Exploración metabolómica del cáncer de mama en diferentes etapas y subtipos biológicos un estudio en una cohorte poblacional de Bogotá
| dc.contributor.advisor | Cala Molina, Mónica Patricia | |
| dc.contributor.advisor | Sandoval Hernández, Adrián Gabriel | |
| dc.contributor.author | León Carreño, Lizeth Dayana | |
| dc.coverage.city | Bogotá | |
| dc.coverage.country | Colombia | |
| dc.date.accessioned | 2025-12-05T14:41:36Z | |
| dc.date.available | 2025-12-05T14:41:36Z | |
| dc.date.issued | 2025 | |
| dc.description | ilustraciones a color, diagramas, tablas | spa |
| dc.description.abstract | El cáncer de mama (CM) es una neoplasia caracterizada por una alta heterogeneidad y está influenciada por subtipos moleculares intrínsecos y el estadio clínico, aspectos que permanecen poco explorados en la población colombiana. Este estudio tuvo como objetivo caracterizar las alteraciones metabólicas asociadas con los subtipos y estadios de la enfermedad en un grupo de mujeres colombianas recién diagnosticadas, sin tratamiento previo, utilizando un enfoque metabolómico no dirigido. Las muestras se analizaron en un abordaje multiplataforma, LC-QTOF-MS y GC-QTOF-MS, junto con un perfil de aminoácidos. El análisis entre los subtipos biológicos mostró niveles elevados de acilcarnitinas y una sobreexpresión de ácidos grasos libres en el subtipo Luminal B en comparación con los demás subtipos. También presentó un aumento en los niveles de carbohidratos e intermediarios glucolíticos esenciales, lo que sugiere que este subtipo puede adoptar un fenotipo metabólico híbrido caracterizado por un mayor flujo glucolítico, así como una mayor oxidación de ácidos grasos. El análisis de estadificación del tumor, ganglio y metástasis (TNM) reveló una reprogramación metabólica progresiva del CM. En estadios avanzados, se observó un aumento sostenido de las fosfatidilcolinas y una disminución de las lisofosfatidilcolinas, lo que refleja alteraciones lipídicas asociadas con funciones clave en la progresión tumoral. En estadios tempranos (I-II), se identificaron metabolitos plasmáticos con alto poder discriminatorio, como el ácido glutámico, la ribosa y el glicerol, que se asocian con disfunciones en el metabolismo energético y de carbohidratos. Estos resultados destacan la metabolómica como una herramienta prometedora para el diagnóstico temprano, el seguimiento clínico y la caracterización molecular del cáncer de mama (Texto tomado de la fuente). | spa |
| dc.description.abstract | Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a group of newly diagnosed, treatment-naive Colombian women using an untargeted metabolomics approach. Samples were analyzed using a multiplatform approach, LC-QTOF-MS and GC-QTOF-MS, along with amino acid profiling. Analysis across biological subtypes showed elevated levels of acylcarnitines and overexpression of free fatty acids in the Luminal B subtype compared to the other subtypes. It also presented increased levels of carbohydrates and essential glycolytic intermediates, suggesting that this subtype may adopt a hybrid metabolic phenotype characterized by increased glycolytic flux and fatty acid oxidation. Tumor, Node, and Metastasis (TNM) staging analysis revealed progressive metabolic reprogramming of BC. In advanced stages, a sustained increase in phosphatidylcholines and a decrease in lysophosphatidylcholines were observed, reflecting lipid alterations associated with key roles in tumor progression. In early stages (I-II), plasma metabolites with high discriminatory power were identified, such as glutamic acid, ribose, and glycerol, which are associated with dysfunctions in energy and carbohydrate metabolism. These results highlight metabolomics as a promising tool for the early diagnosis, clinical follow-up, and molecular characterization of BC. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Ciencias - Bioquímica | |
| dc.description.methods | Este estudio exploratorio analizó 141 muestras de suero de pacientes colombianos residentes en Bogotá, de entre 27 y 80 años, con diagnóstico reciente de cáncer de mama primario en cualquier estadio y subtipo biológico. Los pacientes fueron reclutados entre mayo de 2021 y agosto de 2023. Todos los pacientes fueron tratados en el Hospital Universitario Mayor Méderi y dieron su consentimiento para la recolección de información clínica y muestras de sangre para participar en el estudio. Los criterios de exclusión incluyeron tratamiento oncológico adyuvante o sistémico previo, así como antecedentes de enfermedades autoinmunes, trastornos metabólicos genéticos, inmunosupresión farmacológica o relacionada con el VIH, y cualquier otro tipo de cáncer o tumor distinto del cáncer de mama. También se analizó un grupo control de 14 muestras de mujeres sin cáncer de mama. La ausencia de malignidad se confirmó mediante mamografía o ecografía mamaria realizada en el último año, con una puntuación BI-RADS < 2 y sin antecedentes de ningún tipo de cáncer. Todas las participantes del grupo control estaban sin cáncer al momento de la toma de muestras. Estas muestras de control se incluyeron principalmente para realizar un control de calidad y preservar la estabilidad analítica de los modelos. Este estudio fue aprobado por el Comité de Ética Institucional de la Universidad del Rosario y el Comité Científico del Hospital Universitario Mayor Méderi. Las participantes completaron un cuestionario administrado en colaboración con coinvestigadores que recopiló datos sobre las comorbilidades multifactoriales y metabólicas más prevalentes observadas en mujeres colombianas, en particular en quellas con cáncer de mama, como dislipidemia, hipotiroidismo primario de origen no autoinmune o idiopático, diabetes mellitus tipo II, obesidad e hipertensión arterial. También se registraron la talla y el peso actuales de las participantes. El índice de masa corporal (IMC) se calculó dividiendo el peso en kilogramos entre el cuadrado de la talla en metros. El cuestionario también recabó información sobre la edad y el estado hormonal. | |
| dc.format.extent | 86 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89187 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
| dc.relation.references | Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer [Internet]. 2024 [cited 2025 May 19]. Available from: https://gco.iarc.who.int/today | |
| dc.relation.references | Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025 Jan;75(1):10–45. | |
| dc.relation.references | Subramani R, Poudel S, Smith KD, Estrada A, Lakshmanaswamy R. Metabolomics of Breast Cancer: A Review. Vol. 12, Metabolites. MDPI; 2022. | |
| dc.relation.references | Silva C, Perestrelo R, Silva P, Tomás H, Câmara JS. Breast cancer metabolomics: From analytical platforms to multivariate data analysis. A review. Vol. 9, Metabolites. MDPI AG; 2019. | |
| dc.relation.references | Füreder J, Schernhammer ES, Eliassen AH, Sieri S, Warth B. Metabolomics-enabled biomarker discovery in breast cancer research. Trends in Endocrinology and Metabolism. Elsevier Inc.; 2025. | |
| dc.relation.references | His M, Viallon V, Dossus L, Schmidt JA, Travis RC, Gunter MJ, et al. Lifestyle correlates of eight breast cancer-related metabolites: a cross-sectional study within the EPIC cohort. BMC Med. 2021 Dec 1;19(1). | |
| dc.relation.references | Ayala de la Peña F, Andrés R, Garcia-Sáenz JA, Manso L, Margelí M, Dalmau E, et al. SEOM clinical guidelines in early stage breast cancer (2018). Clinical and Translational Oncology. 2019 Jan 25;21(1):18–30. | |
| dc.relation.references | Giuliano AE, Edge SB, Hortobagyi GN. Eighth Edition of the AJCC Cancer Staging Manual: Breast Cancer. Vol. 25, Annals of Surgical Oncology. Springer New York LLC; 2018. p. 1783–5. | |
| dc.relation.references | American Cancer Society. About Breast Cancer [Internet]. 2021 [cited 2025 May 19]. Available from: cancer.org | 1.800.227.2345 | |
| dc.relation.references | Aydiner A, Igci A, Soran A. Breast Disease. Vol. 1, Diagnosis and Pathology | |
| dc.relation.references | Mayrovitz HN. Breast Cancer. | |
| dc.relation.references | Gao JJ, Swain SM. Luminal A Breast Cancer and Molecular Assays: A Review. Oncologist. 2018 May 1;23(5):556–65. | |
| dc.relation.references | Perou CM, Sørlie T, Eisen MB. Molecular portraits of human breast tumours. Nature [Internet]. 2000 Aug 17; Available from: www.stanford.edu/molecularportraits/ | |
| dc.relation.references | Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Journal of Clinical Investigation. 2011 Jul;121(7):2750–67. | |
| dc.relation.references | Hong R, Xu B. Breast cancer: an up-to-date review and future perspectives. Vol. 42, Cancer Communications. John Wiley and Sons Inc; 2022. p. 913–36. | |
| dc.relation.references | Gadwal A, Panigrahi P, Khokhar M, Sharma V, Setia P, Vishnoi JR, et al. A critical appraisal of the role of metabolomics in breast cancer research and diagnostics. Clinica Chimica Acta. 2024 Jul 15;561. | |
| dc.relation.references | Günther UL. Metabolomics Biomarkers for Breast Cancer. Vol. 82, Pathobiology. S. Karger AG; 2015. p. 153–65. | |
| dc.relation.references | Xu Y, Zhao B, Xu Z, Li X, Sun Q. Plasma metabolomic signatures of breast cancer. Front Med (Lausanne). 2023;10. | |
| dc.relation.references | Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Vol. 8, Trends in Cancer. Cell Press; 2022. p. 988–1001. | |
| dc.relation.references | Yuan B, Schafferer S, Tang Q, Scheffler M, Nees J, Heil J, et al. A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer. 2019 Jun 1;144(11):2833–42. | |
| dc.relation.references | Da Cunha PA, Nitusca D, Do Canto LM, Varghese RS, Ressom HW, Willey S, et al. Metabolomic Analysis of Plasma from Breast Cancer Patients Using Ultra-High-Performance Liquid Chromatography Coupled with Mass Spectrometry: An Untargeted Study. Metabolites. 2022 May 1;12(5). | |
| dc.relation.references | Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG. Serum Metabolomic Profiles for Breast Cancer Diagnosis, Grading and Staging by Gas Chromatography-Mass Spectrometry. Sci Rep. 2017 Dec 1;7(1). | |
| dc.relation.references | Cui M, Wang Q, Chen G. Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients. Biomedical Chromatography. 2016 Jan 1;30(1):42–7. | |
| dc.relation.references | Díaz-Beltrán L, González-Olmedo C, Luque-Caro N, Díaz C, Martín-Blázquez A, Fernández-Navarro M, et al. Human plasma metabolomics for biomarker discovery: Targeting the molecular subtypes in breast cancer. Cancers (Basel). 2021 Jan 1;13(1):1–18. | |
| dc.relation.references | Rashed R, Darwish H, Omran M, Belal A, Zahran F. A novel serum metabolome score for breast cancer diagnosis. Br J Biomed Sci. 2020;196–201. | |
| dc.relation.references | Jové M, Collado R, Luís Quiles J, Ramírez-Tortosa MC, Sol J, Ruiz-Sanjuan M, et al. A plasma metabolomic signature discloses human breast cancer [Internet]. Vol. 8. 2017. Available from: www.impactjournals.com/oncotarget | |
| dc.relation.references | Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L, et al. Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Jan 15;1105:26–37. | |
| dc.relation.references | Park J, Shin Y, Kim TH, Kim DH, Lee A. Plasma metabolites as possible biomarkers for diagnosis of breast cancer. PLoS One. 2019 Dec 1;14(12). | |
| dc.relation.references | Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Vol. 168, Cell. Cell Press; 2017. p. 657–69. | |
| dc.relation.references | Dong S, Wang Z, Shen K, Chen X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Vol. 11, Frontiers in Oncology. Frontiers Media S.A.; 2021. | |
| dc.relation.references | Subramaniam S, Kong YC, Yip CH, Thiagarajan M, Pailoor J, Zaharah H, et al. Association between pre-existing cardiometabolic comorbidities and the pathological profiles of breast cancer at initial diagnosis: a cross sectional study. Ecancermedicalscience. 2023;17. | |
| dc.relation.references | Anwar SL, Cahyono R, Prabowo D, Avanti WS, Choridah L, Dwianingsih EK, et al. Metabolic comorbidities and the association with risks of recurrent metastatic disease in breast cancer survivors. BMC Cancer. 2021 Dec 1;21(1). | |
| dc.relation.references | Fan S, Shahid M, Jin P, Asher A, Kim J. Identification of metabolic alterations in breast cancer using mass spectrometry-based metabolomic analysis. Metabolites. 2020 Apr 1;10(4). | |
| dc.relation.references | Faulds MH, Dahlman-Wright K. Metabolic diseases and cancer risk. Vol. 24, Current opinion in oncology. 2012. p. 58–61. | |
| dc.relation.references | Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019 Dec 1;5(1). | |
| dc.relation.references | Mr A, Sharifi J, Mr P, Paknahad A. Breast cancer and associated factors: a review. Vol. 8, Journal of Medicine and Life. 2015. | |
| dc.relation.references | Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Vol. 13, Cancers. MDPI; 2021. | |
| dc.relation.references | Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021 Jul;71(4):333–58. | |
| dc.relation.references | Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Molecular Case Studies. 2015 Oct;1(1):a000588. | |
| dc.relation.references | Tyagi R, Kumar P, Sharma U. Metabolomics techniques: A brief update. In: Epigenetics and Metabolomics. Elsevier; 2021. p. 1–29. | |
| dc.relation.references | Xiao Y, Ma D, Yang YS, Yang F, Ding JH, Gong Y, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022 May 1;32(5):477–90. | |
| dc.relation.references | Denkert C, Bucher E, Hilvo M, Salek R, Orešič M, Griffin J, et al. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery R E V I E W [Internet]. Vol. 4, Genome Medicine. 2012. Available from: http://genomemedicine.com/content/4/4/37 | |
| dc.relation.references | Chen Y, Li EM, Xu LY. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Vol. 12, Metabolites. MDPI; 2022. | |
| dc.relation.references | Misra BB. Data normalization strategies in metabolomics: Current challenges, approaches, and tools. European Journal of Mass Spectrometry. 2020 Jun 1;26(3):165–74. | |
| dc.relation.references | Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Vol. 2, Metabolites. MDPI AG; 2012. p. 775–95. | |
| dc.relation.references | Reisdorph NA, Walmsley S, Reisdorph R. A perspective and framework for developing sample type specific databases for LC/MS-based clinical metabolomics. Metabolites. 2020 Jan 1;10(1). | |
| dc.relation.references | Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007 Sep;3(3):211–21. | |
| dc.relation.references | Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, et al. Breast cancer: pathogenesis and treatments. Vol. 10, Signal Transduction and Targeted Therapy. Springer Nature; 2025. | |
| dc.relation.references | Provenzano E, Chin SF. Molecular classification and testing of breast carcinoma. In: Breast Pathology: Problematic Issues. Springer International Publishing; 2016. p. 215–31. | |
| dc.relation.references | Oakman C, Tenori L, Claudino WM, Cappadona S, Nepi S, Battaglia A, et al. Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Annals of Oncology. 2011 Jun 1;22(6):1295–301. | |
| dc.relation.references | Kaushik AK, DeBerardinis RJ. Applications of metabolomics to study cancer metabolism. Vol. 1870, Biochimica et Biophysica Acta - Reviews on Cancer. Elsevier B.V.; 2018. p. 2–14. | |
| dc.relation.references | Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Available from: https://doi.org/10.1007/s00216-021-03425-1 | |
| dc.relation.references | Gómez-Cebrián N, Domingo-Ortí I, Poveda JL, Vicent MJ, Puchades-Carrasco L, Pineda-Lucena A. Multi-omic approaches to breast cancer metabolic phenotyping: Applications in diagnosis, prognosis, and the development of novel treatments. Vol. 13, Cancers. MDPI; 2021. | |
| dc.relation.references | Chen X, Chen H, Dai M, Ai J, Li Y, Mahon B, et al. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions [Internet]. Vol. 7. Available from: www.impactjournals.com/oncotarget | |
| dc.relation.references | Gong S, Wang Q, Huang J, Huang R, Chen S, Cheng X, et al. LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer. Methods. 2024 Feb 1;222:100–11. | |
| dc.relation.references | Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M, Daidone MG. Metabolic Footprints and Molecular Subtypes in Breast Cancer. Vol. 2017, Disease Markers. Hindawi Limited; 2017. | |
| dc.relation.references | Giallourou N, Urbaniak C, Puebla-Barragan S, Vorkas PA, Swann JR, Reid G. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol. 2021 Dec 1;4(1). | |
| dc.relation.references | González Olmedo C, Díaz Beltrán L, Madrid García V, Palacios Ferrer JL, Cano Jiménez A, Urbano Cubero R, et al. Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples. Int J Mol Sci. 2024 May 1;25(10). | |
| dc.relation.references | Cala MP, Aldana J, Medina J, Sánchez J, Guio J, Wist J, et al. Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women. PLoS One. 2019 Jul 1;13(2). | |
| dc.relation.references | Sebastián Carreño Balcázar J, by CD, W Meesters RJ. Comparative Study of Amino Acids in the Plasma of Healthy and Breast Cancer Patients in Colombia-A pilot contribution to breast cancer metabolomics. 2008. | |
| dc.relation.references | Debmalya Barh. Omics Approaches in Breast Cancer. 2014. | |
| dc.relation.references | McCartney A, Vignoli A, Biganzoli L, Love R, Tenori L, Luchinat C, et al. Metabolomics in breast cancer: A decade in review. Vol. 67, Cancer Treatment Reviews. W.B. Saunders Ltd; 2018. p. 88–96. | |
| dc.relation.references | Brody T. Inclusion/Exclusion Criteria, Stratification, and Subgroups—Part II. In: Clinical Trials. Elsevier; 2016. p. 115–32. | |
| dc.relation.references | Pardo-Rodriguez D, Santamaría-Torres M, Salinas A, Jiménez-Charris E, Mosquera M, Cala MP, et al. Unveiling Disrupted Lipid Metabolism in Benign Prostate Hyperplasia, Prostate Cancer, and Metastatic Patients: Insights from a Colombian Nested Case–Control Study. Cancers (Basel). 2023 Nov 1;15(22). | |
| dc.relation.references | Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Vol. 8, Metabolites. MDPI AG; 2018. | |
| dc.relation.references | Alshajrawi OM, Al Astani Tengku Din TAD, Marzuki SSB, Maulidiani M, Binti Mohd Rusli NAR, Binti Badrol Hisham NFA, et al. Exploring the complex relationship between metabolomics and breast cancer early detection. Vol. 22, Molecular and Clinical Oncology. Spandidos Publications; 2025. | |
| dc.relation.references | Yarkin Dolas, Ayse Burus, Basak Celtikit. Genetic heterogeneity and metabolic reprogramming in breast cancer. 2024 | |
| dc.relation.references | Gu TQ, Xiao YL, Shao ZM. Intratumor heterogeneity in breast cancer: Tracing its origins and translating findings into clinical practice. Precision Medicine and Engineering. 2024 Sep;1(1):100006. | |
| dc.relation.references | Peng G, Pakstis AJ, Gandotra N, Cowan TM, Zhao H, Kidd KK, et al. Metabolic diversity in human populations and correlation with genetic and ancestral geographic distances. Mol Genet Metab. 2022 Nov 1;137(3):292–300. | |
| dc.relation.references | Jabbal IS, Dwivedi A, Bilani N, Dominguez B, Botrus G, Nahleh Z. Disparities in Metabolic Conditions and Cancer Characteristics among Hispanic Women with Breast Cancer: A Multi-Institutional Study. Cancers (Basel). 2022 Jul 1;14(14). | |
| dc.relation.references | Li L, Zheng X, Zhou Q, Villanueva N, Nian W, Liu X, et al. Metabolomics-Based Discovery of Molecular Signatures for Triple Negative Breast Cancer in Asian Female Population. Sci Rep. 2020 Dec 1;10(1). | |
| dc.relation.references | Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, et al. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Vol. 23, Molecular Cancer. BioMed Central Ltd; 2024. | |
| dc.relation.references | McAnena PF, Brown JAL, Ramli A, Curran C, Malone C, McLaughlin R, et al. Breast cancer subtype discordance: Impact on post-recurrence survival and potential treatment options. BMC Cancer. 2018 Feb 20;18(1). | |
| dc.relation.references | Lende TH, Austdal M, Varhaugvik AE, Skaland I, Gudlaugsson E, Kvaløy JT, et al. Influence of pre-operative oral carbohydrate loading vs. standard fasting on tumor proliferation and clinical outcome in breast cancer patients ─ a randomized trial. BMC Cancer. 2019 Nov 8;19(1). | |
| dc.relation.references | Gandhi N, Das GM. Metabolic reprogramming in breast cancer and its therapeutic implications. Vol. 8, Cells. MDPI; 2019. | |
| dc.relation.references | Li L, Wu N, Zhuang G, Geng L, Zeng Y, Wang X, et al. Heterogeneity and potential therapeutic insights for triple-negative breast cancer based on metabolic‐associated molecular subtypes and genomic mutations. Front Pharmacol. 2023;14. | |
| dc.relation.references | Kou F, Zhu B, Zhou W, Lv C, Cheng Y, Wei H. Targeted metabolomics reveals dynamic portrayal of amino acids and derivatives in triple-negative breast cancer cells and culture media. Mol Omics. 2021 Feb 1;17(1):142–52. | |
| dc.relation.references | Tayyari F, Gowda GAN, Olopade OF, Berg R, Yang HH, Lee MP, et al. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences [Internet]. Vol. 9, Oncotarget. 2018. Available from: www.impactjournals.com/oncotarget | |
| dc.relation.references | Chang Y, Du R, Xia F, Xu X, Wang H, Chen X. Dysregulation of Fatty Acid Metabolism in Breast Cancer and Its Targeted Therapy. Vol. 16, Breast Cancer: Targets and Therapy . Dove Medical Press Ltd; 2024. p. 825–44. | |
| dc.relation.references | Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, Choi HK. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials [Internet]. Vol. 7. Available from: www.impactjournals.com/oncotarget | |
| dc.relation.references | Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. Vol. 218, Journal of Experimental Medicine. Rockefeller University Press; 2021. | |
| dc.relation.references | Huang X, Ali A, Yachioui DEI, Le Dévédec SE, Hankemeier T. Lipid dysregulation in triple negative breast cancer: Insights from mass spectrometry-based approaches. Vol. 98, Progress in Lipid Research. Elsevier Ltd; 2025. | |
| dc.relation.references | Chen X, Gao D, Sun Q, Chen Y, Liu H, Jiang Y. Metabolic Profiling of Amino Acids by Liquid Chromatography–Tandem Mass Spectrometry (LC–MS) to Characterize the Significance of Glutamine in Triple-Negative Breast Cancer (TNBC). Anal Lett. 2019 May 3;52(7):1068–82. | |
| dc.relation.references | Carmona A, Mitri S, James TA, Ubellacker JM. Lipidomics and metabolomics as potential biomarkers for breast cancer progression. npj Metabolic Health and Disease. 2024 Sep 2;2(1). | |
| dc.relation.references | Chen Z, Li Z, Li H, Jiang Y. Metabolomics: A promising diagnostic and therapeutic implement for breast cancer. Vol. 12, OncoTargets and Therapy. Dove Medical Press Ltd.; 2019. p. 6797–811. | |
| dc.relation.references | Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for Biomarker Discovery: Moving to the Clinic. Vol. 2015, BioMed Research International. Hindawi Publishing Corporation; 2015. | |
| dc.relation.references | Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: A review. Vol. 15, Clinical Cancer Research. 2009. p. 431–40. | |
| dc.relation.references | Xu S, Chen T, Dong L, Li T, Xue H, Gao B, et al. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol Lett. 2021 Jan 1;21(1). | |
| dc.relation.references | Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop-Hernández À, et al. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol. 2024 Mar 1;18(3):479–516. | |
| dc.relation.references | Lee A, Lam CW. Application of Metabolic Biomarkers in Breast Cancer: A Literature Review. Vol. 45, Annals of Laboratory Medicine. Korean Society for Laboratory Medicine; 2025. p. 229–46. | |
| dc.relation.references | Creighton CJ. The molecular profile of luminal B breast cancer. Vol. 6, Biologics: Targets and Therapy. 2012. p. 289–97. | |
| dc.relation.references | Serrano-Carbajal EA, Espinal-Enríquez J, Hernández-Lemus E. Targeting Metabolic Deregulation Landscapes in Breast Cancer Subtypes. Front Oncol. 2020 Feb 11;10. | |
| dc.relation.references | Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Vol. 121, European Journal of Cancer. Elsevier Ltd; 2019. p. 154–71. | |
| dc.relation.references | Bel’skaya L V., Gundyrev IA, Solomatin D V. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Vol. 45, Current Issues in Molecular Biology. Multidisciplinary Digital Publishing Institute (MDPI); 2023. p. 7513–37. | |
| dc.relation.references | Fragomeni SM, Sciallis A, Jeruss JS. Molecular Subtypes and Local-Regional Control of Breast Cancer. Vol. 27, Surgical Oncology Clinics of North America. W.B. Saunders; 2018. p. 95–120. | |
| dc.relation.references | Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic. Vol. 186, Cell. Elsevier B.V.; 2023. p. 1708–28. | |
| dc.relation.references | Matos Do Canto L, Varghese RS, Ahn J, Da Cunha PA, Willey S, Sidawy M, et al. Metabolomic profiling of breast tumors using ductal fluid. Int J Oncol. 2016 Dec 1;49(6):2245–54. | |
| dc.relation.references | Currie E, Schulze A, Zechner R, Walther TC, Farese R V. Cellular fatty acid metabolism and cancer. Vol. 18, Cell Metabolism. Cell Press; 2013. p. 153–61. | |
| dc.relation.references | Jobard E, Pontoizeau C, Blaise BJ, Bachelot T, Elena-Herrmann B, Trédan O. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett. 2014 Feb 1;343(1):33–41. | |
| dc.relation.references | Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Vol. 34, Cell Metabolism. Cell Press; 2022. p. 1675–99. | |
| dc.relation.references | Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. Int J Cancer. 2007 Apr 15;120(8):1721–30. | |
| dc.relation.references | Glunde K, Jie C, Bhujwalla ZM. Molecular Causes of the Aberrant Choline Phospholipid Metabolism in Breast Cancer [Internet]. Vol. 64, CANCER RESEARCH. 2004. Available from: http://aacrjou | |
| dc.relation.references | Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Vol. 17, Cancers. Multidisciplinary Digital Publishing Institute (MDPI); 2025. | |
| dc.relation.references | Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, et al. Lipid metabolism in cancer progression and therapeutic strategies. Vol. 2, MedComm. John Wiley and Sons Inc; 2021. p. 27–59. | |
| dc.relation.references | Delmas D, Mialhe A, Cotte AK, Connat JL, Bouyer F, Hermetet F, et al. Lipid metabolism in cancer: Exploring phospholipids as potential biomarkers. Vol. 187, Biomedicine and Pharmacotherapy. Elsevier Masson s.r.l.; 2025. | |
| dc.relation.references | Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, et al. The mechanisms of lysophosphatidylcholine in the development of diseases. 2020. | |
| dc.relation.references | Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, et al. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016 Jan 28;14(1). | |
| dc.relation.references | Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia [Internet]. 2000. Available from: http://www.jap.org | |
| dc.relation.references | Patra KC, Hay N. The pentose phosphate pathway and cancer. Vol. 39, Trends in Biochemical Sciences. Elsevier Ltd; 2014. p. 347–54. | |
| dc.relation.references | Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017 May 11;8. | |
| dc.relation.references | Phang JM, Liu W, Hancock C, Christian KJ. The proline regulatory axis and cancer. Vol. 2 JUN, Frontiers in Oncology. 2012. | |
| dc.relation.references | Suman S, Sharma RK, Kumar V, Sinha N, Shukla Y. Metabolic fingerprinting in breast cancer stages through 1H NMR spectroscopy-based metabolomic analysis of plasma. J Pharm Biomed Anal. 2018 Oct 25;160:38–45. | |
| dc.relation.references | Uifălean A, Iacobescu M, Salanță LC, Hegheş SC, Moldovan RC, Iuga CA. Biological and Analytical Perspectives on D-Amino Acids in Cancer Diagnosis and Therapy. Vol. 18, Pharmaceuticals. Multidisciplinary Digital Publishing Institute (MDPI); 2025. | |
| dc.relation.references | Buentzel J, Klemp HG, Kraetzner R, Schulz M, Dihazi GH, Streit F, et al. Metabolomic profiling of blood-derived microvesicles in breast cancer patients. Int J Mol Sci. 2021 Dec 1;22(24). | |
| dc.relation.references | Zakari S, Niels NK, Olagunju G V., Nnaji PC, Ogunniyi O, Tebamifor M, et al. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Vol. 14, Frontiers in Oncology. Frontiers Media SA; 2024. | |
| dc.relation.references | Vaida M, Arumalla KK, Tatikonda PK, Popuri B, Bux RA, Tappia PS, et al. Identification of a Novel Biomarker Panel for Breast Cancer Screening. Int J Mol Sci. 2024 Nov 1;25(21). | |
| dc.relation.references | Gong S, Huang R, Wang M, Lian F, Wang Q, Liao Z, et al. Comprehensive analysis of the metabolomics and transcriptomics uncovers the dysregulated network and potential biomarkers of Triple Negative Breast Cancer. J Transl Med. 2024 Dec 1;22(1):1016. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
| dc.subject.lemb | NEOPLASMAS | spa |
| dc.subject.lemb | Neoplasms | eng |
| dc.subject.lemb | CANCER-ASPECTOS MOLECULARES | spa |
| dc.subject.lemb | Cancer-molecular aspects | eng |
| dc.subject.lemb | CANCER-TRATAMIENTO-COMPLICACIONES | spa |
| dc.subject.lemb | Cancer -- Treatment -- Complications | eng |
| dc.subject.lemb | ENFERMOS DE CANCER | spa |
| dc.subject.lemb | Cancer - Patients | eng |
| dc.subject.lemb | MAMAS-CANCER | spa |
| dc.subject.lemb | Breast - cancer | eng |
| dc.subject.proposal | Análisis metabolómico | spa |
| dc.subject.proposal | Cáncer de mama | spa |
| dc.subject.proposal | Perfil metabólico | spa |
| dc.subject.proposal | Subtipos de cáncer | spa |
| dc.subject.proposal | Estadios del cáncer | spa |
| dc.subject.proposal | Metabolomic analysis | eng |
| dc.subject.proposal | Breast cancer | eng |
| dc.subject.proposal | Molecular signatures | eng |
| dc.subject.proposal | Cancer subtypes | eng |
| dc.subject.proposal | Cancer stages | eng |
| dc.title | Exploración metabolómica del cáncer de mama en diferentes etapas y subtipos biológicos un estudio en una cohorte poblacional de Bogotá | spa |
| dc.title.translated | Metabolomic exploration of breast cancer across different stages and biological subtypes: a study in a population-based cohort from Bogotá | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- EXPLORACIÓN METABOLÓMICA DEL CÁNCER DE MAMA EN DIFERENTES ETAPAS Y SUBTIPOS BIOLÓGICOS.pdf
- Tamaño:
- 1.8 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

