Clin Pract [Internet]. 2019;17(1):20. Available from: https://doi.org/10.1186/s13053-019-0120-x | |
dc.relation.references | Torres D, Lorenzo Bermejo J, Garcia Mesa K, Gilbert M, Briceño I, Pohl-Zeidler S, et al. Interaction between genetic ancestry and common breast cancer susceptibility variants in Colombian women. Int J Cancer [Internet]. 2019 May 1;144(9):2181–91. Available from: https://doi.org/10.1002/ijc.32023 | |
dc.relation.references | Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021: Featured Updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network [Internet]. 2021;19(5):484–93. Available from: https://jnccn.org/view/journals/jnccn/19/5/article-p484.xml | |
dc.relation.references | Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine [Internet]. 2015;17(5):405–23. Available from: https://doi.org/10.1038/gim.2015.30 | |
dc.relation.references | Jarvik GP, Browning BL. Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants. The American Journal of Human Genetics [Internet]. 2016 Jun 2;98(6):1077–81. Available from: https://doi.org/10.1016/j.ajhg.2016.04.003 | |
dc.relation.references | Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat [Internet]. 2018 Nov 1;39(11):1517–24. Available from: https://doi.org/10.1002/humu.23626 | |
dc.relation.references | Ghosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG, Group on behalf of CSVIW. Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum Mutat [Internet]. 2018 Nov 1;39(11):1525–30. Available from: https://doi.org/10.1002/humu.23642 | |
dc.relation.references | Walsh MF, Ritter DI, Kesserwan C, Sonkin D, Chakravarty D, Chao E, et al. Integrating somatic variant data and biomarkers for germline variant classification in cancer predisposition genes. Hum Mutat [Internet]. 2018 Nov 1;39(11):1542–52. Available from: https://doi.org/10.1002/humu.23640 | |
dc.relation.references | Harrison SM, Biesecker LG, Rehm HL. Overview of Specifications to the ACMG/AMP Variant Interpretation Guidelines. Curr Protoc Hum Genet [Internet]. 2019 Sep 1;103(1):e93. Available from: https://doi.org/10.1002/cphg.93 | |
dc.relation.references | Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med [Internet]. 2019;12(1):3. Available from: https://doi.org/10.1186/s13073-019-0690-2 | |
dc.relation.references | Agresti Alan. Categorical data analysis. Wiley-Interscience; 2002. 710 p. | |
dc.relation.references | Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics [Internet]. 2008;9(1):559. Available from: https://doi.org/10.1186/1471-2105-9-559 | |
dc.relation.references | Daly MB, Pal T, Maxwell KN, Churpek J, Kohlmann W, AlHilli Z, et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024: Featured Updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network [Internet]. 2023;21(10):1000–10. Available from: https://jnccn.org/view/journals/jnccn/21/10/article-p1000.xml | |
dc.relation.references | Lynch HT MJLJSCRW. Breast cancer genetics: syndromes, genes, pathology, counseling,testing, and treatment. In: Bland KI CE, editor. The breast: comprehensive management of benign and malignantdisorders. 4th ed. 2009. p. 371–415. | |
dc.relation.references | Chen H, Yanyan L, Zhenglang Y, Hao C, Yao W, and Qian Y. Homologous repair deficiency-associated genes in invasive breast cancer revealed by WGCNA co-expression network analysis and genetic perturbation similarity analysis. Cell Cycle [Internet]. 2023 May 3;22(9):1077–100. Available from: https://doi.org/10.1080/15384101.2023.2174339 | |
dc.relation.references | Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 2006 Jan 1;20(1):34–46. | |
dc.relation.references | Cavaillé M, Uhrhammer N, Privat M, Ponelle-Chachuat F, Gay-Bellile M, Lepage M, et al. Analysis of 11 candidate genes in 849 adult patients with suspected hereditary cancer predisposition. Genes Chromosomes Cancer [Internet]. 2021 Feb 1;60(2):73–8. Available from: https://doi.org/10.1002/gcc.22911 | |
dc.relation.references | Liccardo R, De Rosa M, Izzo P, Duraturo F. Novel MSH2 splice-site mutation in a young patient with Lynch syndrome. Mol Med Rep. 2018;17(5):6942–6. | |
dc.relation.references | Larson JK, Hunter-Schlichting DN, Crowgey EL, Mills LJ, Druley TE, Marcotte EL. KMT2A-D pathogenicity, prevalence, and variation according to a population database. Cancer Med [Internet]. 2023 Mar 1;12(6):7234–45. Available from: https://doi.org/10.1002/cam4.5443 | |
dc.relation.references | Poreba E, Lesniewicz K, Durzynska J. Histone–lysine N-methyltransferase 2 (KMT2) complexes – a new perspective. Mutation Research/Reviews in Mutation Research [Internet]. 2022;790:108443. Available from: https://www.sciencedirect.com/science/article/pii/S1383574222000333 | |
dc.relation.references | Yap YS, Munusamy P, Lim C, Chan CHT, Prawira A, Loke SY, et al. Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype. Breast Cancer Res Treat [Internet]. 2018;171(3):719–35. Available from: https://doi.org/10.1007/s10549-018-4851-6 | |
dc.relation.references | Chew YP, Ellis M, Wilkie S, Mittnacht S. pRB phosphorylation mutants reveal role of pRB in regulating S phase completion by a mechanism independent of E2F [Internet]. Available from: http://www.stockton-press.co.uk/onc | |
dc.relation.references | Akdeniz Odemis D, Kebudi R, Bayramova J, Kilic Erciyas S, Kuru Turkcan G, Tuncer SB, et al. RB1 gene mutations and genetic spectrum in retinoblastoma cases. Medicine [Internet]. 2023;102(36). Available from: https://journals.lww.com/md-journal/fulltext/2023/09080/rb1_gene_mutations_and_genetic_spectrum_in.8.aspx | |
dc.relation.references | Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Research [Internet]. 2014;16(2):207. Available from: https://doi.org/10.1186/bcr3652 | |
dc.relation.references | Song Y, Ming Y, and Wang G. Update value and clinical application of MUC16 (cancer antigen 125). Expert Opin Ther Targets [Internet]. 2023 Aug 3;27(8):745–56. Available from: https://doi.org/10.1080/14728222.2023.2248376 | |
dc.relation.references | World Health Organization. International Agency for Research on Cancer. Cancer today. | |
dc.relation.references | Burghes AHM, Vaessin HEF, de la Chapelle A. The Land Between Mendelian and Multifactorial Inheritance. Science (1979) [Internet]. 2001 Sep 21;293(5538):2213–4. Available from: https://doi.org/10.1126/science.1065930 | |
dc.relation.references | Kotze MJ, Hilmar K. L, Armand V. P, Karin B, Mardelle S, Lize van der M, et al. Genomic medicine and risk prediction across the disease spectrum. Crit Rev Clin Lab Sci [Internet]. 2015 May 4;52(3):120–37. Available from: https://doi.org/10.3109/10408363.2014.997930 | |
dc.relation.references | Mouabbi JA, Hassan A, Lim B, Hortobagyi GN, Tripathy D, Layman RM. Invasive lobular carcinoma: an understudied emergent subtype of breast cancer. Breast Cancer Res Treat [Internet]. 2022;193(2):253–64. Available from: https://doi.org/10.1007/s10549-022-06572-w | |
dc.relation.references | Gao JJ, Swain SM. Luminal A Breast Cancer and Molecular Assays: A Review. Oncologist [Internet]. 2018 May 1;23(5):556–65. Available from: https://doi.org/10.1634/theoncologist.2017-0535 | |
dc.relation.references | Paramita S, Raharjo EN, Niasari M, Azizah F, Hanifah NA. Luminal B is the Most Common Intrinsic Molecular Subtypes of Invasive Ductal Breast Carcinoma Patients in East Kalimantan, Indonesia. Asian Pacific Journal of Cancer Prevention [Internet]. 2019;20(8):2247–52. Available from: https://journal.waocp.org/article_88676.html | |
dc.relation.references | Corti C, Giugliano F, Nicolò E, Tarantino P, Criscitiello C, Curigliano G. HER2-Low Breast Cancer: a New Subtype? Curr Treat Options Oncol [Internet]. 2023;24(5):468–78. Available from: https://doi.org/10.1007/s11864-023-01068-1 | |
dc.relation.references | Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol [Internet]. 2021;72:136–45. Available from: https://www.sciencedirect.com/science/article/pii/S1044579X20301401 | |
dc.relation.references | Kemp Z, Turnbull A, Yost S, Seal S, Mahamdallie S, Poyastro-Pearson E, et al. Evaluation of Cancer-Based Criteria for Use in Mainstream BRCA1 and BRCA2 Genetic Testing in Patients With Breast Cancer. JAMA Netw Open [Internet]. 2019 May 24;2(5):e194428–e194428. Available from: https://doi.org/10.1001/jamanetworkopen.2019.4428 | |
dc.relation.references | Garrido-Castro AC, Lin NU, Polyak K. Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discov [Internet]. 2019 Feb 8;9(2):176–98. Available from: https://doi.org/10.1158/2159-8290.CD-18-1177 | |
dc.relation.references | Loizidou MA, Cariolou MA, Neuhausen SL, Newbold RF, Bashiardes E, Marcou Y, et al. Genetic variation in genes interacting with BRCA1/2 and risk of breast cancer in the Cypriot population. Breast Cancer Res Treat [Internet]. 2010;121(1):147–56. Available from: https://doi.org/10.1007/s10549-009-0518-7 | |
dc.relation.references | Ding R, Liu Q, Yu J, Wang Y, Gao H, Kan H, et al. Identification of Breast Cancer Subtypes by Integrating Genomic Analysis with the Immune Microenvironment. ACS Omega [Internet]. 2023 Apr 4;8(13):12217–31. Available from: https://doi.org/10.1021/acsomega.2c08227 | |
dc.relation.references | Mares-Quiñones MD, Galán-Vásquez E, Pérez-Rueda E, Pérez-Ishiwara DG, Medel-Flores MO, Gómez-García M del C. Identification of modules and key genes associated with breast cancer subtypes through network analysis. Sci Rep [Internet]. 2024;14(1):12350. Available from: https://doi.org/10.1038/s41598-024-61908-4 | |
dc.relation.references | Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res [Internet]. 2022 Jul 5;50(W1):W216–21. Available from: https://doi.org/10.1093/nar/gkac194 | |
dc.relation.references | Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc [Internet]. 2009;4(1):44–57. Available from: https://doi.org/10.1038/nprot.2008.211 | |
dc.relation.references | Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet [Internet]. 2007;39(2):165–7. Available from: https://doi.org/10.1038/ng1959 | |
dc.relation.references | Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet [Internet]. 2016 Dec 1;53(12):800. Available from: http://jmg.bmj.com/content/53/12/800.abstract | |
dc.relation.references | Cybulski C, Kluźniak W, Huzarski T, Wokołorczyk D, Kashyap A, Jakubowska A, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol [Internet]. 2015 Jun 1;16(6):638–44. Available from: https://doi.org/10.1016/S1470-2045(15)70142-7 | |
dc.relation.references | Thompson ER, Gorringe KL, Rowley SM, Wong-Brown MW, McInerny S, Li N, et al. Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls. Breast Cancer Research [Internet]. 2015;17(1):111. Available from: https://doi.org/10.1186/s13058-015-0627-7 | |
dc.relation.references | Zheng Y, Zhang J, Niu Q, Huo D, Olopade OI. Novel germline PALB2 truncating mutations in African American breast cancer patients. Cancer [Internet]. 2012 Mar 1;118(5):1362–70. Available from: https://doi.org/10.1002/cncr.26388 | |
dc.relation.references | Catucci I, Peterlongo P, Ciceri S, Colombo M, Pasquini G, Barile M, et al. PALB2 sequencing in Italian familial breast cancer cases reveals a high-risk mutation recurrent in the province of Bergamo. Genetics in Medicine [Internet]. 2014;16(9):688–94. Available from: https://www.sciencedirect.com/science/article/pii/S1098360021048917 | |
dc.relation.references | Blanco A, de la Hoya M, Balmaña J, Ramón y Cajal T, Teulé A, Miramar MD, et al. Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat [Internet]. 2012;132(1):307–15. Available from: https://doi.org/10.1007/s10549-011-1842-2 | |
dc.relation.references | Laurent C, Nicolae A, Laurent C, Le Bras F, Haioun C, Fataccioli V, et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant–associated ALCL. Blood [Internet]. 2020 Jan 30;135(5):360–70. Available from: https://doi.org/10.1182/blood.2019001904 | |
dc.relation.references | BenAyed-Guerfali D, Kifagi C, BenKridis-Rejeb W, Ammous-Boukhris N, Ayedi W, Khanfir A, et al. The Identification by Exome Sequencing of Candidate Genes in BRCA-Negative Tunisian Patients at a High Risk of Hereditary Breast/Ovarian Cancer. Genes (Basel) [Internet]. 2022;13(8). Available from: https://www.mdpi.com/2073-4425/13/8/1296 | |
dc.relation.references | Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet [Internet]. 2017 Oct 25;13(10):e1006864-. Available from: https://doi.org/10.1371/journal.pgen.1006864 | |
dc.relation.references | Telesco SE, Vadigepalli R, Radhakrishnan R. Molecular modeling of ErbB4/HER4 kinase in the context of the HER4 signaling network helps rationalize the effects of clinically identified HER4 somatic mutations on the cell phenotype. Biotechnol J [Internet]. 2013 Dec 1;8(12):1452–64. Available from: https://doi.org/10.1002/biot.201300022 | |
dc.relation.references | Lakshmanan I, Ponnusamy MP, Das S, Chakraborty S, Haridas D, Mukhopadhyay P, et al. MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene [Internet]. 2012;31(7):805–17. Available from: https://doi.org/10.1038/onc.2011.297 | |
dc.relation.references | Winham SJ, Wang C, Heinzen EP, Bhagwate A, Liu Y, McDonough SJ, et al. Somatic mutations in benign breast disease tissues and association with breast cancer risk. BMC Med Genomics [Internet]. 2021;14(1):185. Available from: https://doi.org/10.1186/s12920-021-01032-8 | |
dc.relation.references | Chaudhary S, Appadurai MI, Maurya SK, Nallasamy P, Marimuthu S, Shah A, et al. MUC16 promotes triple-negative breast cancer lung metastasis by modulating RNA-binding protein ELAVL1/HUR. Breast Cancer Research [Internet]. 2023;25(1):25. Available from: https://doi.org/10.1186/s13058-023-01630-7 | |
dc.relation.references | Chen X, Li X, Wang X, Zhu Q, Wu X, Wang X. MUC16 impacts tumor proliferation and migration through cytoplasmic translocation of P120-catenin in epithelial ovarian cancer cells: an original research. BMC Cancer [Internet]. 2019;19(1):171. Available from: https://doi.org/10.1186/s12885-019-5371-4 | |
dc.relation.references | Zhang B, Horvath S. A General Framework for Weighted Gene Co-Expression Network Analysis. 2005;4(1). Available from: https://doi.org/10.2202/1544-6115.1128 | |
dc.relation.references | Graffeo R, Rana HQ, Conforti F, Bonanni B, Cardoso MJ, Paluch-Shimon S, et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. The Breast [Internet]. 2022;65:32–40. Available from: https://www.sciencedirect.com/science/article/pii/S0960977622001047 | |
dc.relation.references | Shanazarov N, Zhapparov Y, Kumisbekova R, Turzhanova D, Zulkhash N. Association of Gene Polymorphisms with Breast Cancer Risk in the Kazakh Population. Asian Pacific Journal of Cancer Prevention [Internet]. 2023;24(12):4195–207. Available from: https://journal.waocp.org/article_90930.html | |
dc.relation.references | Fletcher O, Johnson N, dos Santos Silva I, Orr N, Ashworth A, Nevanlinna H, et al. Missense Variants in ATM in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer Epidemiology, Biomarkers & Prevention [Internet]. 2010 Sep 8;19(9):2143–51. Available from: https://doi.org/10.1158/1055-9965.EPI-10-0374 | |
dc.relation.references | West AH, Blazer KR, Stoll J, Jones M, Weipert CM, Nielsen SM, et al. Clinical interpretation of pathogenic ATM and CHEK2 variants on multigene panel tests: navigating moderate risk. Fam Cancer [Internet]. 2018;17(4):495–505. Available from: https://doi.org/10.1007/s10689-018-0070-x | |
dc.relation.references | da Costa e Silva Carvalho S, Cury NM, Brotto DB, de Araujo LF, Rosa RCA, Texeira LA, et al. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genomics [Internet]. 2020;13(1):21. Available from: https://doi.org/10.1186/s12920-019-0652-y | |
dc.relation.references | Cox DG, Simard J, Sinnett D, Hamdi Y, Soucy P, Ouimet M, et al. Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Hum Mol Genet [Internet]. 2011 Dec 1;20(23):4732–47. Available from: https://doi.org/10.1093/hmg/ddr388 | |
dc.relation.references | Solodskikh SA, Panevina A V, Gryaznova M V, Gureev AP, Serzhantova O V, Mikhailov AA, et al. Targeted sequencing to discover germline variants in the BRCA1 and BRCA2 genes in a Russian population and their association with breast cancer risk. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis [Internet]. 2019;813:51–7. Available from: https://www.sciencedirect.com/science/article/pii/S0027510718301532 | |
dc.relation.references | Wang X, Levin AM, Smolinski SE, Vigneau FD, Levin NK, Tainsky MA. Breast cancer and other neoplasms in women with neurofibromatosis type 1: A retrospective review of cases in the Detroit metropolitan area. Am J Med Genet A [Internet]. 2012 Dec 1;158A(12):3061–4. Available from: https://doi.org/10.1002/ajmg.a.35560 | |
dc.relation.references | Suarez-Kelly LP, Yu L, Kline D, Schneider EB, Agnese DM, Carson WE. Increased breast cancer risk in women with neurofibromatosis type 1: a meta-analysis and systematic review of the literature. Hered Cancer Clin Pract [Internet]. 2019;17(1):12. Available from: https://doi.org/10.1186/s13053-019-0110-z | |
dc.relation.references | Wang X, Kallionpää RA, Gonzales PR, Chitale DA, Tousignant RN, Crowley JP, et al. Germline and Somatic NF1 Alterations Are Linked to Increased HER2 Expression in Breast Cancer. Cancer Prevention Research [Internet]. 2018 Oct 2;11(10):655–64. Available from: https://doi.org/10.1158/1940-6207.CAPR-18-0072 | |
dc.relation.references | House R (Rae) J, Tovar EA, Redlon LN, Essenburg CJ, Dischinger PS, Ellis AE, et al. NF1 deficiency drives metabolic reprogramming in ER+ breast cancer. Mol Metab [Internet]. 2024;80:101876. Available from: https://www.sciencedirect.com/science/article/pii/S2212877824000073 | |
dc.relation.references | Dischinger PS, Tovar EA, Essenburg CJ, Madaj ZB, Gardner EE, Callaghan ME, et al. NF1 deficiency correlates with estrogen receptor signaling and diminished survival in breast cancer. NPJ Breast Cancer [Internet]. 2018;4(1):29. Available from: https://doi.org/10.1038/s41523-018-0080-8 | |
dc.relation.references | Duriseti S, Winnard PT, Mironchik Y, Vesuna F, Raman A, Raman V. HOXA5 Regulates hMLH1 Expression in Breast Cancer Cells. Neoplasia [Internet]. 2006;8(4):250–8. Available from: https://www.sciencedirect.com/science/article/pii/S1476558606800643 | |
dc.relation.references | Bianchi F, Raponi M, Piva F, Viel A, Bearzi I, Galizia E, et al. An intronic mutation in MLH1 associated with familial colon and breast cancer. Fam Cancer [Internet]. 2011;10(1):27–35. Available from: https://doi.org/10.1007/s10689-010-9371-4 | |
dc.relation.references | Lee SE, Lee HS, Kim KY, Park JH, Roh H, Park HY, et al. High prevalence of the MLH1 V384D germline mutation in patients with HER2-positive luminal B breast cancer. Sci Rep [Internet]. 2019;9(1):10966. Available from: https://doi.org/10.1038/s41598-019-47439-3 | |
dc.relation.references | Petersen SM, Dandanell M, Rasmussen LJ, Gerdes AM, Krogh LN, Bernstein I, et al. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients. BMC Med Genet [Internet]. 2013;14(1):103. Available from: https://doi.org/10.1186/1471-2350-14-103 | |
dc.relation.references | Thomsen M, Nordestgaard BG, Tybjærg-Hansen A, Bojesen SE. Splice site mutations in mismatch repair genes and risk of cancer in the general population. Fam Cancer [Internet]. 2013;12(3):567–72. Available from: https://doi.org/10.1007/s10689-013-9601-7 | |
dc.relation.references | Landry KK, Seward DJ, Dragon JA, Slavik M, Xu K, McKinnon WC, et al. Investigation of discordant sibling pairs from hereditary breast cancer families and analysis of a rare PMS1 variant. Cancer Genet [Internet]. 2022;260–261:30–6. Available from: https://www.sciencedirect.com/science/article/pii/S2210776221002234 | |
dc.relation.references | Winn JS, Hasse Z, Slifker M, Pei J, Arisi-Fernandez SM, Talarchek JN, et al. Genetic Variants Detected Using Cell-Free DNA from Blood and Tumor Samples in Patients with Inflammatory Breast Cancer. Int J Mol Sci [Internet]. 2020;21(4). Available from: https://www.mdpi.com/1422-0067/21/4/1290 | |
dc.relation.references | Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett [Internet]. 2021;516:73–83. Available from: https://www.sciencedirect.com/science/article/pii/S0304383521002512 | |
dc.relation.references | Romanowicz H, Strapagiel D, Słomka M, Sobalska-Kwapis M, Kępka E, Siewierska-Górska A, et al. New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients. Clin Exp Med [Internet]. 2017;17(4):541–6. Available from: https://doi.org/10.1007/s10238-016-0441-2 | |
dc.relation.references | Svyatova G, Berezina G, Urazbayeva G, Murtazaliyeva A. Frequencies of Diagnostically Significant Polymorphisms of Hereditary Breast Cancer Forms in BRCA1 and BRCA2 Genes in the Kazakh Population. Asian Pacific Journal of Cancer Prevention [Internet]. 2023;24(11):3899–907. Available from: https://journal.waocp.org/article_90909.html | |
dc.relation.references | González-Hormazábal P, Bravo T, Blanco R, Valenzuela CY, Gómez F, Waugh E, et al. Association of common ATMvariants with familial breast cancer in a South American population. BMC Cancer [Internet]. 2008;8(1):117. Available from: https://doi.org/10.1186/1471-2407-8-117 | |
dc.relation.references | Estiar MA, Mehdipour P. ATM in breast and brain tumors: a comprehensive review. Cancer Biol Med [Internet]. 2018 Aug 1;15(3):210. Available from: http://www.cancerbiomed.org/content/15/3/210.abstract | |
dc.relation.references | Concannon P, Haile RW, Børresen-Dale AL, Rosenstein BS, Gatti RA, Teraoka SN, et al. Variants in the ATM Gene Associated with a Reduced Risk of Contralateral Breast Cancer. Cancer Res [Internet]. 2008 Aug 12;68(16):6486–91. Available from: https://doi.org/10.1158/0008-5472.CAN-08-0134 | |
dc.relation.references | Yue LL, Wang FC, Zhang ML, Liu D, Chen P, Mei QB, et al. Association of ATM and BMI-1 genetic variation with breast cancer risk in Han Chinese. J Cell Mol Med [Internet]. 2018 Jul 1;22(7):3671–8. Available from: https://doi.org/10.1111/jcmm.13650 | |
dc.relation.references | Ghimenti C, Sensi E, Presciuttini S, Brunetti IM, Conte P, Bevilacqua G, et al. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer [Internet]. 2002 Mar 1;33(3):235–42. Available from: https://doi.org/10.1002/gcc.1223 | |
dc.relation.references | De Brakeleer S, De Grève J, Desmedt C, Joris S, Sotiriou C, Piccart M, et al. Frequent incidence of -truncating mutations in germline DNA from triple-negative breast cancer patients. Clin Genet [Internet]. 2016 Mar 1;89(3):336–40. Available from: https://doi.org/10.1111/cge.12620 | |
dc.relation.references | Wu J, Aini A, Ma B. Mutations in exon region of BRCA1-related RING domain 1 gene and risk of breast cancer. Mol Genet Genomic Med [Internet]. 2022 Mar 1;10(3):e1847. Available from: https://doi.org/10.1002/mgg3.1847 | |
dc.relation.references | Alblihy A, Ali R, Algethami M, Shoqafi A, Toss MS, Brownlie J, et al. Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers. NPJ Precis Oncol [Internet]. 2022;6(1):51. Available from: https://doi.org/10.1038/s41698-022-00298-0 | |
dc.relation.references | Fletcher O, Johnson N, dos Santos Silva I, Orr N, Ashworth A, Nevanlinna H, et al. Missense Variants in ATM in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer Epidemiology, Biomarkers & Prevention [Internet]. 2010 Sep 8;19(9):2143–51. Available from: https://doi.org/10.1158/1055-9965.EPI-10-0374 | |
dc.relation.references | Dalal Amandi AR, Jabbarpour N, Shiva S, Bonyadi M. Identification of Two Novel Pathogenic Variants of the ATM Gene in the Iranian-Azeri Turkish Ethnic Group by Applying Whole Exome Sequencing. Curr Genomics. 2023 Nov 30;24(6):345–53. | |
dc.relation.references | Qian D, Liu H, Zhao L, Luo S, Walsh KM, Huang J, et al. A pleiotropic ATM variant (rs1800057 C>G) is associated with risk of multiple cancers. Carcinogenesis [Internet]. 2022 Jan 1;43(1):60–6. Available from: https://doi.org/10.1093/carcin/bgab092 | |
dc.relation.references | Mehmood A, Mahmood Akhtar K, Malik Waqar A, Asif N, and Mahjabeen I. Association between single nucleotide polymorphisms of DNA damage response pathway genes and increased risk in breast cancer. Future Oncology [Internet]. 2020 Sep 1;16(26):1977–95. Available from: https://doi.org/10.2217/fon-2020-0086 | |
dc.relation.references | Blanco A, de la Hoya M, Osorio A, Diez O, Miramar MD, Infante M, et al. Analysis of PALB2 Gene in BRCA1/BRCA2 Negative Spanish Hereditary Breast/Ovarian Cancer Families with Pancreatic Cancer Cases. PLoS One [Internet]. 2013 Jul 23;8(7):e67538-. Available from: https://doi.org/10.1371/journal.pone.0067538 | |
dc.relation.references | Hofstatter EW, Domchek SM, Miron A, Garber J, Wang M, Componeschi K, et al. PALB2 mutations in familial breast and pancreatic cancer. Fam Cancer [Internet]. 2011;10(2):225–31. Available from: https://doi.org/10.1007/s10689-011-9426-1 | |
dc.relation.references | Catucci I, Milgrom R, Kushnir A, Laitman Y, Paluch-Shimon S, Volorio S, et al. Germline mutations in BRIP1 and PALB2 in Jewish high cancer risk families. Fam Cancer [Internet]. 2012;11(3):483–91. Available from: https://doi.org/10.1007/s10689-012-9540-8 | |
dc.relation.references | Sluiter M, Mew S, van Rensburg EJ. PALB2 sequence variants in young South African breast cancer patients. Fam Cancer [Internet]. 2009;8(4):347–53. Available from: https://doi.org/10.1007/s10689-009-9241-0 | |
dc.relation.references | Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet [Internet]. 2019 Nov 21;28(R2):R133–42. Available from: https://doi.org/10.1093/hmg/ddz187 | |
dc.relation.references | Sahoo OS, Aidasani H, Nayek A, Tripathi S, Talukdar J, Gul A, et al. Role of next-generation sequencing in revolutionizing healthcare for cancer management. MedComm – Future Medicine [Internet]. 2024 Dec 1;3(4):e70001. Available from: https://doi.org/10.1002/mef2.70001 | |
dc.relation.references | Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting Individualized Probabilities of Developing Breast Cancer for White Females Who Are Being Examined Annually. JNCI: Journal of the National Cancer Institute [Internet]. 1989 Dec 20;81(24):1879–86. Available from: https://doi.org/10.1093/jnci/81.24.1879 | |
dc.relation.references | Huang S, Xu JT, Yang M. Review: Predictive approaches to breast cancer risk. Heliyon [Internet]. 2023 Nov 1;9(11). Available from: https://doi.org/10.1016/j.heliyon.2023.e21344 | |
dc.relation.references | Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, et al. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther [Internet]. 2024;9(1):149. Available from: https://doi.org/10.1038/s41392-024-01848-7 | |
dc.relation.references | Wang Y, Zhu M, Ma H, Shen H. Polygenic risk scores: the future of cancer risk prediction, screening, and precision prevention. 2021;1(2):129–49. Available from: https://doi.org/10.1515/mr-2021-0025 | |
dc.relation.references | Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. The American Journal of Human Genetics [Internet]. 2019;104(1):21–34. Available from: https://www.sciencedirect.com/science/article/pii/S0002929718304051 | |
dc.relation.references | Lewis ACF, Perez EF, Prince AER, Flaxman HR, Gomez L, Brockman DG, et al. Patient and provider perspectives on polygenic risk scores: implications for clinical reporting and utilization. Genome Med [Internet]. 2022;14(1):114. Available from: https://doi.org/10.1186/s13073-022-01117-8 | |
dc.relation.references | Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature [Internet]. 2017;551(7678):92–4. Available from: https://doi.org/10.1038/nature24284 | |
dc.relation.references | Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet [Internet]. 2017;49(12):1767–78. Available from: https://doi.org/10.1038/ng.3785 | |
dc.relation.references | Kachuri L, Graff RE, Smith-Byrne K, Meyers TJ, Rashkin SR, Ziv E, et al. Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat Commun [Internet]. 2020;11(1):6084. Available from: https://doi.org/10.1038/s41467-020-19600-4 | |
dc.relation.references | Mason MJ, Fan G, Plath K, Zhou Q, Horvath S. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics [Internet]. 2009;10(1):327. Available from: https://doi.org/10.1186/1471-2164-10-327 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
dc.subject.decs | Neoplasias de la Mama | spa |
dc.subject.decs | Breast Neoplasms | eng |
dc.subject.decs | Secuenciación del Exoma | spa |
dc.subject.decs | Exome Sequencing | eng |
dc.subject.decs | Secuenciación Completa del Genoma | spa |
dc.subject.decs | Whole Genome Sequencing | eng |
dc.subject.decs | Análisis Mutacional de ADN | spa |
dc.subject.decs | DNA Mutational Analysis | eng |
dc.subject.decs | Variaciones en el Número de Copia de ADN | spa |
dc.subject.decs | DNA Copy Number Variations | eng |
dc.subject.proposal | Variantes germinales | spa |
dc.subject.proposal | Susceptibilidad al cáncer | spa |
dc.subject.proposal | Secuenciación de exoma completo (WES) | spa |
dc.subject.proposal | Subtipos moleculares de cáncer de mama | spa |
dc.subject.proposal | Weighted Gene Correlation Network Analysis (WGCNA) | eng |
dc.subject.proposal | Germline variants | eng |
dc.subject.proposal | Cancer susceptibility | eng |
dc.subject.proposal | Whole exome sequencing (WES) | eng |
dc.subject.proposal | Breast cancer molecular subtypes | eng |
dc.title | Identificación de variantes germinales en 63 genes de susceptibilidad al cáncer en mujeres colombianas con cáncer de mama no seleccionado | spa |
dc.title.translated | Identification of germline variants in 63 cancer susceptibility genes in unselected colombian women with breas cancer | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Medios de comunicación | |
dcterms.audience.professionaldevelopment | Público general | |
dcterms.audience.professionaldevelopment | Responsables políticos | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis. Identificación de variantes germinales en 63 genes de susceptibilidad al cáncer en mujeres colombianas con cáncer de mama no seleccionado..pdf
- Tamaño:
- 6.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Genética Humana
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: