Identificación y asociación de polimorfismos de Toll-Like Receptor 3 con el desarrollo de Leishmaniasis mucosa frente a la coinfección Leishmania spp. – Leishmania RNA Virus 1

dc.contributor.advisorEcheverry Gaitán, María Claraspa
dc.contributor.advisorCadavid Gutiérrez, Luis Fernandospa
dc.contributor.authorVargas León, Carolina Maríaspa
dc.contributor.researchgroupInfecciones y Salud en El Trópicospa
dc.date.accessioned2022-01-11T21:18:30Z
dc.date.available2022-01-11T21:18:30Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa leishmaniasis es una enfermedad de transmisión vectorial producida por parásitos del género Leishmania. Esta enfermedad presenta tres manifestaciones clínicas: Leishmaniasis cutánea (LC), Leishmaniasis mucosa (LM) y Leishmaniasis visceral. LC se caracteriza por la aparición de pápulas y úlceras en la piel, mientras LM está dada por la aparición de úlceras en la cavidad oral o nasofaríngea; LM suele estar antecedida por LC, por lo que algunos autores consideran la LM como una progresión o complicación de la enfermedad. Si bien las razones por las cuales se produce LM aún no son del todo claras, se ha evidenciado que la presencia de Leishmania RNA Virus 1 (LRV1) en la cepa infectante de Leishmania se asocia con el desarrollo de LM, se ha planteado que el reconocimiento de LRV1 por el receptor de reconocimiento de patrones (PRR) endosomal Toll-like receptor 3 (TLR3) induce la activación de una respuesta inmune antiviral que favorece la persistencia y diseminación del parásito en el hospedero. El gen que codifica para TLR3 presenta varios polimorfismos de único nucleótido (SNPs) que se han visto asociados a resistencia o susceptibilidad frente a diversas infecciones virales. La presente investigación evaluó si los SNPs de TLR3 en población colombiana se asocian con el desarrollo de LM, ya sea en contexto de infección simple por Leishmania spp. o en coinfección Leishmania spp. – LRV1. Se efectuó un estudio retrospectivo de casos y controles, en donde se genotipificaron los exones 2, 3 y 4 del gen TLR3. Se analizó la presencia de polimorfismos en este grupo de exones en una población colombiana compuesta por 60 controles (muestras de pacientes diagnosticados con LC y sin complicación mucosa) y 27 casos (muestras de pacientes diagnosticados con LM) y mediante comparación de las frecuencias alélicas y genotípicas en cada grupo se evaluó la potencial asociación entre los SNPs y el desenlace clínico de la enfermedad. Adicionalmente, se evaluaron otras variables que pudiesen asociarse con el desarrollo de LM como lo son: sexo, edad, tratamiento, entre otras, y se evaluó la estructura génica de TLR3 en la población colombiana; para esta última, se contrastó con la estructura génica de otras poblaciones a nivel mundial como población europea, asiática y africana, además de analizar su comportamiento en un contexto local, al contrastar los resultados obtenidos con población latinoamericana. Se observaron cuatro polimorfismos en la muestra de estudio, un SNP en el exón 2 del gen, en la región codificante para 5’UTR (rs3775296), y tres SNPs en el exón 4: dos mutaciones sinónimas (rs764010322 y rs3775290) y una mutación no sinónima (rs3775291) que induce la variación L412F en la proteína. No se encontró ninguna asociación entre estos cuatro SNPs y el desarrollo de LM al evaluarlo en contexto de infección simple ni en coinfección. Tras analizar la estructura poblacional de la muestra colombiana aquí estudiada, se encontró que el comportamiento de rs3775296, en el exón 2, y rs3775291, en el exón 4, es muy similar a lo reportado en otras poblaciones a nivel mundial (p>0,05). Por el contrario, la distribución de frecuencias de los polimorfismos rs764010322 y rs3775291 del exón 4, si evidenció diferencias significativas frente a otras poblaciones (p<0,001). Estas diferencias están dadas porque, para la variación rs764010322, se evidenció una mayor frecuencia de aparición de ésta variación en la muestra de estudio que en otras poblaciones a nivel global y para rs3775291, se presentó la ausencia de uno de los tres alelos posibles que se han reportado para esta variación. Finalmente, se analizaron otras variables que pudieran estar asociadas con el desarrollo de la LM y se ratificó la asociación entre está y la presencia de LRV1+ y con la variable tratamiento para LC. (Texto tomado de la fuente).spa
dc.description.abstractLeishmaniasis is a vector-borne disease produced by Leishmania parasites with three main clinical forms of the disease, cutaneous (CL), mucosal (ML), and visceral Leishmaniasis. CL causes skin lesions, papules, and ulcers, while ML causes ulcerative lesions on nasal and oropharyngeal mucosa. Usually, ML is preceded by CL, and some authors refer to it as a metastatic progression of the disease. The causes of ML remain unknown, although the presence of Leishmania RNA virus 1 (LRV1) in the parasite has been associated with the development of ML. Indeed, it has been suggested that the recognition of LRV1 by the endosomal pattern recognition receptor (PRR) TLR3 induces an antiviral response that allows the parasite’s persistence and dissemination in the host. TLR3 gene has several single nucleotide polymorphisms (SNPs) associated with resistance or susceptibility to viral infectious diseases. This work evaluated whether TLR3 SNPs are associated with ML development in infection produced by Leishmania spp. or Leishmania spp-LRV1 co-infection. The study was designed as a case-control study and TLR3 exons 2, 3, and 4 were genotyped. The presence of SNPs on TLR3 was analyzed in a Colombian population of 60 controls (CL diagnosed patients without mucosal compromise) and 27 cases (ML diagnosed patients) and the potential association between the SNPs and the clinical outcome were evaluated by comparing the allelic and genotypic frequencies for those SNPs. Other variables that could be associated with ML were also evaluated: sex, age, and treatment, among others; the genetic structure of TLR3 in the Colombian population in the context of other populations genotypes and haplotypes such as European, African, Asian, and Latin-American. Four SNPs were found between the studied sample: one exon 2, in the 5’UTR region (rs3775296), and three on exon 4 [two synonym mutations (rs764010322 y rs3775290) and one non-synonym mutation (rs3775291) that produced the L412F change in the protein]. There was no association observed between the found SNPs and the development of ML. The genetic population structure shows that rs3775296, on exon 2, and rs3775291, on exon 4, had a similar frequency to the world populations analyzed (p>0,05) while rs764010322 and rs3775291 had a significantly different frequency to world populations (p<0,001). Those differences are due to a higher frequency of rs764010322 variation and to the absence of one of the three possible alleles reported to rs3775291 into the studied population. Finally, other variables associated with the clinical development of the disease were analyzed and the association between LRV1presence and ML development was confirmed as the potential association between absent or incomplete treatment for CL event and ML appearance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.methodsLa presente investigación es un estudio de asociación genotípica, definido como un estudio descriptivo, retrospectivo de casos y controles. Para el desarrollo de este estudio se genotificó el gen TLR3 de muestra provenientes de pacientes diagnosticados con Leishmaniasis cutánea (controles) y Leishmaniasis mucosa (casos). Tras la secuenciación se identificaron SNPs de dicho gen y se efectuaron análisis de asociación a partir de la frecuencias genotípicas y alélicas evidenciadas. Adicionalmente efectuó una comparación entre el comportamiento de TLR3 en la población de estudio y otras poblaciones a nivel mundial.spa
dc.description.notesIncluye anexosspa
dc.format.extentxix, 121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80802
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Microbiologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.indexedBiremespa
dc.relation.referencesEl-Bendary, M., Neamatallah, M., Elalfy, H., Besheer, T., Elkholi, A., El-Diasty, M., Elsareef, M., Zahran, M., El-Aarag, B., Gomaa, A., Elhammady, D., El-Setouhy, M., Hegazy, A., & Esmat, G. (2018). The association of single nucleotide polymorphisms of Toll-like receptor 3, Toll-like receptor 7 and Toll-like receptor 8 genes with the susceptibility to HCV infection. British Journal of Biomedical Science, 75(4), 175–181. https://doi.org/10.1080/09674845.2018.1492186spa
dc.relation.referencesEngin, A., Arslan, S., Özbilüm, N., & Bakir, M. (2016). Is there any relationship between Toll-like receptor 3 c.1377C/T and −7C/A polymorphisms and susceptibility to Crimean Congo hemorrhagic fever? Journal of Medical Virology. https://doi.org/10.1002/jmv.24519spa
dc.relation.referencesEren, R. O., Reverte, M., Rossi, M., Hartley, M. A., Castiglioni, P., Prevel, F., Martin, R., Desponds, C., Lye, L. F., Drexler, S. K., Reith, W., Beverley, S. M., Ronet, C., & Fasel, N. (2016). Mammalian Innate Immune Response to a Leishmania-Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host and Microbe, 20(3), 318–328. https://doi.org/10.1016/j.chom.2016.08.001spa
dc.relation.referencesEshleman, E. M., Delgado, C., Kearney, S. J., Friedman, R. S., & Lenz, L. L. (2017). Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection. PLOS Pathogens, 13(5), e1006388. https://doi.org/10.1371/JOURNAL.PPAT.1006388spa
dc.relation.referencesFahey, T. J., Tracey, K. J., Tekamp-Olson, P., Cousens, L. S., Jones, W. G., Shires, G. T., Cerami, A., & Sherry, B. (1992). Macrophage inflammatory protein 1 modulates macrophage function. Journal of Immunology (Baltimore, Md. : 1950), 148(9), 2764–2769. http://www.ncbi.nlm.nih.gov/pubmed/1573267spa
dc.relation.referencesFairn, G. D., & Grinstein, S. (2012). How nascent phagosomes mature to become phagolysosomes. Trends in Immunology, 33(8), 397–405. https://doi.org/10.1016/j.it.2012.03.003spa
dc.relation.referencesFan, L., Zhou, P., Hong, Q., Chen, A.-X., Liu, G.-Y., Yu, K.-D., & Shao, Z.-M. (2019). Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. https://doi.org/10.1080/2162402X.2019.1593801spa
dc.relation.referencesFaraoni, I., Antonetti, F. R., Cardone, J., & Bonmassar, E. (2009). miR-155 gene: A typical multifunctional microRNA. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1792, Issue 6, pp. 497–505). Elsevier. https://doi.org/10.1016/j.bbadis.2009.02.013spa
dc.relation.referencesFerro, C., López, M., Fuya, P., Lugo, L., Manuel Cordovez, J., & González, C. (2015). Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia. https://doi.org/10.1371/journal.pone.0139391spa
dc.relation.referencesFilardy, A. A., Costa-Da-Silva, A. C., Koeller, C. M., Guimarães-Pinto, K., Ribeiro-Gomes, F. L., Lopes, M. F., Heise, N., Freire-De-Lima, C. G., Nunes, M. P., & DosReis, G. A. (2014). Infection with Leishmania major induces a cellular stress response in macrophages. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0085715spa
dc.relation.referencesFischer, J., Koukoulioti, E., Schott, E., Fülöp, B., Heyne, R., Berg, T., & Bömmel, F. van. (2018). Polymorphisms in the Toll-like receptor 3 ( TLR3) gene are associated with the natural course of hepatitis B virus infection in Caucasian population. Scientific Reports 2018 8:1, 8(1), 1–8. https://doi.org/10.1038/s41598-018-31065-6spa
dc.relation.referencesFox, J., & Bouchet-Valat, M. (2019). Rcmdr: R Commander. R package version 2.5-2. https://cran.r-project.org/web/packages/Rcmdr/Rcmdr.pdfspa
dc.relation.referencesGeng, P. L., Song, L. X., An, H., Huang, J. Y., Li, S., & Zeng, X. T. (2016). Toll-like receptor 3 is associated with the risk of HCV infection and HBV-related diseases. In Medicine (United States) (Vol. 95, Issue 21). Lippincott Williams and Wilkins. https://doi.org/10.1097/MD.0000000000002302spa
dc.relation.referencesMukherjee, Suprabhat, Huda, S., & Sinha Babu, S. P. (2019). Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian Journal of Immunology, 90(1), 1–18. https://doi.org/10.1111/sji.12771spa
dc.relation.referencesMüller, K., Zandbergen, G., Hansen, B., Laufs, H., Jahnke, N., Solbach, W., & Laskay, T. (2001). Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice. Medical Microbiology and Immunology, 190(1–2), 73–76. https://doi.org/10.1007/s004300100084spa
dc.relation.referencesMuñoz, G., & Davies, C. R. (2006). Leishmania panamensis transmission in the domestic environment: the results of a prospective epidemiological survey in Santander, Colombia. Biomédica, 26, 131–144. https://doi.org/10.7705/BIOMEDICA.V26I1.1507spa
dc.relation.referencesMurray, H. W. (2002). Kala-azar - Progress against a neglected disease. In New England Journal of Medicine (Vol. 347, Issue 22, pp. 1793–1794). https://doi.org/10.1056/NEJMe020133spa
dc.relation.referencesMurray, R. K., Kennelly, P. J., Bender, D. A., Rodwell, V. W., Botham, K. M., & Weil, P. A. (2013). Harper, Bioquímica ilustrada (2da edició). McGraw Hill.spa
dc.relation.referencesNahum, A., Dadi, H., Bates, A., & Roifman, C. M. (2011). The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. Journal of Allergy and Clinical Immunology, 127(2), 528–531. https://doi.org/10.1016/j.jaci.2010.09.03spa
dc.relation.referencesNares, S., & Wahl, S. (2005). Monocytes and Macrophages. In Measuring Immunity: Basic Biology and Clinical Assessment (pp. 299–311). Academic Press. https://doi.org/10.1016/B978-012455900-4/50287-7spa
dc.relation.referencesNCBI. (2018). ClinVar; [VCV000792634.2]. https://www.ncbi.nlm.nih.gov/clinvar/variation/792634/spa
dc.relation.referencesNCBI. (2020). TLR3 toll like receptor 3 [ Homo sapiens (human) ] Gene ID: 7098. https://www.ncbi.nlm.nih.gov/gene/7098spa
dc.relation.referencesOgg, M. M., Carrion, R., Botelho, A. C. de C., Mayrink, W., Correa-Oliveira, R., & Patterson, J. L. (2003). Short report: quantification of leishmaniavirus RNA in clinical samples and its possible role in pathogenesis. The American Journal of Tropical Medicine and Hygiene, 69(3), 309–313. http://www.ncbi.nlm.nih.gov/pubmed/14628949spa
dc.relation.referencesOkonechnikov, K., Golosova, O., & M, F. (2012). Unipro UGENE: a unified bioinformatics toolkit (38.1). Bioinformatics. https://doi.org/10.1093/bioinformatics/bts091spa
dc.relation.referencesOlivier, M. (2011). Host-pathogen interaction: Culprit within a culprit. Nature, 471(7337), 173–174. https://doi.org/10.1038/471173aspa
dc.relation.referencesOrganización Panamericana de la Salud. (2020). Leishmaniasis: Informe epidemiológico de las Américas. Núm. 9, diciembre del 2020. (Vol. 9). https://iris.paho.org/handle/10665.2/51742spa
dc.relation.referencesOvalle-Bracho, C., Camargo, C., Díaz-Toro, Y., & Parra-Muñoz, M. (2018). Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study. Biomédica, 38(1), 86–95. https://doi.org/10.7705/BIOMEDICA.V38I0.3632spa
dc.relation.referencesParra-Muñoz, M., Aponte, S., Ovalle-Bracho, C., Saavedra, C., & Echeverry, M. C. (2021). Detection of Leishmania RNA Virus in Clinical Samples from Cutaneous Leishmaniasis Patients Varies according to the Type of Sample. The American Journal of Tropical Medicine and Hygiene, 104(1), 233–239. https://doi.org/10.4269/ajtmh.20-0073spa
dc.relation.referencesPauwels, A. M., Trost, M., Beyaert, R., & Hoffmann, E. (2017). Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. In Trends in Immunology (Vol. 38, Issue 6, pp. 407–422). Elsevier Ltd. https://doi.org/10.1016/j.it.2017.03.006spa
dc.relation.referencesPazmiño, Fredy A., Parra-Muñoz, M., Saavedra, C. H., Muvdi-Arenas, S., Ovalle-Bracho, C., & Echeverry, M. C. (2021). Leishmania RNA virus is associated with the occurrence of mucosal leishmaniasis caused by species from the Leishmania Viannia subgenus. [Artículo Sometido Para Publicación En American Journal of Tropical Medicine & Hygiene].spa
dc.relation.referencesPazmiño, Fredy Alexander. (2020). Determinación de la asociación entre la presencia del Leishmaniavirus 1 (LRV-1) en parásitos infectantes de Leishmania spp y el desarrollo de la leishmaniasis mucosa en pacientes diagnosticados de leishmaniasis cutánea en Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesPerry, K., & Agabian, N. (1991). mRNA processing in the Trypanosomatidae. In Experientia (Vol. 47, Issue 2, pp. 118–128). Birkhäuser-Verlag. https://doi.org/10.1007/BF01945412spa
dc.relation.referencesPhan, L., Jin, Y., Zhang, H., Qiang, W., Shekhtman, E., Shao, D., Revoe, ., Villamarin, R., Ivanchenko, E., Kimura, M., Wang, Z. Y., Hao, L., Sharopova, N., Bihan, M., Sturcke, A., Lee, M., Popova, N., Wu, W., Bastiani, C., … Kattman, B. L. (2020). “ALFA: Allele Frequency Aggregator.” National Center for Biotechnology Information, U.S. National Library of Medicine. https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/spa
dc.relation.referencesPoirier, V., & Av-Gay, Y. (2015). Intracellular Growth of Bacterial Pathogens: The Role of Secreted Effector Proteins in the Control of Phagocytosed Microorganisms. Microbiology Spectrum, 3(6). https://doi.org/10.1128/microbiolspec.vmbf-0003-2014spa
dc.relation.referencesQi, R., Hoose, S., Schreiter, J., Sawant, K. V, Lamb, R., Ranjith-Kumar, C. T., Mills, J., San Mateo, L., Jordan, J. L., & Cheng Kao, C. (2010). Secretion of the Human Toll-like Receptor 3 Ectodomain Is Affected by Single Nucleotide Polymorphisms and Regulated by Unc93b1. The Journal of Biological Chemistry, 285(47), 36635–36644. https://doi.org/10.1074/jbc.M110.144402spa
dc.relation.referencesRaes, G., Beschin, A., Ghassabeh, G. H., & De Baetselier, P. (2007). Alternatively activated macrophages in protozoan infections. Current Opinion in Immunology, 19(4), 454–459. https://doi.org/10.1016/j.coi.2007.05.007spa
dc.relation.referencesRanjith-Kumar, C. T., Miller, W., Sun, J., Xiong, J., Santos, J., Yarbrough, I., Lamb, R. J., Mills, J., Duffy, K. E., Hoose, S., Cunningham, M., Holzenburg, A., Mbow, M. L., Sarisky, R. T., & Kao, C. C. (2007). Effects of single nucleotide polymorphisms on toll-like receptor 3 activity and expression in cultured cells. Journal of Biological Chemistry, 282(24), 17696–17705. https://doi.org/10.1074/jbc.M700209200spa
dc.relation.referencesRayamajhi, M., Humann, J., Penheiter, K., Andreasen, K., & Lenz, L. L. (2010). Induction of IFN-αβ enables Listeria monocytogenes to suppress macrophage activation by IFN-γ. The Journal of Experimental Medicine, 207(2), 327. https://doi.org/10.1084/JEM.20091746spa
dc.relation.referencesRodríguez, G., Arenas, C., Ovalle, C., Hernández, C. A., & Camargo, C. (2016). La Leishmaniasis: Atllas y texto (C. A. Hernández (ed.)). Hospital Universitario Centro Dermatológico Federico Lleras Acosta, E.S.E.spa
dc.relation.referencesRogers, L. (1904). PRELIMINARY NOTE ON THE DEVELOPMENT OF TRYPANOSOMA IN CULTURES OF THE CUNNINGHAM-LEISHMAN-DONOVAN BODIES OF CACHEXIAL FEVER AND KALA-AZAR. The Lancet, 164(4221), 215–216. https://doi.org/10.1016/S0140-6736(01)03458-4spa
dc.relation.referencesRogers, L. (1906). Further work on the development of the hepatomonas of Kala-Azar and cachexial fever from Leishman-Donovan bodies. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 77(517), 284–293. https://doi.org/10.1098/rspb.1906.0017spa
dc.relation.referencesRoss, M. R. (1903). Further notes on leishman’s bodies. British Medical Journal, 2(2239), 1401. https://doi.org/10.1136/bmj.2.2239.1401spa
dc.relation.referencesRossi, M., Castiglioni, P., Hartley, M. A., Eren, R. O., Prével, F., Desponds, C., Utzschneider, D. T., Zehn, D., Cusi, M. G., Kuhlmann, F. M., Beverley, S. M., Ronet, C., & Fasel, N. (2017). Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proceedings of the National Academy of Sciences of the United States of America, 114(19), 4987–4992. https://doi.org/10.1073/pnas.1621447114spa
dc.relation.referencesRossi, M., & Fasel, N. (2018). How to master the host immune system? Leishmania parasites have the solutions! International Immunology, 30(3), 103–111. https://doi.org/10.1093/INTIMM/DXX075spa
dc.relation.referencesSaiz, M., Llanos-Cuentas, A., Echevarria, J., Roncal, N., Cruz, M., Muniz, M. T., Lucas, C., Wirth, D. F., Scheffter, S., Magill, A. J., & Patterson, J. L. (1998). SHORT REPORT: DETECTION OF LEISHMANIAVIRUS IN HUMAN BIOPSY SAMPLES OF LEISHMANIASIS FROM PERU. In Am. J. Trop. Med. Hyg (Vol. 58, Issue 2).spa
dc.relation.referencesSantos, C. N. O., Ribeiro, D. R., Cardoso Alves, J., Cazzaniga, R. A., Magalhães, L. S., De Souza, M. S. F., Fonseca, A. B. L., Bispo, A. J. B., Porto, R. L. S., Santos, C. A. Dos, Da Silva, Â. M., Teixeira, M. M., De Almeida, R. P., & De Jesus, A. R. (2019). Association between Zika Virus Microcephaly in Newborns with the rs3775291 Variant in Toll-Like Receptor 3 and rs1799964 Variant at Tumor Necrosis Factor-α Gene. Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiz392spa
dc.relation.referencesSassi, A., Louzir, H., Ben Salah, A., Mokni, M., Ben Osman, A., & Dellagi, K. (1999). Leishmanin skin test lymphoproliferative responses and cytokine production after symptomatic or asymptomatic Leishmania major infection in Tunisia. Clinical and Experimental Immunology, 116(1), 127–132. https://doi.org/10.1046/j.1365-2249.1999.00844.xspa
dc.relation.referencesScheffter, S. M., Ro, Y. T., Chung, I. K., & Patterson, J. L. (1995). The Complete Sequence of Leishmania RNA Virus LRV2-1, a Virus of an Old World Parasite Strain. Virology, 212(1), 84–90. https://doi.org/10.1006/viro.1995.1456spa
dc.relation.referencesScheffter, S., Widmer, G., & Patterson, J. L. (1994). Complete Sequence of Leishmania RNA Virus 1-4 and Identification of Conserved Sequences. Virology, 199(2), 479–483. https://doi.org/10.1006/viro.1994.1149spa
dc.relation.referencesSchröder, N. W. J., & Schumann, R. R. (2005). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. In Lancet Infectious Diseases (Vol. 5, Issue 3, pp. 156–164). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(05)01308-3spa
dc.relation.referencesSghaier, I., Zidi, S., Mouelhi, L., Ghazoueni, E., Brochot, E., Almawi, W. Y., & Loueslati, B. Y. (2019). TLR3 and TLR4 SNP variants in the liver disease resulting from hepatitis B virus and hepatitis C virus infection. British Journal of Biomedical Science, 76(1), 35–41. https://doi.org/10.1080/09674845.2018.1547179spa
dc.relation.referencesSironi, M., Biasin, M., Cagliani, R., Forni, D., De Luca, M., Saulle, I., Lo Caputo, S., Mazzotta, F., Macías, J., Pineda, J., Caruz, A., & Clerici, M. (2012). Natural Resistance to HIV-1 Infection Confers TLR3 A Common Polymorphism in. The Journal of Immunology, 188(2), 818–823. https://doi.org/10.4049/jimmunol.1102179spa
dc.relation.referencesSoftware MacKiev. (2021). GraphPad Prism (9.1.2). www.graphpad.comspa
dc.relation.referencesSong, G., Ouyang, G., & Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. In Journal of Cellular and Molecular Medicine (Vol. 9, Issue 1, pp. 59–71). Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/j.1582-4934.2005.tb00337.xspa
dc.relation.referencesSong, G., Ouyang, G., & Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. In Journal of Cellular and Molecular Medicine (Vol. 9, Issue 1, pp. 59–71). Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/j.1582-4934.2005.tb00337.xspa
dc.relation.referencesSong, G., Ouyang, G., & Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. In Journal of Cellular and Molecular Medicine (Vol. 9, Issue 1, pp. 59–71). Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/j.1582-4934.2005.tb00337.xspa
dc.relation.referencesStuart, K. D., Weeks, R., Guilbride, L., & Myler, P. J. (1992). Molecular organization of Leishmania RNA virus 1. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 8596–8600. https://doi.org/10.1073/pnas.89.18.8596spa
dc.relation.referencesStudzińska, M., Jabłońska, A., Wiśniewska-Ligier, M., Nowakowska, D., Gaj, Z., Leśnikowski, Z. J., Woźniakowska-Gęsicka, T., Wilczyński, J., & Paradowska, E. (2017). Association of TLR3 L412F Polymorphism with Cytomegalovirus Infection in Children. https://doi.org/10.1371/journal.pone.0169420spa
dc.relation.referencesSvensson, A., Tunbäck, P., Nordström, I., Padyukov, L., & Eriksson, K. (2012). Polymorphisms in Toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection. Journal of General Virology. https://doi.org/10.1099/vir.0.042572-0spa
dc.relation.referencesTarr, P. I., Aline, R. F., Smiley, B. L., Scholler, J., Keithly, J., & Stuart, K. (1988). LR1: A candidate RNA virus of Leishmania. Proceedings of the National Academy of Sciences of the United States of America, 85(24), 9572–9275. https://doi.org/10.1073/pnas.85.24.9572spa
dc.relation.referencesTelleria, E. L., Martins-Da-Silva, A., Tempone, A. J., & Traub-Cseko, Y. M. (2018). Leishmania, microbiota and sand fly immunity. Parasitology, 145(10), 1336–1353. https://doi.org/10.1017/S0031182018001014spa
dc.relation.referencesTripathi, P., Singh, V., & Naik, S. (2007). Immune response to leishmania: Paradox rather than paradigm. FEMS Immunology and Medical Microbiology, 51(2), 229–242. https://doi.org/10.1111/j.1574-695X.2007.00311.xspa
dc.relation.referencesUeno, N., & Wilson, M. E. (2012). Receptor-mediated phagocytosis of Leishmania: Implications for intracellular survival. Trends in Parasitology, 28(8), 335–344. https://doi.org/10.1016/j.pt.2012.05.002spa
dc.relation.referencesUllah, M. O., Sweet, M. J., Mansell, A., Kellie, S., & Kobe, B. (2016). TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. Journal of Leukocyte Biology. https://doi.org/10.1189/jlb.2ri1115-531rspa
dc.relation.referencesUllah, M. O., Ve, T., Mangan, M., Alaidarous, M., Sweet, M. J., Mansell, A., & Kobe, B. (2013). The TLR signalling adaptor TRIF/TICAM-1 has an N-terminal helical domain with structural similarity to IFIT proteins. Biological Crystallography , 69, 2420–2430. https://doi.org/10.1107/S0907444913022385spa
dc.relation.referencesUniProt. (n.d.). UniProtKB - O15455 (TLR3_HUMAN). Retrieved May 20, 2021, from https://www.uniprot.org/uniprot/O15455spa
dc.relation.referencesvan Griensven, J., & Diro, E. (2012). Visceral Leishmaniasis. In Infectious Disease Clinics of North America (Vol. 26, Issue 2, pp. 309–322). Elsevier. https://doi.org/10.1016/j.idc.2012.03.005spa
dc.relation.referencesVargas Córdoba, M. (2016). Virología médica (2da ed.). Universidad Nacional de Colombia y Manual Moderno.spa
dc.relation.referencesvon Stebut, E., & Tenzer, S. (2018). Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. International Journal of Medical Microbiology, 308(1), 206–214. https://doi.org/10.1016/j.ijmm.2017.11.002spa
dc.relation.referencesWang, B. G., Yi, D. H., & Liu, Y. F. (2015). TLR3 gene polymorphisms in cancer: A systematic review and meta-analysis. Chinese Journal of Cancer, 34(6). https://doi.org/10.1186/s40880-015-0020-zspa
dc.relation.referencesWang, Y., Liu, L., Davies, D. R., & Segal, D. M. (2010). Dimerization of Toll-like Receptor 3 (TLR3) Is Required for Ligand Binding. The Journal of Biological Chemistry, 285(47), 36836. https://doi.org/10.1074/JBC.M110.16797spa
dc.relation.referencesWeeks, R., Aline, R. F., Myler, P. J., & Stuart, K. (1992). LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA. Journal of Virology, 66(3), 1389–1393. https://doi.org/10.1128/jvi.66.3.1389-1393.1992spa
dc.relation.referencesWHO. (2019). Leishmaniasis - Number of cases of cutaneus leishmaniasis: 2018. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.htmlspa
dc.relation.referencesWHO. (2021). Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasisspa
dc.relation.referencesWidmer, G., Comeau, A. M., Furlong, D. B., Wirth, D. F., & Patterson, J. L. (1989). Characterization of a RNA virus from the parasite Leishmania. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5979–5982. https://doi.org/10.1073/pnas.86.15.5979spa
dc.relation.referencesWidmer, G., & Dooley, S. (1995). Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-p3arasite association. In rNucleic Acids Research (Vol. 23, Issue 12).spa
dc.relation.referencesXia, D., Ye, S., Zhang, X., bao Zhang, Y., Tian, X., Liu, A., Cui, C., & Shi, L. (2020). Association of TLR3 (rs3775291) and IL-10 (rs1800871) gene polymorphisms with susceptibility to Hepatitis B infection: A meta-analysis. Epidemiology and Infection, 148, 1–11. https://doi.org/10.1017/S0950268820002101spa
dc.relation.referencesYang, C. A., Raftery, M. J., Hamann, L., Guerreiro, M., Grütz, G., Haase, D., Unterwalder, N., Schönrich, G., Schumann, R. R., Volk, H. D., & Scheibenbogen, C. (2012). Association of TLR3-hyporesponsiveness and functional TLR3 L412F polymorphism with recurrent herpes labialis. Human Immunology, 73(8), 844–851. https://doi.org/10.1016/j.humimm.2012.04.008spa
dc.relation.referencesYe, N., Ding, Y., Wild, C., Shen, Q., & Zhou, J. (2014). Small molecule inhibitors targeting activator protein 1 (AP-1). Journal of Medicinal Chemistry, 57(16), 6930–6948. https://doi.org/10.1021/JM5004733spa
dc.relation.referencesZayed, R. A., Omran, D., Mokhtar, D. A., Zakaria, Z., Ezzat, S., Soliman, M. A., Mobarak, L., El-Sweesy, H., & Emam, G. (2017). Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients. Am. J. Trop. Med. Hyg, 96(3), 720–726. https://doi.org/10.4269/ajtmh.16-0644spa
dc.relation.referencesZhou, P., Fan, L., Yu, K.-D., Zhao, M.-W., & Li, X.-X. (2011). Toll-like receptor 3 C1234T may protect against geographic atrophy through decreased dsRNA binding capacity. The FASEB Journal, 25(10), 3489–3495. https://doi.org/10.1096/FJ.11-189258spa
dc.relation.referencesZilberstein, & Dwyer. (1988). Identification of a surface membrane proton-translocating ATPase in promastigotes of the parasitic protozoan Leishmania donovani. Biochemical Journal, 256(1), 13–21. https://doi.org/10.1042/bj2560013spa
dc.relation.referencesZilberstein, Philosoph, & Gepstein. (1989). Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Molecular and Biochemical Parasitology, 36(2), 109–117. https://doi.org/10.1016/0166-6851(89)90183-7spa
dc.relation.referencesAbbas, A., Litchtman, A., & Pillai, S. (2015). Inmunología celular y molecular. In El Sevier (8va ed.).spa
dc.relation.referencesAgudelo Chivatá, N. J. (2019a). Informe de evento: Leishmaniasis cutánea.spa
dc.relation.referencesAgudelo Chivatá, N. J. (2019b). Informe de evento: Leishmaniasis mucosa.spa
dc.relation.referencesAgudelo, S., & Robledo, S. (2000). Revisión de tema: respuesta inmune en infecciones humanas por Leishmania spp. Iatreia, 13(3), 167–178spa
dc.relation.referencesAkashi-Takamura, S., & Miyake, K. (2006). Toll-like receptors (TLRs) and immune disorders. In Journal of Infection and Chemotherapy (Vol. 12, Issue 5, pp. 233–240). Springer Japan. https://doi.org/10.1007/s10156-006-0477-4spa
dc.relation.referencesAlagarasu, K., Bachal, R. V., Memane, R. S., Shah, P. S., & Cecilia, D. (2015). Polymorphisms in RNA sensing toll like receptor genes and its association with clinical outcomes of dengue virus infection. Immunobiology, 220(1), 164–168. https://doi.org/10.1016/J.IMBIO.2014.09.020spa
dc.relation.referencesAlcolea, P. J., Alonso, A., Gómez, M. J., Postigo, M., Molina, R., Jiménez, M., & Larraga, V. (2014). Stage-specific differential gene expression in Leishmania infantum: From the foregut of Phlebotomus perniciosus to the human phagocyte. BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-849spa
dc.relation.referencesAlexander, J., & Russell, D. G. (1992). The Interaction of Leishmania Species with Macrophages. Advances in Parasitology, 31(C), 175–254. https://doi.org/10.1016/S0065-308X(08)60022-6spa
dc.relation.referencesAlipoor, B., Ghaedi, H., Davood Omrani, M., Bastami, M., Meshkani, R., & Golmohammadi, T. (2016). A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes. Internationa Journal of Molecular and Celular Medicine, 5(2). http://compbio.uthsc.edu/miRSNP/spa
dc.relation.referencesArbour, N. C., Lorenz, E., Schutte, B. C., Zabner, J., Kline, J. N., Jones, M., Frees, K., Watt, J. L., & Schwartz, D. A. (2000). TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genetics, 25(2), 187–191. https://doi.org/10.1038/76048spa
dc.relation.referencesAronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256spa
dc.relation.referencesAtayde, V. D., da Silva Lira Filho, A., Chaparro, V., Zimmermann, A., Martel, C., Jaramillo, M., & Olivier, M. (2019). Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nature Microbiology, 4(4), 714–723. https://doi.org/10.1038/s41564-018-0352-yspa
dc.relation.referencesAtsaves, V., Leventaki, V., Rassidakis, G. Z., & Claret, F. X. (2019). AP-1 Transcription Factors as Regulators of Immune Responses in Cancer. Cancers, 11(7). https://doi.org/10.3390/CANCERS11071037spa
dc.relation.referencesAvendaño-Tamayo, E., Rúa, A., Parra-Marín, M. V., Rojas, W., Campo, O., Chacón-Duque, J., Agudelo-Flórez, P., Narváez, C. F., Salgado, D. M., Restrepo, B. N., & Bedoya, G. (2019). Evaluation of variants in IL6R, TLR3, and DC-SIGN genes associated with dengue in a sampled Colombian population. Biomedica, 39(1), 88–101. https://doi.org/10.7705/biomedica.v39i1.4029spa
dc.relation.referencesAwasthi, A., Mathur, R. K., & Saha, B. (2004). Immune response to Leishmania infection. Indian Journal of Medical Research, 119(6), 238–258.spa
dc.relation.referencesAzambuja, P., Garcia, E. S., & Ratcliffe, N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends in Parasitology, 21(12), 568–572. https://doi.org/10.1016/j.pt.2005.09.011spa
dc.relation.referencesBailey, M. S., & Lockwood, D. N. J. (2007). Cutaneous leishmaniasis. Clinics in Dermatology, 25(2), 203–211. https://doi.org/10.1016/j.clindermatol.2006.05.008spa
dc.relation.referencesBañuls, A. L., Hide, M., & Prugnolle, F. (2007). Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Advances in Parasitology, 64, 1–109. https://doi.org/10.1016/S0065-308X(06)64001-3spa
dc.relation.referencesBell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Davies, D. R., & Segal, D. M. (2006). The molecular structure of the TLR3 extracellular domain. Journal of Endotoxin Research, 12(6), 375–378. https://doi.org/10.1177/09680519060120060801spa
dc.relation.referencesBogdan, C., & Röllinghoff, M. (1998). The immune response to Leishmania: Mechanisms of parasite control and evasion. International Journal for Parasitology, 28(1), 121–134. https://doi.org/10.1016/S0020-7519(97)00169-0spa
dc.relation.referencesBruschi, F., & Gradoni, L. (2018). The leishmaniases: Old neglected tropical diseases. In The Leishmaniases: Old Neglected Tropical Diseases. Springer International Publishing. https://doi.org/10.1007/978-3-319-72386-0spa
dc.relation.referencesCadd, T. L., Keenan, M. C., & Pattersonl, J. L. (1993). Detection of Leishmania RNA Virus 1 Proteins. In JOURNAL OF VIROLOGY. http://jvi.asm.org/spa
dc.relation.referencesCantanhêde, L. M., da Silva Júnior, C. F., Ito, M. M., Felipin, K. P., Nicolete, R., Salcedo, J. M. V., Porrozzi, R., Cupolillo, E., & Ferreira, R. de G. M. (2015). Further Evidence of an Association between the Presence of Leishmania RNA Virus 1 and the Mucosal Manifestations in Tegumentary Leishmaniasis Patients. PLOS Neglected Tropical Diseases, 9(9), e0004079. https://doi.org/10.1371/journal.pntd.0004079spa
dc.relation.referencesCDC. (n.d.). CDC - Leishmaniasis - Biology. Retrieved February 27, 2020, from https://www.cdc.gov/parasites/leishmaniasis/biology.htmlspa
dc.relation.referencesCenters for disease control and prevention (CDC). (2020, February 14). CDC - Leishmaniasis. https://www.cdc.gov/parasites/leishmaniasis/index.htmlspa
dc.relation.referencesChattopadhyay, S., & Sen, G. C. (2014). dsRNA-Activation of TLR3 and RLR Signaling: Gene Induction-Dependent and Independent Effects. Journal of Interferon & Cytokine Research, 34(6), 436. https://doi.org/10.1089/JIR.2014.0034spa
dc.relation.referencesChaudhuri, G., Chaudhuri, M., Pan, A., & Chang, K.-P. (1989). Surface Acid Proteinase (gp63) of Leishmania mexicana. The Journal of Biological Chemestry, 264(13), 7483–7489.spa
dc.relation.referencesChen, B., Cole, J. W., & Grond-Ginsbach, C. (2017). Departure from Hardy Weinberg Equilibrium and Genotyping Error. Frontiers in Genetics, 8(OCT), 167. https://doi.org/10.3389/FGENE.2017.00167spa
dc.relation.referencesChieco, P., & Derenzini, M. (1999). The Feulgen reaction 75 years on. Histochemistry and Cell Biology, 111(5), 345–358. https://doi.org/10.1007/s004180050367spa
dc.relation.referencesChoe, J., Kelker, M. S., & Wilson, I. A. (2005). Crystal Structure of Human Toll-Like Receptor 3 (TLR3) Ectodomain. Science, 309(5734), 581–585. https://doi.org/10.1126/science.1115253spa
dc.relation.referencesCoombs, G., & North, M. (2004). Biochemical Protozoology. In Journal of Chemical Information and Modeling. Taylor & Francis. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesCorthay, A. (2006). A three-cell model for activation of naïve T helper cells. Scandinavian Journal of Immunology, 64(2), 93–96. https://doi.org/10.1111/j.1365-3083.2006.01782.xspa
dc.relation.referencesCroft, S. L., & Molyneux, D. H. (1979). Studies on the ultrastructure, virus-like particles and infectivity of Leishmania hertigi. Annals of Tropical Medicine and Parasitology, 73(3), 213–226. https://doi.org/10.1080/00034983.1979.11687251spa
dc.relation.referencesCruz-Barrera, M. L., Ovalle-Bracho, C., Ortegon-Vergara, V., Pérez-Franco, J. E., & Echeverry, M. C. (2015). Improving Leishmania species identification in different types of samples from cutaneous lesions. Journal of Clinical Microbiology, 53(4), 1339–1341. https://doi.org/10.1128/JCM.02955-14spa
dc.relation.referencesDavid, C. V., & Craft, N. (2009). Cutaneous and mucocutaneous leishmaniasis. Dermatologic Therapy, 22(6), 491–502. https://doi.org/10.1111/j.1529-8019.2009.01272.xspa
dc.relation.referencesde Carvalho, R. V. H., Andrade, W. A., Lima-Junior, D. S., Dilucca, M., de Oliveira, C. V., Wang, K., Nogueira, P. M., Rugani, J. N., Soares, R. P., Beverley, S. M., Shao, F., & Zamboni, D. S. (2019). Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. Cell Reports, 26(2), 429-437.e5. https://doi.org/10.1016/J.CELREP.2018.12.047spa
dc.relation.referencesde Carvalho, R. V. H., Lima-Junior, D. S., da Silva, M. V. G., Dilucca, M., Rodrigues, T. S., Horta, C. V., Silva, A. L. N., da Silva, P. F., Frantz, F. G., Lorenzon, L. B., Souza, M. M., Almeida, F., Cantanhêde, L. M., Ferreira, R. de G. M., Cruz, A. K., & Zamboni, D. S. (2019). Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13356-2spa
dc.relation.referencesde Carvalho, R. V. H., Lima-Júnior, D. S., de Oliveira, C. V., & Zamboni, D. S. (2021). Endosymbiotic RNA virus inhibits Leishmania-induced caspase-11 activation. IScience, 24(1), 102004. https://doi.org/10.1016/J.ISCI.2020.102004spa
dc.relation.referencesde Souza, M. M., Manzine, L. R., da Silva, M. V. G., Bettini, J., Portugal, R. V., Cruz, A. K., Arruda, E., & Thiemann, O. H. (2014). An improved purification procedure for Leishmania RNA virus (LRV). Brazilian Journal of Microbiology, 45(2), 695–698. https://doi.org/10.1590/S1517-83822014000200044spa
dc.relation.referencesDeeba, E., Koptides, D., Lambrianides, A., Pantzaris, M., Krashias, G., & Christodoulou, C. (2019). Complete sequence analysis of human toll-like receptor 3 gene in natural killer cells of multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 33(May), 100–106. https://doi.org/10.1016/j.msard.2019.05.027spa
dc.relation.referencesDermine, J.-F., Duclos, S., rome Garin, J., ois St-Louis, F., Rea, S., Parton, R. G., & Desjardins, M. (2001). Flotillin-1-enriched Lipid Raft Domains Accumulate on Maturing Phagosomes* Downloaded from. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 276(21), 18507–18512. https://doi.org/10.1074/jbc.M101113200spa
dc.relation.referencesDowlati, Y. (1996). Cutaneous leishmaniasis: Clinical aspect. Clinics in Dermatology, 14(5), 425–431. https://doi.org/10.1016/0738-081X(96)00058-2spa
dc.relation.referencesDutta, S. K., & Tripathi, A. (2017). Association of toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology. https://doi.org/10.1016/j.virol.2017.08.009spa
dc.relation.referencesEhrchen, J. M., Roebrock, K., Foell, D., Nippe, N., von Stebut, E., Weiss, J. M., Münck, N. A., Viemann, D., Varga, G., Müller-Tidow, C., Schuberth, H. J., Roth, J., & Sunderkötter, C. (2010). Keratinocytes determine Th1 immunity during early experimental leishmaniasis. PLoS Pathogens, 6(4), 1–16. https://doi.org/10.1371/journal.ppat.1000871spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsLeishmaniasisspa
dc.subject.decsLeishmaniasiseng
dc.subject.decsToll-Like Receptor 3eng
dc.subject.decsReceptor 3 Toll-Likespa
dc.subject.decsLeishmaniaspa
dc.subject.decsLeishmaniaeng
dc.subject.proposalLeishmaniaspa
dc.subject.proposalLRV1spa
dc.subject.proposalTLR3spa
dc.subject.proposalLeishmaniasis mucosaspa
dc.subject.proposalLeishmaniasis cutáneaspa
dc.subject.proposalPolimorfismo de nucleótido únicospa
dc.subject.proposalrs3775296
dc.subject.proposalrs764010322
dc.subject.proposalrs3775291
dc.subject.proposalrs3775290
dc.subject.proposalColombiaspa
dc.subject.proposalMucosal leishmaniasiseng
dc.subject.proposalCutaneous leishmaniasiseng
dc.subject.proposalSingle nucleotide polymorphismeng
dc.titleIdentificación y asociación de polimorfismos de Toll-Like Receptor 3 con el desarrollo de Leishmaniasis mucosa frente a la coinfección Leishmania spp. – Leishmania RNA Virus 1spa
dc.title.translatedIdentification and association of Toll-Like Receptor 3 polymorphisms with the development of mucosal Leishmaniasis against the coinfection Leishmania spp. - Leishmania RNA Virus 1eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032473343.2021.pdf
Tamaño:
3.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: